US3884631A - Preparation of cellulose n,n-dimethylformimidate chloride in textile form, and conversion to halogenodeoxycelluloses and cellulose formate - Google Patents

Preparation of cellulose n,n-dimethylformimidate chloride in textile form, and conversion to halogenodeoxycelluloses and cellulose formate Download PDF

Info

Publication number
US3884631A
US3884631A US335861A US33586173A US3884631A US 3884631 A US3884631 A US 3884631A US 335861 A US335861 A US 335861A US 33586173 A US33586173 A US 33586173A US 3884631 A US3884631 A US 3884631A
Authority
US
United States
Prior art keywords
dimethylformamide
cellulose
textile
chloride
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US335861A
Inventor
Tyron L Vigo
Donald J Daigle
Clark M Welch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Agriculture USDA
Original Assignee
US Department of Agriculture USDA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Agriculture USDA filed Critical US Department of Agriculture USDA
Priority to US335861A priority Critical patent/US3884631A/en
Application granted granted Critical
Publication of US3884631A publication Critical patent/US3884631A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/22Effecting variation of dye affinity on textile material by chemical means that react with the fibre
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/004Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated using dispersed dyes

Definitions

  • Conversion of cellulose N,N-dimethylformimidate chloride to iododeoxycellulose is accomplished by reaction of the former with an alkali metal iodide at 60l50C in N,N-dimethylformamide. Conversion of the cellulose N,N-dimethylformimidate chloride to cellulose formate occurs by contact with water at 2030C. The chlorodeoxycellulose and iododeoxycellulose possess rot resistance and flame resistance. Cellulose formate has altered dyeability.
  • This invention relates to a new cellulose derivative, its preparation in yarn and fabric form, and its conversion to other cellulose derivatives having useful textile properties. More specifically, the invention relates to the preparation. properties and reactions of cellulose N.N-dimethylformimidate chloride. which possesses the chemical structure wherein Cell represents a portion of a cellulose molecular chain. Alternative names for this cellulose derivative are (celluloseoxymethylene) dimethylammonium chloride and cellulose N-methylformimidate methochloride. Also embodied in the present invention is the conversion of the above specified cellulose N,N-dimethylformimidate chloride to chlorodeoxycelluloses, iododeoxycelluloses, cellulose formate, and other useful cellulose derivatives in textile form.
  • the main object of the present invention is the preparation of a new and highly reactive cellulose derivative, cellulose N,N-dimethylformimidate chloride. having utility as an intermediate in the preparation ofa variety of other cellulose derivatives.
  • a second object is to provide a means of reducing the flammability of cellulosic textiles.
  • a third object of the present invention is to provide a means of rendering cellulosic textiles resistant to rotting by microorganisms.
  • a fourth object is to provide a means of introducing halogen substituents into cellulose to yield chlorodeoxycellulose and iododeoxycellulose in textile form, while retaining the fiber structure, whiteness, and most of the tensile strength of the original cellulose.
  • a fifth object is to provide a means of introducing halogen subtituents into cellulose without prior application of alkali-swelling or solvent-exchange pretreatments to the cellulose.
  • Other objects of the present invention will become evident in the description which follows.
  • the present invention makes it possible for the first time to prepare chlorodeoxycellulose in yarn and fabric form without prior application of alkalior waterswelling treatments to the cellulose.
  • the processes to be disclosed eliminate the need for solvent-exchange treatments prior to reaction.
  • the present invention permits the use of elevated reaction temperatures without cellulose discoloration or tendering, thus permitting higher chlorine contents to be introduced into the cellulose than are possible in processes conducted at room temperature.
  • the processes of this invention are applicable to celluloses derived from cotton and wood pulp, which celluloses may be native, mercerized or regenerated, and which may be in the form of loose fibers, sliver, yarn or fabric.
  • Chlorodimethylformiminium chloride in place of thionyl chloride as the reagent employed to introduce the desired substituents into the cellulose.
  • DMFC1 undergoes two types of reaction with cellulose.
  • the high temperature reaction of DMFCI with cellulose is conducted at 50-l 10C, and produces mainly chlorodeoxycellulose:
  • the cellulose N,N-dimethylformimidate chloride is highly reactive, and can be converted to iododeoxycellulose by treatment with an alkali metal iodide in N,N-dimethylformamide at 60l 50C, as follows:
  • cellulose N,N-dimethylformimidate chloride can be reacted with water to yield cellulose formate:
  • chlorodeoxycellulose, iododeoxycellulose, and cellulose formate readily obtainable by the processes of this invention, but mixed derivatives of cellulose containing iodo and formyl substituents, chloro and formyl substituents, iodo and chloro substituents, or iodo, chloro, and formyl substituents on the same cellulose chains, are readily prepared by the proper sequence of treatments and choice of reaction temperatures and times.
  • step (a) above Immersing the cellulose in N,N-dimethylformamide prior to treatment with DMFCl solution, as specified in step (a) above, is critical to the process, in that this step swells the cellulose fibers and greatly increases the rate of subsequent reaction of the cellulose with the DMFCl
  • the magnitude of this effect is surprising inasmuch as N,N-dimethylformamide is also present during the reaction and would be expected to exert the same effect then.
  • the cellulose to be used in this process should be at equilibrium with the atmosphere at ordinary humidity so that the moisture content of the cellulose is of the order of 2-12 percent.
  • Removing excess N,N-dimethylformamide, in step (b) above may be accomplished by ordinary mechani- 'ill H ltli ods of wringing, such as passing the fabric through squeeze rolls, centrifugation, draining, or by pressing the cellulose against a filter.
  • the reaction of the cellulosic textile with DMFCl as specified in step (c) above, is preferably carried out in N,N-dimethylformamide as the reaction medium since this solvent maintains the cellulose in a swollen state, and also the DMFC1 has considerable solubility in this medium.
  • the weight ratio of DMFCl to cellulose which may be used can be varied over a wide range. The most practical ratio to use depends to some extent on whether the cellulose is in the form of loose fibers, sliver, yarn, or fabric, since the wet pickup of DMFCl -dimethylformamide mixture of the cellulose varies with the form of cellulose being treated.
  • the preferred ratio also varies with the degree of cellulose substitution desired, but usually is in excess of 1 part by weight of DMFCl to 4 parts by weight of cellulose.
  • the ratio of DMFCL; to N,N-dimethylformamide also may be varied considerably but below a weight ratio of 0.03 of DMFCl solvent, the reaction with cellulose becomes very slow, and above a weight ratio of 0.15 the solubility limit of DMFCL is exceeded to the extent that little practical benefit results from still higher ratios,
  • the degree of cellulose substitution obtained can be varied considerably so that the chlorine content of the product is in the range of about 0.5 to 6 percent and the nitrogen content is in the range of 0.2 to 2.4 percent.
  • the washing step (d) listed above is preferably carried out using N,N-dimethylformamide as the solvent to remove excess DMFCI and must be done under an hydrous conditions.
  • the presence of water causes immediate hydrolysis of cellulose N,N-dimethylformimidate chloride to yield cellulose formate.
  • the washing step (e) above is preferred in order to remove N,N-dimethylformamide, since the latter solvent is high boiling and is difficult to remove by heat drying.
  • Solvents suitable for this washing are those solvents whose boiling points are less than C at l atmosphere pressure, are miscible with N,N-dimethylformamide, and are inert to DMFCl Examples of suitable solvents are benzene, carbon tetrachloride, chloroform, and ethylene chloride, with benzene being preferred because of its low cost.
  • the drying step removes the solvent used in washing step (e) and may be carried out at any temperature below about 50C. At higher temperatures there is some tendency for chlorodeoxycellulose formation. Drying may be conducted with a stream of dry air, by vacuum, or by mild heating.
  • the washing step (e) and drying step (f) may be omitted if the cellulose N,N-dimethylformimidate chloride is to be converted immediately to other cellulose derivatives.
  • the preparation of iododeoxycellulose by the present invention comprises the following steps:
  • Steps (a) through (d) are the same as for the preparation of cellulose N.N-dimethylformimidate chloride.
  • Step (e) the reaction of this derivative with an alkali metal iodide. is preferably carried out in N.N-dimethylformamide as the reaction medium since several of the alkali iodides have high solubility in this medium which also maintains the cellulosic fibers in a swollen and accessible condition.
  • alkali metal iodides sodium iodide and potassium iodide are preferred as having the optimum compromise between low cost. high ionic character and reactivity and high solubility in N,N-dimethylformamide. Potassium iodide is particularly preferred in these respects.
  • Steps (f) and (g) remove unreacted iodide and DMFCI If the DMFCl used for step (c) contains some thionyl chloride as an impurity, the iododeoxycellulose formed will also have present appreciable amounts of sulfur-containing cellulose derivatives such as cellulose sulfite.
  • the sulfites may be decomposed by washing the product with 2-5-perccnt aqueous ammonia followed by water washing. The ammonia wash also removes any formate ester groups present.
  • the drying step (h) may be carried out at any temperature, below 90C but preferably at 20C to 40C since organic iodides such as iododeoxycellulose tend to undergo dehydrohalogenation and other side reactions with unusual ease.
  • Steps (a) through (d) are the same as for the preparation of cellulose N,N-dimethylformimidate chloride.
  • Steps (a) and (b) are the same as for the preparation of cellulose N,N-dimethylformimidate, while step (c) differs primarily in the use of a higher reaction temperature.
  • Step (d) also is the same as for preparing cellulose N,N-dimethylformimidate.
  • Step (e) can be modified to include a wash with 2-5 percent aqueous ammonia if needed to remove sulfur-containing impurities in the product. The ammonia wash also removes any for-' mate ester groups present. The sulfur-containing impurities arise if the DMFCl employed contains appreciable amounts of thionyl chloride. Drying (step f) is preferably done at moderate temperatures not exceeding C in order to avoid dehydrochlorination.
  • DMFCl undergoes only singleended attachment to cellulose as a result of the present processes, since the cellulose N,N-dimethylformimidate produced is completely soluble in 0.5 M cupriethylenediamine and no crosslinking of cellulose can be detected.
  • a solution of purified DMFC] in N,N-dimethylformamide differs in composition from a solution of thionyl chloride in N,N-dimethylformamide.
  • the celluose N,N-dimethylformiiffil ate cilildfldE prepared from DMFC1 and cellulose l fldllhd t6 have appreciable flame resistance. This is lilieiipee'te'd lfl the product contains neither phosphdflels 38f bfbiiilfl; the two most common elements in flame FEiafdHfit fllilhes Chlorodeoxycellylose and iododeoxycellulose produced by the present processes exhibit increased flame resistance also, as well as rot resistance. Cellulose formate exhibits enhanced dyeability by disperse dyes.
  • yarn breaking strength was measured by the procedure of ASTM-D168264, using an lnstron tester. Fabric breaking strength was measured by the strip method (ASTM D39-49). Flame resistance was measured by determining the maximum angle from the vertical that a sample could be posi tioned, such that when ignited from the lower end by a match, the flame was self-extinguising after the match was withdrawn (Reeves, McMillan and Guthrie, Textile Research J. 23, 527532 (1953) Rot resistance was determined by burial of the samples in inoculated soil (AATCC 30-1957T).
  • Formyl content of cellulose format was determined by modified Eberstadt titration (ASTM D-871-63).
  • the infrared spectra of cellulose formate samples was recorded on a Perkin-Elmer Model 1378 lnfracord spectrophotometer for pellets of the powdered samples pressed into potassium bromide discs.
  • D.S. refers to the degree of cellulose substitution, i.e., the number of substituent groups introduced per anhydroglucose unit of cellulose.
  • EXAMPLE 1 Preparation of Cellulose N,N-dimethylformimidate chloride from Cellulose Yarn Kiered, 12/3 cotton yarn was immersed in excess N.N-dimethylformamide for 30 minutes at 25 C, then excess N,N-dimethylformamide was removed from the yarn by centrifugation at 2850 rpm for 1 minute. The yarn was subsequently reacted for 5 minutes at 25C with 6 percent chlorodimethylformiminium chloride (DMFCl in N,N-dimethylformamide in a stoppered flask with agitation, utilizing 40 grams of solution per gram of cotton.
  • DMFCl chlorodimethylformiminium chloride
  • the yarn was then subsequently washed three times with excess N,N-dimethy1formamide, three times with excess benzene, centrifuged for 1 minute at 2850 rpm, and allowed to air-dry to constant weight.
  • the resultant yarn had only trace amounts of sulfur and a chlorine content of 3.34 percent and a nitrogen content of 1.36 percent.
  • the chlorine/nitrogen atomic ratio was 1.0 as required for the structure
  • CellOCH N (CH Cl, cellulose N,N-dimethylformimidate chloride. This cellulose derivative had a breaking strength of 5.6 lbs. compared to 5.2 lbs. for untreated, native cotton yarn and also had a match angle test value of 60 compared to for native cotton yarn.
  • EXAMPLE 3 Preparation of Cellulose Formate by Reaction of Cotton Yarn with DMFCI- at 25C Kiered, 12/3 cotton yarn was immersed in excess N,N-dimethylformamide for 10 minutes, then excess N,N-dimethylformamide was removed from the yarn by centrifugation for 1 minute at 2850 rpm. The yarn was subsequently reacted for 1 hour at 25C (in a stoppered flask with agitation) with 6- percent DMFCl in N,N-dimethylformamide, using a bath ratio of 40 grams of solution per gram of cotton. The yarn was subsequently washed with ice water, then with tap water for 30 minutes, and air-dried to produce cellulose formate (D.S.
  • the resultant yarn had a breaking strength of 4.4 lbs. compared to native cotton yarn which had a breaking strength of 5.2 lbs.
  • the presence of formate ester groups in the treated yarns was demonstrated by an intense absorption peak at 5.8-5.9 millimicrons in the infrared spectrum of the treated yarn. This peak, which is absent for untreated yarns, has been assigned to the carbonyl stretching frequency characteristic of the formyl groups. The same spectrum was obtained in yarn esteritied with percent formic acid. If the cotton yarn were treated under the same conditions, with the exception that it was not preswollen in N,N-dimethylformamide prior to reaction, the resultant D.S. with respect to formate ester groups was only 0.04, with the yarn having a breaking strength of 4.8 lbs. compared to 5.2 lbs. for untreated cotton yarn.
  • EXAMPLE 4 Preparation of Chlorodeoxycellulose Yarn from Cellulose and Excess DMFC1 Kiered, 12/3 cotton yarn was immersed in excess N.N-dimethylformamide for 30 minutes at 25C and excess N,N-dimethylformamide was then removed from the yarn by centrifugation at 2850 rpm for 1 minute. The yarn was subsequently reacted with 6 percent DMFC1 in N.N-dimethylformamide for 1 hour at 50C in a tube immersed in a constant temperature bath. utilizing 40 grams of solution per gram of cotton. After cooling to room temperature. the yarn was washed with N,N-dimethylformamide until the washings were colorless.
  • the yarn was subsequently washed with ice water and then tap water in excess for 30 minutes, and allowed to air-dry.
  • the resultant chlorodeoxycellulose yarn had a D.S. of 0.05 (1.05 percent CI), a sulfur content of 0.77 percent. and a D.S. of 0.28 with respect to formate ester groups.
  • the yarn had a breking strength of 3.8 lbs. compared to 5.2 lbs. for untreated cotton yarn.
  • the reaction was conducted under the same experimental conditions. but the wash procedure was modified. After an initial tap water wash for minutes. the yarn was washed with excess 3 ammonium hydroxide, and then tap water for another 15 minutes prior to air-drying.
  • the resultant chlorodeoxy cellulose yarn had a D.S. of 0.04 (percent Cl 0.97), a sulfur content of 0.39 percent, a D.S. of only 0.01 with respect to formate ester groups. and a breaking strength of 4.0 lbs.
  • the resultant chlorodeoxycellulose yarn (with a water wash only) possessed 6.53 percent Cl (D.S. of 0.31 a sulfur content of 0.97. and a D.S. of 0.18 with respect to formate ester groups introduced.
  • Utilizing an ammonia wash produced a chlorodeoxycellulose yarn with a D.S. of 0.34 (7.13 percent C1), a sulfur content of 0.71 and a D.S. of only 0.04 with respect to formate ester groups.
  • the breaking strengths of the resultant yarns with and without the ammonia wash were 1.8 and 1.6 lbs., respectively.
  • EXAMPLE 5 Reaction of Cellulose Yarn without Utilizing Excess DMFCl Kiered. 12/3 cotton yarn was immersed in excess N,N-dimethylformamide for 30 minutes at 25C, and then excess N,N-dimethylformamide was removed from the yarn by centrifugation at 2850 rpm for 1 minute. The yarn was subsequently reacted with 6 percent DMFCl in N.N-dimethylformamide for 1 hr. at 25C with shaking in a stoppered flask, utilizing 40 grams of solution per gram of cotton. Excess DMFC1 was removed from the cotton yarn by washing with N.N-dimethylformamide.
  • Example 1 The yarn was washed with water only as described in the first part of Example 1.
  • the resultant yarn had only 0.21 percent Cl, representing a D.S. of 0.01, but also contained 0.24 percent S and had a D.S. of 0.13 with respect to formate ester groups.
  • the breaking strength was 4.0 lbs.
  • EXAMPLE 7 Preparation of Iododeoxycellulose Utilizing DMFCl and Iodide lon Kiered, 12/3 cotton yarn was immersed at 25C for 10 minutes in N.N-dimethylformamide and then the excess N.N-dimethylformamide was removed by centrifugation for 1 minute at 2850 rpm. The yarn was reacted for 1 hour in a stoppered flask with shaking at 25C with 6 percent DMFC1 in N.N-dimethylformamide, utilizing a bath ratio of. 40 grams of solution per gram of cotton.
  • the yarn was washed with N,N-dimethylformamide to remove excess DMFCL centrifuged for 1 minute at 2850 rpm, and then reacted in a constant temperature bath for 1 hour at C with 12 percent potassium iodide in N,N-dimethylformamide. The bath ratio was 40 to l.
  • the yarn was then cooled to room temperature, washed with N,N-dimethylformamide, washed with ice water, excess tap water for 30 minutes, and was air-dried.
  • the resultant iododeoxycellulose yarn had an iodine content of 2.12 percent (D.S. of 0.03), 0.10 percent Cl, 0.16 percent S, and a D.S. of only 0.19 with respect to formate ester groups.
  • the yarn had a breaking strength of 4.7 lbs. and a match test angle of 15 with a black residue. Untreated yarn leaves no residue.
  • the resultant yarn possessed 1.88 percent 1 (D.S. of 0.02), 0.93 percent Cl, 0.29 percent S, and a D.S. of 0.15 with respect to formate ester groups.
  • the breaking strength of the yarn was 4.9 lbs. and it had a match test angle of 45and left a black residue.
  • the iododeoxycellulose yarn had 2.34 percent 1, 0.30 percent Cl, 0.19 percent S. and a D.S. of only 0.02 with respect to formate ester groups.
  • the resultant yarn had 3.86 percent 1, (D.S. of 0.05), 0.53 percent Cl, 0.13 percent S, and a D.S. of 0.13 with respect to formate ester groups; utilizing the ammonia wash produced a yarn containing 3.54 percent 1 (D.S. of 0.05), 0.28 percent Cl, 0.07 percent S, and a D.S. of only 0.05 in formate ester groups.
  • the breaking strengths. respectively, of the yarns with and without the ammonia wash were 4.0 and 4.3 lbs; match tests, respectively, were 90 and 60.
  • EXAMPLE 8 Preparation of Iododeoxycellulose Fabric Utilizing DMFCl and Iodide Ion Desized, scoured and bleached 80 X 80 cotton printcloth was immersed in excess N,N-dimethylformamide at 25C for 30 minutes, put through laboratory wringers to remove excess N,N-dimethylformamide, and then shaken in a stoppered flask for 1 hour at 25C with 10 percent DMFCL in N,N-dimethylformamide, using a bath ratio of 40 grams of solution per gram of cotton.
  • the fabric was washed free of excess DMFCl with N,N-dimethylformamide, put through wringers again to remove excess N,N-dimethylformamide, and then reacted in a constant temperature bath at 125C for l hour with 20 percent potassium iodide in N,N-dimethylformamide (bath ratio of 40 grams of solution per gram of cotton).
  • the fabric was given the conventional water wash and air-drying.
  • the resultant fabric had an iodine content of 7.56 percent (D.S. of0.10), 14 percent Cl, and 0.53 percent S.
  • the fabric had a warp breaking strength of 35.8 lbs. compared to 49.7 lbs. for untreated cotton printcloth. After two weeks of the soil burial test, the untreated printcloth disappeared whereas the iododeoxycellulose fabric had a breaking strength of 32.9 lbs.
  • the resultant fabric also had a match test angle of 75 and gave a black residue.
  • a process for preparing a fibrous cellulose N,N-dimethylformimidate chloride in textile form which process comprises:
  • aprotic solvent is benzene.
  • a process for preparing a fibrous iododeoxycellulose in textile form which process comprises:
  • a process for preparing a fibrous cellulose formate in textile form which process comprises:
  • a process for preparing a fibrous chlorodeoxycellulose in textile form which process comprises:

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

The preparation in textile form of a new, flame resistant, chemically reactive cellulose derivative, cellulose N,Ndimethylformimidate chloride, is accomplished by reacting chlorodimethylformiminium chloride in N,N-dimethylformamide at 20*-30*C with cellulosic yarn or fabric preswollen in N,Ndimethylformamide. At a reaction temperature of 50*-110*C, the product is chlorodeoxycellulose. Conversion of cellulose N,Ndimethylformimidate chloride to iododeoxycellulose is accomplished by reaction of the former with an alkali metal iodide at 60*-150*C in N,N-dimethylformamide. Conversion of the cellulose N,N-dimethylformimidate chloride to cellulose formate occurs by contact with water at 20*-30*C. The chlorodeoxycellulose and iododeoxycellulose possess rot resistance and flame resistance. Cellulose formate has altered dyeability.

Description

United States Patent 1 Vigo et al.
[451 May 20, 1975 PREPARATION OF CELLULOSE N,N-DIMETHYLFORMIMIDATE CHLORIDE IN TEXTILE FORM, AND CONVERSION TO HALOGENODEOXYCELLULOSES AND CELLULOSE FORMATE [75] Inventors: Tyron L. Vigo, Kenner; Donald J.
Daigle, New Orleans; Clark M. Welch, Metairie, all of La.
[73] Assignee: The United States of America as represented by the Secretary of Agriculture, Washington, DC.
22 Filed: Feb. 26, 1973 211 App]. No.: 335,861
3,645,667 2/1972 Gonzales et al. 8/l94 X Primary Examiner-Stephen J. Lechert, Jr. Attorney, Agent, or Firm-M. Howard Silverstein; Max D. Hensley [57] ABSTRACT The preparation in textile form of a new, flame resistant, chemically reactive cellulose derivative, cellulose N,N-dimethylformimidate chloride, is accomplished by reacting chlorodimethylformiminium chloride in N,N-dimethylformamide at 2030C with cellulosic yarn or fabric preswollen in N,N-dimethylformamide. At a reaction temperature of 50110C, the product is chlorodeoxycellulose. Conversion of cellulose N,N-dimethylformimidate chloride to iododeoxycellulose is accomplished by reaction of the former with an alkali metal iodide at 60l50C in N,N-dimethylformamide. Conversion of the cellulose N,N-dimethylformimidate chloride to cellulose formate occurs by contact with water at 2030C. The chlorodeoxycellulose and iododeoxycellulose possess rot resistance and flame resistance. Cellulose formate has altered dyeability.
14 Claims, No Drawings PREPARATION OF CELLULOSE N,N-DIMETHYLFORMIMIDATE CHLORIDE IN TEXTILE FORM, AND CONVERSION TO IIALOGENODEOXYCELLULOSES AND CELLULOSE FORMATE A non-exclusive, irrevocable, royalty-free license in the invention herein described. throughout the world for all purposes of the United States Government. with the power to grant sublicenses for such purposes. is hereby granted to the Government of the United States of America.
GENERAL FEATURES This invention relates to a new cellulose derivative, its preparation in yarn and fabric form, and its conversion to other cellulose derivatives having useful textile properties. More specifically, the invention relates to the preparation. properties and reactions of cellulose N.N-dimethylformimidate chloride. which possesses the chemical structure wherein Cell represents a portion of a cellulose molecular chain. Alternative names for this cellulose derivative are (celluloseoxymethylene) dimethylammonium chloride and cellulose N-methylformimidate methochloride. Also embodied in the present invention is the conversion of the above specified cellulose N,N-dimethylformimidate chloride to chlorodeoxycelluloses, iododeoxycelluloses, cellulose formate, and other useful cellulose derivatives in textile form.
OBJECTS OF THE INVENTION The main object of the present invention is the preparation of a new and highly reactive cellulose derivative, cellulose N,N-dimethylformimidate chloride. having utility as an intermediate in the preparation ofa variety of other cellulose derivatives.
A second object is to provide a means of reducing the flammability of cellulosic textiles.
A third object of the present invention is to provide a means of rendering cellulosic textiles resistant to rotting by microorganisms.
A fourth object is to provide a means of introducing halogen substituents into cellulose to yield chlorodeoxycellulose and iododeoxycellulose in textile form, while retaining the fiber structure, whiteness, and most of the tensile strength of the original cellulose.
A fifth object is to provide a means of introducing halogen subtituents into cellulose without prior application of alkali-swelling or solvent-exchange pretreatments to the cellulose. Other objects of the present invention will become evident in the description which follows.
COMPARISONS WITH PRIOR ART The prior literature contains several studies on the preparation of chlorodeoxycellulose. Boehm. J. Organic Chem. 23. 1716-1720 (1958), added thionyl chloride to a mixture of alkaliswollen, solventexchanged cotton linters and pyridine. A strong degrading action on the cellulose was stated to occur as evidenced by the low viscosity of solutions of the product in cuprammonium hydroxide. The product also showed a dark discoloration.
Polyakov and Rogovin, J. Polymer Sci. (U.S.S.R.) 4 (4) 6106l8 (1963), prepared chlorodeoxycellulose by reacting alkali-swollen, solvent-exchanged cotton linters at 6098C with thionyl chloride in N,N-dimethylformamide. A yellow discoloration was noted in the product. The swollen linters required for this process were prepared by steeping the cotton in 18 percent aqueous sodium hydroxide, followed by washing with water, methanol, and then benzene. Subsequently, Vigo and Welch, Textile Research J. 40, 109-1 15 (1970), found that in the treatment of cotton yarn by the process of Polyakov and Rogovin, yellowing and tendering could be avoided by the use of lower reaction temperatures (2530C), but no method was found of avoiding the laborious and expensive alkali-swelling and solvent-exchange steps required to activate the cotton cellulose.
In a subsequent patent application (Ser. No. 109,964), now US. Patent 3,698,857, it was disclosed by Vigo, Margavio, and Welch that the preswelling of cellulose, as required in the Polyakov and Rogovin process, can be carried out with water in place of aqueous alkali, if only a moderate chlorine content in the product is needed. but this'process still necessitates solventexchange treatments to' displace the water in the cellulose with an aprotic solvent inert to thionyl chloride. Moreover, the chlorine content obtainable in the product is less than 1 percent by this method.
The present invention makes it possible for the first time to prepare chlorodeoxycellulose in yarn and fabric form without prior application of alkalior waterswelling treatments to the cellulose. The processes to be disclosed eliminate the need for solvent-exchange treatments prior to reaction. Moreover, the present invention permits the use of elevated reaction temperatures without cellulose discoloration or tendering, thus permitting higher chlorine contents to be introduced into the cellulose than are possible in processes conducted at room temperature. The processes of this invention are applicable to celluloses derived from cotton and wood pulp, which celluloses may be native, mercerized or regenerated, and which may be in the form of loose fibers, sliver, yarn or fabric.
DESCRIPTION OF THE INVENTION The above advantages of the present invention are unexpectedly obtained by use of Chlorodimethylformiminium chloride in place of thionyl chloride as the reagent employed to introduce the desired substituents into the cellulose. Chlorodimethylformiminium chloride, hereafter referred to as DMFCI for brevity, is readily prepared from thionyl chloride and N,N-dimethylformamide by the method of Bosshard et al., Helv. Chim. Acta 42, 16531658 (1959), and is known to possess the structure CICH=N (CH Cl.
DMFC1 undergoes two types of reaction with cellulose. The low-temperature reaction, conducted at 2030C, yields cellulose N,N-dimethylformimidate chloride:
1. Cell-OH C1CH=N (CH C1 HCI Cel- IOCH=N (CH C1. The high temperature reaction of DMFCI with cellulose is conducted at 50-l 10C, and produces mainly chlorodeoxycellulose:
Thus the means are now available for the direct preparation of cellulose N,N-dimethylformimidate chloride and also of chlorodeoxycellulose.
Moreover, the cellulose N,N-dimethylformimidate chloride is highly reactive, and can be converted to iododeoxycellulose by treatment with an alkali metal iodide in N,N-dimethylformamide at 60l 50C, as follows:
Alternatively, the cellulose N,N-dimethylformimidate chloride can be reacted with water to yield cellulose formate:
Not only are chlorodeoxycellulose, iododeoxycellulose, and cellulose formate readily obtainable by the processes of this invention, but mixed derivatives of cellulose containing iodo and formyl substituents, chloro and formyl substituents, iodo and chloro substituents, or iodo, chloro, and formyl substituents on the same cellulose chains, are readily prepared by the proper sequence of treatments and choice of reaction temperatures and times.
Preparation of Cellulose N,N-Dimethylformimidate Chloride The preparation of cellulose N,N-dimethylformimidate chloride by the present invention comprises the following steps:
a. immersing air-equilibrated, fibrous cellulose in textile form in N,N-dimethylformamide at a temperature of about from 20C to 30C for a period of from 1 to 60 minutes to swell the fibers,
b. removing excess N,N-dimethylformamide by wringing,
c. immersing the cellulosic textile in a mixture of about from 3 to percent by weight DMFCL in N,N-dimethylformamide at a temperature of from C to 30C for about from 3 minutes to 180 minutes, in order to react the cellulose with the DMFCl d. washing the cellulosic textile with N,N,dimethylformamide to remove excess DMFCl e. washing the cellulosic textile with an inert, volatile, aprotic solvent miscible with N,N-dimethylformamide, and
f. drying the celulosic textile.
Immersing the cellulose in N,N-dimethylformamide prior to treatment with DMFCl solution, as specified in step (a) above, is critical to the process, in that this step swells the cellulose fibers and greatly increases the rate of subsequent reaction of the cellulose with the DMFCl The magnitude of this effect is surprising inasmuch as N,N-dimethylformamide is also present during the reaction and would be expected to exert the same effect then. The cellulose to be used in this process should be at equilibrium with the atmosphere at ordinary humidity so that the moisture content of the cellulose is of the order of 2-12 percent. The presence of this moisture renders the fibers much more accessible to swelling by N,Ndirnethylformamide and to the subsequent reaction with DMFCl The cellulose should not be subjected to any deswelling treatment such as oven-drying, prior to immersion in the N,N-dimethyl formamide.
Removing excess N,N-dimethylformamide, in step (b) above may be accomplished by ordinary mechani- 'ill H ltli ods of wringing, such as passing the fabric through squeeze rolls, centrifugation, draining, or by pressing the cellulose against a filter.
The reaction of the cellulosic textile with DMFCl as specified in step (c) above, is preferably carried out in N,N-dimethylformamide as the reaction medium since this solvent maintains the cellulose in a swollen state, and also the DMFC1 has considerable solubility in this medium. The weight ratio of DMFCl to cellulose which may be used can be varied over a wide range. The most practical ratio to use depends to some extent on whether the cellulose is in the form of loose fibers, sliver, yarn, or fabric, since the wet pickup of DMFCl -dimethylformamide mixture of the cellulose varies with the form of cellulose being treated. The preferred ratio also varies with the degree of cellulose substitution desired, but usually is in excess of 1 part by weight of DMFCl to 4 parts by weight of cellulose. The ratio of DMFCL; to N,N-dimethylformamide also may be varied considerably but below a weight ratio of 0.03 of DMFCl solvent, the reaction with cellulose becomes very slow, and above a weight ratio of 0.15 the solubility limit of DMFCL is exceeded to the extent that little practical benefit results from still higher ratios,
By adjusting the DMFCl concentration and the reaction time, the degree of cellulose substitution obtained can be varied considerably so that the chlorine content of the product is in the range of about 0.5 to 6 percent and the nitrogen content is in the range of 0.2 to 2.4 percent.
The washing step (d) listed above is preferably carried out using N,N-dimethylformamide as the solvent to remove excess DMFCI and must be done under an hydrous conditions. The presence of water causes immediate hydrolysis of cellulose N,N-dimethylformimidate chloride to yield cellulose formate.
The washing step (e) above is preferred in order to remove N,N-dimethylformamide, since the latter solvent is high boiling and is difficult to remove by heat drying. Solvents suitable for this washing are those solvents whose boiling points are less than C at l atmosphere pressure, are miscible with N,N-dimethylformamide, and are inert to DMFCl Examples of suitable solvents are benzene, carbon tetrachloride, chloroform, and ethylene chloride, with benzene being preferred because of its low cost.
The drying step, listed as (f) above, removes the solvent used in washing step (e) and may be carried out at any temperature below about 50C. At higher temperatures there is some tendency for chlorodeoxycellulose formation. Drying may be conducted with a stream of dry air, by vacuum, or by mild heating. The washing step (e) and drying step (f) may be omitted if the cellulose N,N-dimethylformimidate chloride is to be converted immediately to other cellulose derivatives.
PREPARATION OF IODODEOXYCELLULOSE The preparation of iododeoxycellulose by the present invention comprises the following steps:
a. immersing air-equilibrated, fibrous cellulose in textile form in N,N-dimethylformamide at a temperature of about from 20C to 30C for a period of from 1 to 60 minutes to swell the fibers,
b. removing excess N,N-dimethylformamide,
c. immersing the cellulosic textile in a mixture of about from 3 to 15 percent by weight DMFCl in N.N-dimethylformamide at a temperature of from 20C to 30C for about from 3 minutes to 180 minutes in order to react the cellulose with the DMFCl d. washing the cellulosic textile with N.N-dimethylformamide to remove excess DMFCIg,
e. immersing the cellulosic textile in a solution of an alkali metal iodide in N,N-dimethylformamide for a period of from 0.25 hour to 2 hours at a temperature of about from 60C to 150C, the concentration of the alkali metal iodide being about from 5 to 25 percent by weight in the N,N-dimethylformamide in order to react the cellulose N,N-dimethylformimidate chloride with the alkali metal iodide.
f. Washing the cellulosic textile at 20C to 30C with N,N-dimethylformamide to remove excess alkali metal iodide and traces of DMFCl g. washing the cellulosic textile with ice water and then with water at 20 to 30C to remove N,N-dimethylformamide and further traces of alkali iodide, and
h. drying the cellulosic textile.
Steps (a) through (d) are the same as for the preparation of cellulose N.N-dimethylformimidate chloride. Step (e), the reaction of this derivative with an alkali metal iodide. is preferably carried out in N.N-dimethylformamide as the reaction medium since several of the alkali iodides have high solubility in this medium which also maintains the cellulosic fibers in a swollen and accessible condition. Of the alkali metal iodides, sodium iodide and potassium iodide are preferred as having the optimum compromise between low cost. high ionic character and reactivity and high solubility in N,N-dimethylformamide. Potassium iodide is particularly preferred in these respects.
Steps (f) and (g) remove unreacted iodide and DMFCI If the DMFCl used for step (c) contains some thionyl chloride as an impurity, the iododeoxycellulose formed will also have present appreciable amounts of sulfur-containing cellulose derivatives such as cellulose sulfite. The sulfites may be decomposed by washing the product with 2-5-perccnt aqueous ammonia followed by water washing. The ammonia wash also removes any formate ester groups present.
The drying step (h) may be carried out at any temperature, below 90C but preferably at 20C to 40C since organic iodides such as iododeoxycellulose tend to undergo dehydrohalogenation and other side reactions with unusual ease.
PREPARATION OF CELLULOSE FORMATE The preparation of cellulose formate by the present invention comprises the following steps:
a, immersing air-equilibrated, fibrous cellulose in textile form in N,N-dimethylformamide at a temperature of about from 20C to 30C for a period of from 1 to 60 minutes to swell the fibers,
b. removing excess N,N-dimethylformamide,
c. immersing the cellulosic textile in a mixture of about from 3 to percent by weight DMFC1 in N,N-dimethylformamide at a temperature of from C to 30C for about 3 minutes to 180 minutes, in order to react the cellulose with the DMFCl d. washing the cellulosic textile with N.N-dimethylformamide to remove excess DMFCI e. washing the cellulosic textile with ice water and then with water at 20C to 30C for 5 minutes to 60 minutes to hydrolyze the cellulose N,N-dimethylformimidate chloride to cellulose formate, and
f. drying the textile. Steps (a) through (d) are the same as for the preparation of cellulose N,N-dimethylformimidate chloride.
PREPARATION OF CHLORODEOXYCELLULOSE The preparation of chlorodeoxycellulose by the present invention comprises the following steps:
a. immersion of air-equilibrated fibrous cellulose in textile form in N.N-dimethylformamide at a temperature of about from 20C to 30C for a period of from I to 60 minutes to swell the fibers,
b. removing excess N,N-dimethylformamide,
c. immersing the cellulosic textile in a mixture of about from 3 to 15 percent by weight chlorodimethylformiminium chloride in N,N-dimethylformamide at a temperature of from 50C to l 10C for about from 0.25 hour to 2 hours in order to react the cellulose with the DMFCl d. washing the cellulosic textile with N.N-dimethylformamide to remove excess DMFCI e. washing the cellulosic textile with ice water and then with water at 20C to 30C to remove N,N-dimethylformamide and further traces of DMFClt and f. drying the textile.
Steps (a) and (b) are the same as for the preparation of cellulose N,N-dimethylformimidate, while step (c) differs primarily in the use of a higher reaction temperature. Step (d) also is the same as for preparing cellulose N,N-dimethylformimidate. Step (e) can be modified to include a wash with 2-5 percent aqueous ammonia if needed to remove sulfur-containing impurities in the product. The ammonia wash also removes any for-' mate ester groups present. The sulfur-containing impurities arise if the DMFCl employed contains appreciable amounts of thionyl chloride. Drying (step f) is preferably done at moderate temperatures not exceeding C in order to avoid dehydrochlorination.
SPECIAL FEATURES AND UTILITY It is evident that DMFCl undergoes only singleended attachment to cellulose as a result of the present processes, since the cellulose N,N-dimethylformimidate produced is completely soluble in 0.5 M cupriethylenediamine and no crosslinking of cellulose can be detected. A solution of purified DMFC] in N,N-dimethylformamide differs in composition from a solution of thionyl chloride in N,N-dimethylformamide. The latter solution appears to be an equilibrium mixture of thionyl chloride, N,N-dimethylformamide, a 1:] addition complex of thionyl chloride and the amide, as well as sulfur dioxide and some DMFCl The presence of the lzl complex having the structure [(CI-I N CHO- SOCl] Cl has been discussed by Bosshard et al, as cited above, who found it necessary to remove the sulfur dioxide under vacuum in order to shift the equilibrium towards formation of DMFCL As already indicated above, the use of thionyl chloride to treat cellulose always gives rise to sulfur-containing cellulose derivatives as byproducts, whereas highly purified DMFCl when reacted with cellulde, yields a sulfurfree product.
The celluose N,N-dimethylformiiffil ate cilildfldE prepared from DMFC1 and cellulose l fldllhd t6 have appreciable flame resistance. This is lilieiipee'te'd lfl the product contains neither phosphdflels 38f bfbiiilfl; the two most common elements in flame FEiafdHfit fllilhes Chlorodeoxycellylose and iododeoxycellulose produced by the present processes exhibit increased flame resistance also, as well as rot resistance. Cellulose formate exhibits enhanced dyeability by disperse dyes.
METHODS OF TEXTILE EVALUATION In the examples that follow, yarn breaking strength was measured by the procedure of ASTM-D168264, using an lnstron tester. Fabric breaking strength was measured by the strip method (ASTM D39-49). Flame resistance was measured by determining the maximum angle from the vertical that a sample could be posi tioned, such that when ignited from the lower end by a match, the flame was self-extinguising after the match was withdrawn (Reeves, McMillan and Guthrie, Textile Research J. 23, 527532 (1953) Rot resistance was determined by burial of the samples in inoculated soil (AATCC 30-1957T). Formyl content of cellulose format was determined by modified Eberstadt titration (ASTM D-871-63). The infrared spectra of cellulose formate samples was recorded on a Perkin-Elmer Model 1378 lnfracord spectrophotometer for pellets of the powdered samples pressed into potassium bromide discs.
In all cases the yarns or fabrics to be used in the following examples were stored in air at 30-80 percent relative humidity prior to use and contained the equilibrium amount of regain moisture.
In the examples, all parts and percentages given are by weight. The term D.S. refers to the degree of cellulose substitution, i.e., the number of substituent groups introduced per anhydroglucose unit of cellulose.
EXAMPLE 1 Preparation of Cellulose N,N-dimethylformimidate chloride from Cellulose Yarn Kiered, 12/3 cotton yarn was immersed in excess N.N-dimethylformamide for 30 minutes at 25 C, then excess N,N-dimethylformamide was removed from the yarn by centrifugation at 2850 rpm for 1 minute. The yarn was subsequently reacted for 5 minutes at 25C with 6 percent chlorodimethylformiminium chloride (DMFCl in N,N-dimethylformamide in a stoppered flask with agitation, utilizing 40 grams of solution per gram of cotton. The yarn was then subsequently washed three times with excess N,N-dimethy1formamide, three times with excess benzene, centrifuged for 1 minute at 2850 rpm, and allowed to air-dry to constant weight. The resultant yarn had only trace amounts of sulfur and a chlorine content of 3.34 percent and a nitrogen content of 1.36 percent. The chlorine/nitrogen atomic ratio was 1.0 as required for the structure CellOCH=N (CH Cl, cellulose N,N-dimethylformimidate chloride. This cellulose derivative had a breaking strength of 5.6 lbs. compared to 5.2 lbs. for untreated, native cotton yarn and also had a match angle test value of 60 compared to for native cotton yarn.
Conducting the reaction for a longer time (3 hours) with all other conditions comparable to those described above, produced the cellulose N,N-dimethylformimidate chloride yarn having only trace amounts of sulfur, a chlorine content of 5.10 percent, and a nitrogen content of 2.24 percent. The resultant cellulose derivative had a breaking strength of 4.7 lbs. compared to 5.2 lbs. for untreated, native cotton yarn; it also had a match EXAMPLE 2 Reaction of DMFC1 with Cotton Yarn in Absence of Preswelling Step Kiered 12/3 cotton yarn was immersed in a 6 percent solution of DMFCl in N,N-dimethylformamide at 25C for 5 minutes in a stoppered, mechanically agitated flask, utilizing 40 grams of solution per gram of cotton. The yarn was subsequently washed three times with excess N,N-dimethylformamide, three times with benzene, was centrifuged for 1 minute at 2850 rpm, and allowed to air-dry to constant weight. The resultant yarn contained only 0.46 percent chlorine, 0.12 percent nitrogen and no sulfur. By comparison, yarn which was first preswollen in N,N-dimethylformamide, and then was reacted with 6 percent DMFCl followed by washing and drying, contained 3.34 percent chlorine and 1.36 percent nitrogen, as shown in Example 1.
The results show that the yarn given the preswelling treatment in N,N-dimethylformamide, prior to treatment with DMFCl reacted more than 7 times as fast as did the yarn not given the preswelling treatment. Even ifa reaction time of 1 hour were allowed for yarn not preswollen, a chlorine content of only 2.45 percent and a nitrogen content of only 0.51 percent were reached, which values are less than those reached in 5 minutes with the preswollen yarn.
EXAMPLE 3 Preparation of Cellulose Formate by Reaction of Cotton Yarn with DMFCI- at 25C Kiered, 12/3 cotton yarn was immersed in excess N,N-dimethylformamide for 10 minutes, then excess N,N-dimethylformamide was removed from the yarn by centrifugation for 1 minute at 2850 rpm. The yarn was subsequently reacted for 1 hour at 25C (in a stoppered flask with agitation) with 6- percent DMFCl in N,N-dimethylformamide, using a bath ratio of 40 grams of solution per gram of cotton. The yarn was subsequently washed with ice water, then with tap water for 30 minutes, and air-dried to produce cellulose formate (D.S. of 0.16) having only trace amounts of sulfur (0.25 percent) and chlorine (0.19 percent). The resultant yarn had a breaking strength of 4.4 lbs. compared to native cotton yarn which had a breaking strength of 5.2 lbs. The presence of formate ester groups in the treated yarns was demonstrated by an intense absorption peak at 5.8-5.9 millimicrons in the infrared spectrum of the treated yarn. This peak, which is absent for untreated yarns, has been assigned to the carbonyl stretching frequency characteristic of the formyl groups. The same spectrum was obtained in yarn esteritied with percent formic acid. If the cotton yarn were treated under the same conditions, with the exception that it was not preswollen in N,N-dimethylformamide prior to reaction, the resultant D.S. with respect to formate ester groups was only 0.04, with the yarn having a breaking strength of 4.8 lbs. compared to 5.2 lbs. for untreated cotton yarn.
EXAMPLE 4 Preparation of Chlorodeoxycellulose Yarn from Cellulose and Excess DMFC1 Kiered, 12/3 cotton yarn was immersed in excess N.N-dimethylformamide for 30 minutes at 25C and excess N,N-dimethylformamide was then removed from the yarn by centrifugation at 2850 rpm for 1 minute. The yarn was subsequently reacted with 6 percent DMFC1 in N.N-dimethylformamide for 1 hour at 50C in a tube immersed in a constant temperature bath. utilizing 40 grams of solution per gram of cotton. After cooling to room temperature. the yarn was washed with N,N-dimethylformamide until the washings were colorless. The yarn was subsequently washed with ice water and then tap water in excess for 30 minutes, and allowed to air-dry. The resultant chlorodeoxycellulose yarn had a D.S. of 0.05 (1.05 percent CI), a sulfur content of 0.77 percent. and a D.S. of 0.28 with respect to formate ester groups. The yarn had a breking strength of 3.8 lbs. compared to 5.2 lbs. for untreated cotton yarn.
In another experiment, the reaction was conducted under the same experimental conditions. but the wash procedure was modified. After an initial tap water wash for minutes. the yarn was washed with excess 3 ammonium hydroxide, and then tap water for another 15 minutes prior to air-drying. The resultant chlorodeoxy cellulose yarn had a D.S. of 0.04 (percent Cl 0.97), a sulfur content of 0.39 percent, a D.S. of only 0.01 with respect to formate ester groups. and a breaking strength of 4.0 lbs.
Conducting the reaction for the same time and concentration of DMFC1 at 75C with only a water wash, produced a chlorodeoxycellulose yarn having a D.S. of 0.25 (5.27 percent Cl), a sulfur content of 1.33 percent, and a D.S. of 0.31 with respect to formate ester groups. If an ammonia wash were utilized, the resultant chlorodeoxycellulose yarn had a D.S. of 0.26 (5.55 percent C1). a sulfur content of 0.88, and a D.S. of only 0.08 with respect to formate ester groups introduced. The breaking strengths of the chlorodeoxycellulose yarns with and without the ammonia wash were, respectively. 3.3 and 3.1 lbs.
When the reaction was conducted at 100C under otherwise comparable experimental conditions, the resultant chlorodeoxycellulose yarn (with a water wash only) possessed 6.53 percent Cl (D.S. of 0.31 a sulfur content of 0.97. and a D.S. of 0.18 with respect to formate ester groups introduced. Utilizing an ammonia wash produced a chlorodeoxycellulose yarn with a D.S. of 0.34 (7.13 percent C1), a sulfur content of 0.71 and a D.S. of only 0.04 with respect to formate ester groups. The breaking strengths of the resultant yarns with and without the ammonia wash were 1.8 and 1.6 lbs., respectively.
EXAMPLE 5 Reaction of Cellulose Yarn without Utilizing Excess DMFCl Kiered. 12/3 cotton yarn was immersed in excess N,N-dimethylformamide for 30 minutes at 25C, and then excess N,N-dimethylformamide was removed from the yarn by centrifugation at 2850 rpm for 1 minute. The yarn was subsequently reacted with 6 percent DMFCl in N.N-dimethylformamide for 1 hr. at 25C with shaking in a stoppered flask, utilizing 40 grams of solution per gram of cotton. Excess DMFC1 was removed from the cotton yarn by washing with N.N-dimethylformamide. and then the yarn was subsequently centrifuged for 1 minute at 2850 rpm to re move excess solvent. The yarn was then heated for 1 hour at 100C in a tube containing N.N-dimeth vlformamide with the bath ratio being 40 grams of solvent per gram of cotton. After cooling to room temperature, the yarn was washed with water only as described in the first part of Example 1. The resultant yarn had only 0.21 percent Cl, representing a D.S. of 0.01, but also contained 0.24 percent S and had a D.S. of 0.13 with respect to formate ester groups. The breaking strength was 4.0 lbs.
EXAMPLE 6 Preparation of Chlorodeoxycellulose Fabric Utilizing Excess DMFCl Desized, scoured and bleached X 80 cotton printcloth was immersed in excess N,N-dimethy1formamide at 25C for 30 minutes, put through laboratory wringers to remove excess N,N-dimethylformamide, and then reacted for 1 hour at 75C with 6 percent DMFCl in N,N-dimethylformamide under the same experimental conditions described for the cotton yarn in Example 1. Utilizing the water-wash-only procedure. the resultant chlorodeoxycellulose fabric had 6.0 percent Cl (D.S. 0.28), and a sulfur content of 3.13 percent; the fabric had a warp breaking strength of 25.2 lbs. compared to 49.7 lbs. for untreated printcloth. After two weeks of the soil burial test, the untreated printcloth had disappeared, whereas the chlorodeoxycellulose printcloth had a breaking strength of 22.1 lbs. After four weeks of the soil burial test, the chlorodeoxycellulose printcloth still had a breaking strength of 22.9 lbs.
EXAMPLE 7 Preparation of Iododeoxycellulose Utilizing DMFCl and Iodide lon Kiered, 12/3 cotton yarn was immersed at 25C for 10 minutes in N.N-dimethylformamide and then the excess N.N-dimethylformamide was removed by centrifugation for 1 minute at 2850 rpm. The yarn was reacted for 1 hour in a stoppered flask with shaking at 25C with 6 percent DMFC1 in N.N-dimethylformamide, utilizing a bath ratio of. 40 grams of solution per gram of cotton. Subsequently, the yarn was washed with N,N-dimethylformamide to remove excess DMFCL centrifuged for 1 minute at 2850 rpm, and then reacted in a constant temperature bath for 1 hour at C with 12 percent potassium iodide in N,N-dimethylformamide. The bath ratio was 40 to l. The yarn was then cooled to room temperature, washed with N,N-dimethylformamide, washed with ice water, excess tap water for 30 minutes, and was air-dried. The resultant iododeoxycellulose yarn had an iodine content of 2.12 percent (D.S. of 0.03), 0.10 percent Cl, 0.16 percent S, and a D.S. of only 0.19 with respect to formate ester groups. The yarn had a breaking strength of 4.7 lbs. and a match test angle of 15 with a black residue. Untreated yarn leaves no residue.
When 20 percent potassium iodide in N,N-dimethylformamide was utilized at 100C by the above procedure, the resultant yarn possessed 1.88 percent 1 (D.S. of 0.02), 0.93 percent Cl, 0.29 percent S, and a D.S. of 0.15 with respect to formate ester groups. The breaking strength of the yarn was 4.9 lbs. and it had a match test angle of 45and left a black residue. When an ammonia wash was used, the iododeoxycellulose yarn had 2.34 percent 1, 0.30 percent Cl, 0.19 percent S. and a D.S. of only 0.02 with respect to formate ester groups. The
yarn had a match test angle of 60 and a breaking strength of 5.0 lbs.
When 20 percent potassium iodide in N.N-dimethylformamide was utilized at 125C by the above procedure, followed by the water wash, the resultant yarn had 3.86 percent 1, (D.S. of 0.05), 0.53 percent Cl, 0.13 percent S, and a D.S. of 0.13 with respect to formate ester groups; utilizing the ammonia wash produced a yarn containing 3.54 percent 1 (D.S. of 0.05), 0.28 percent Cl, 0.07 percent S, and a D.S. of only 0.05 in formate ester groups. The breaking strengths. respectively, of the yarns with and without the ammonia wash, were 4.0 and 4.3 lbs; match tests, respectively, were 90 and 60.
EXAMPLE 8 Preparation of Iododeoxycellulose Fabric Utilizing DMFCl and Iodide Ion Desized, scoured and bleached 80 X 80 cotton printcloth was immersed in excess N,N-dimethylformamide at 25C for 30 minutes, put through laboratory wringers to remove excess N,N-dimethylformamide, and then shaken in a stoppered flask for 1 hour at 25C with 10 percent DMFCL in N,N-dimethylformamide, using a bath ratio of 40 grams of solution per gram of cotton. The fabric was washed free of excess DMFCl with N,N-dimethylformamide, put through wringers again to remove excess N,N-dimethylformamide, and then reacted in a constant temperature bath at 125C for l hour with 20 percent potassium iodide in N,N-dimethylformamide (bath ratio of 40 grams of solution per gram of cotton). After cooling to room temperature, the fabric was given the conventional water wash and air-drying. The resultant fabric had an iodine content of 7.56 percent (D.S. of0.10), 14 percent Cl, and 0.53 percent S. The fabric had a warp breaking strength of 35.8 lbs. compared to 49.7 lbs. for untreated cotton printcloth. After two weeks of the soil burial test, the untreated printcloth disappeared whereas the iododeoxycellulose fabric had a breaking strength of 32.9 lbs. The resultant fabric also had a match test angle of 75 and gave a black residue.
We claim:
1. As a textile material. fibrous cellulose N,N-dimethylformimidate chloride possessing the structure CellO-CH=N (CH Cl, wherein Cell represents a portion of a cellulose molecular chain, said material comprising a chlorine content of from 0.5 to 6 percent as well as a nitrogen content of from 0.2 to 2.4 percent, the ratio of chlorine atoms to nitrogen atoms being 1:1 and the formimidate groups being characterized by rapid hydrolysis to formate groups on contact with water, said textile material also being characterized by increased flame resistance relative to the original untreated textile.
2. A process for preparing a fibrous cellulose N,N-dimethylformimidate chloride in textile form which process comprises:
a. immersing air-equilibrated fibrous cellulose in textile form in N,N-dimethy1formamide at a temperature of about from 20C to 30C for a period of from 1 to 60 minutes to swell the fibers,
b. removing excess N,N-dimethy1formamide,
c. immersing the cellulosic textile in a mixture of about from 3 to 15 percent by weight of chlorodimethylformirfilfilum chloride in N,N-dimethylformamide at a tmBerature of from C to 30C for about from 3 minutes to 180 minutes, in order to react the cellulose with the chlorodimethylformiminium chloride,
d. washing the cellulosic textile with N,N-dimethylformamide to remove excess chlorodimethylformiminium chloride,
e. washing the cellulosic textile with an inert, volatile,
aprotic solvent miscible with N,N-dimethy1formamide, and
f. drying the cellulosic textile.
3. The process of claim 2 where the textile form is a yarn.
4. The process of claim 2 where the textile form is a fabric.
5. The process of claim 2 where the inert, volatile,
aprotic solvent is benzene.
6. A process for preparing a fibrous iododeoxycellulose in textile form, which process comprises:
a. immersing air-equilibrated fibrous cellulose in textile form in N,N-dimethylformamide at a temperature of about from 20C to 30C for a period of from 1 to 60 minutes to swell the fibers,
b. removing excess N,N-dimethy1formamide,
c. immersing the cellulosic textile in a mixture of about from 3 to 15 percent by weight of chlorodimethylformiminium chloride in N,N-dimethylformamide at a temperature of from 20C to 30C for about from 3 minutes to 180 minutes, in order to react the cellulose with the chlorodimethylformiminium chloride,
d. washing the cellulosic textile with N,N-dimethylformamide to remove excess chlorodimethylformiminium chloride,
e. immersing the cellulosic textile in a solution of an alkali metal iodide in N,N-dimethylformamide for a period of from 0.25 hour to 2 hours at a temperature of about from 60C to C, the concentration of the alkali metal iodide being about from 5 to 25 percent by weight in the N,N-dimethylformamide, in order to react the cellulose N,N-dimethyl formimidate chloride with the alkali metal iodide,
f. washing the cellulosic textile from 20C to 30C with N,N-dimethy1formamide to remove excess alkali metal iodide,
g. washing the cellulosic textile with ice water and then with water at 20C to 30C to remove N,N-dimethylformamide and further traces of alkali metal iodide, and
h. drying the cellulosic textile.
7. The process of claim 6 where the textile form is a yarn.
8. The process of claim 6 where the textile form is a fabric.
9. The process of claim 6 where the alkali metal iodide is sodium iodide.
10. The process of claim 6 where the alkali metal iodide is potassium iodide.
11. A process for preparing a fibrous cellulose formate in textile form, which process comprises:
a. immersing air-equilibrated fibrous cellulose in textile form in N,N-dimethylformamide at a temperature of about from 20C to 30C for a period of from l to 60 minutes to swell the fibers,
b. removing excess N,N-dimethylformamide,
c. immersing the cellulosic textile in a mixture of about from 3 to 15 percent by weight of chlorodimethylformiminium chloride in N,N-dimethylformamide at a temperature of from 20C to 30C for about from 3 minutes to 180 minutes, in order to react the cellulose with the chlorodimethylformiminium chloride.
(1. washing the cellulosic textile with N,N-dimethyiformamide to remove excess chlorodimethylformiminium chloride,
e washing the cellulosic textile with ice water and then with water at 20 to 30C. for from 5 minutes to 60 minutes, to hydrolyze the cellulose N,N-dimethylformimidate chloride to cellulose formate, and
f. drying the cellulosic textile.
12. A processfor preparing a fibrous chlorodeoxycellulose in textile form, which process comprises:
a. immersing air-equilibrated fibrous cellulose in tex tile form in N,N-dimethylformamide at a temperature of about from C to C for a period of from 1 to 60 minutes to swell the fibers,
b. removing excess N,N-dimethylformamide,
Lil
LII
c. immersing'the cellulosic textile in a mixture of 13. The process of claim 12 where the textile form is a yarn.
14. The process of claim 12 where the textile form is a fabric.

Claims (14)

1. AS A TEXTILE MATERIAL, FIBROUS CELLULOSE N,NDIMETHYLFORMIMIDTE CHLORIDE POSSESSING THE STRUCTURE CEL1-O-CH=N+(CH3)2CL-, WHEREIN CELL REPRESENT A PORTION OF A CELLULOSE MOLECULAR CHAIN, SAID MATERIAL COMPRISING A CHLORINE CONTENT OF FROM 0.5 TO 6 PERCENT AS WELL AS NITROGEN CONTENT OF FROM 0.2 TO 2.4 PERCENT, THE RATIO OF CHLORINE ATOMS TO NITROGEN ATOMS BEING 1:1 AND THE FORMIDATE GROUPS BEING CHARACTERIZED BY RAPID HYDROLYSIS TO FORMATE GROUPS ON CONTACT WITH WATER, SAID TEXTILE MATERIAL ALSO BEING CHARACTERIZED BY INCREASED FLAME RESISTANCE RELATIVE TO THE ORIGINAL UNTREATED TEXTILE.
2. A process for preparing a fibrous cellulose N,N-dimethylformimidate chloride in textile form which process comprises: a. immersing air-equilibrated fibrous cellulose in textile form in N,N-dimethylformamide at a temperature of about from 20*C to 30*C for a period of from 1 to 60 minutes to swell the fibers, b. removing excess N,N-dimethylformamide, c. immersing the cellulosic textile in a mixture of about from 3 to 15 percent by weight of chlorodimethylformiminium chloride in N,N-dimethylformamide at a temperature of from 20*C to 30*C for about from 3 minutes to 180 minutes, in order to react the cellulose with the chlorodimethylformiminium chloride, d. washing the cellulosic textile with N,N-dimethylformamide to remove excess chlorodimethylformiminium chloride, e. washing the cellulosic textile with an inert, volatile, aprotic solvent miscible with N,N-dimethylformamide, and f. drying the cellulosic textile.
3. The process of claim 2 where the textile form is a yarn.
4. The process of claim 2 where the textile form is a fabric.
5. The process of claim 2 where the inert, volatile, aprotic solvent is benzene.
6. A process for preparing a fibrous iododeoxycellulose in textile form, which process comprises: a. immersing air-equilibrated fibrous cellulose in textile form in N,N-dimethylformamide at a temperature of about from 20*C to 30*C for a period of from 1 to 60 minutes to swell the fibers, b. removing excess N,N-dimethylformamide, c. immersing the cellulosic textile in a mixture of about from 3 to 15 percent by weight of chlorodimethylformiminium chloride in N,N-dimethylformamide at a temperature of from 20*C to 30*C for about from 3 minutes to 180 minutes, in order to react the cellulose with the chlorodimethylformiminium chloride, d. washing the cellulosic textile with N,N-dimethylformamide to remove excess chlorodimethylformiminium chloride, e. immersing the cellulosic textile in a solution of an alkali metal iodide in N,N-dimethylformamide for a period of from 0.25 hour to 2 hours at a temperature of about from 60*C to 150*C, the concentration of the alkali metal iodide being about from 5 to 25 percent by weight in the N,N-dimethylformamide, in order to react the cellulose N,N-dimethylformimidate chloride with the alkali metal iodide, f. washing the cellulosic textile from 20*C to 30*C with N,N-dimethylformamide to remove excess alkali metal iodide, g. washing the cellulosic textile with ice water and then with water at 20*C to 30*C to remove N,N-dimethylformamide and further traces of alkali metal iodide, and h. drying the cellulosic textile.
7. The process of claim 6 where the textile form is a yarn.
8. The process of claim 6 where the textile form is a fabric.
9. The process of claim 6 where the alkali metal iodide is sodium iodide.
10. The process of claim 6 where the alkali metal iodide is potassium iodide.
11. A process for preparing a fibrous cellulose formate in textile form, which process comprises: a. immersing air-equilibrated fibrous cellulose in textile form in N,N-dimethylformamide at a temperature of about from 20*C to 30*C for a period of from 1 to 60 minutes to swell the fibers, b. removing excess N,N-dimethylformamide, c. immersing the cellulosic textile in a mixture of about from 3 to 15 percent by weight of chlorodimethylformiminium chloride in N,N-dimethylformamide at a temperature of from 20*C to 30*C for about from 3 minutes to 180 minutes, in order to react the cellulose with the chlorodimethylformiminium chloride, d. washing the cellulosic textile with N,N-dimethylformamide to remove excess chlorodimethylformiminium chloride, e. washing the cellulosic textile with ice water and then with water at 20* to 30*C, for from 5 minutes to 60 minutes, to hydrolyze the cellulose N,N-dimethylformimidate chloride to cellulose formate, and f. drying the cellulosic textile.
12. A process for preparing a fibrous chlorodeoxycellulose in textile form, which process comprises: a. immersing air-equilibrated fibrous cellulose in textile form in N,N-dimethylformamide at a temperAture of about from 20*C to 30*C for a period of from 1 to 60 minutes to swell the fibers, b. removing excess N,N-dimethylformamide, c. immersing the cellulosic textile in a mixture of about from 3 to 15 percent by weight of chlorodimethylformiminium chloride in N,N-dimethylformamide at a temperature of from 50* to 110*C for about 0.25 hour to 2 hours in order to react the cellulose with the chlorodimethylformiminium chloride, d. washing the cellulosic textile with N,N-dimethylformamide to remove excess chlorodimethylformiminium chloride, e. washing the cellulosic textile with ice water and then with water at 20*C to 30*C to remove N,N-dimethylformamide and further traces of chlorodimethylformiminium chloride, f. drying the cellulosic textile.
13. The process of claim 12 where the textile form is a yarn.
14. The process of claim 12 where the textile form is a fabric.
US335861A 1973-02-26 1973-02-26 Preparation of cellulose n,n-dimethylformimidate chloride in textile form, and conversion to halogenodeoxycelluloses and cellulose formate Expired - Lifetime US3884631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US335861A US3884631A (en) 1973-02-26 1973-02-26 Preparation of cellulose n,n-dimethylformimidate chloride in textile form, and conversion to halogenodeoxycelluloses and cellulose formate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US335861A US3884631A (en) 1973-02-26 1973-02-26 Preparation of cellulose n,n-dimethylformimidate chloride in textile form, and conversion to halogenodeoxycelluloses and cellulose formate

Publications (1)

Publication Number Publication Date
US3884631A true US3884631A (en) 1975-05-20

Family

ID=23313540

Family Applications (1)

Application Number Title Priority Date Filing Date
US335861A Expired - Lifetime US3884631A (en) 1973-02-26 1973-02-26 Preparation of cellulose n,n-dimethylformimidate chloride in textile form, and conversion to halogenodeoxycelluloses and cellulose formate

Country Status (1)

Country Link
US (1) US3884631A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132415A (en) * 1989-09-08 1992-07-21 Akzo N.V. Method of manufacturing deoxycellulose compounds
US5571468A (en) * 1993-01-27 1996-11-05 Michelin Recherche Et Technique S.A. Process of making fibers or films of regenerated cellulose

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595688A (en) * 1969-03-27 1971-07-27 Mc Graw Edison Co Thermally stabilized cellulose material produced by treating cellulose with melamine in combination with diglycolamine,dimethyl formamide or piperazine
US3645667A (en) * 1970-05-22 1972-02-29 Us Agriculture Nonaqueous cross linking of cellulose with a methylolated urea in the absence of an acidic catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595688A (en) * 1969-03-27 1971-07-27 Mc Graw Edison Co Thermally stabilized cellulose material produced by treating cellulose with melamine in combination with diglycolamine,dimethyl formamide or piperazine
US3645667A (en) * 1970-05-22 1972-02-29 Us Agriculture Nonaqueous cross linking of cellulose with a methylolated urea in the absence of an acidic catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132415A (en) * 1989-09-08 1992-07-21 Akzo N.V. Method of manufacturing deoxycellulose compounds
US5571468A (en) * 1993-01-27 1996-11-05 Michelin Recherche Et Technique S.A. Process of making fibers or films of regenerated cellulose
US5585181A (en) * 1993-01-27 1996-12-17 Michelin Recherche Et Technique S.A. Composition having a base of cellulose formate capable of producing fibers or films
US5587238A (en) * 1993-01-27 1996-12-24 Michelin Recherche Et Techni Ue S.A. Composition having a base of cellulose formate capable of producing fibers or films
US5593487A (en) * 1993-01-27 1997-01-14 Micheline Recherche Et Technique S.A. Composition having a base of cellulose formate capable of producing fibers of films

Similar Documents

Publication Publication Date Title
Rowland et al. Introduction of ester cross links into cotton cellulose by a rapid curing process
US3493319A (en) Esterification of cellulosic textiles with unsaturated long chain fatty acids in the presence of trifluoroacetic anhydride using controlled cellulose-acid-anhydride ratios
US3574521A (en) Modification of cellulosic textile materials with divinyl sulfone precursors
MacGregor The Reaction of Acrylonitrile with Macromolecular Hydroxy Substances I—A General Survey of the Reaction
US3884631A (en) Preparation of cellulose n,n-dimethylformimidate chloride in textile form, and conversion to halogenodeoxycelluloses and cellulose formate
US3264054A (en) Process for crosslinking cellulosic textile and paper materials with gaseous formaldehyde
US2824779A (en) Carbamoylethyl, carboxyethyl, and aminoethyl cellulose ether textile fibers and process of making the same
US3510247A (en) Modification of cellulosic materials with tertiary bis-acrylamides
US6793686B2 (en) Finishing process for cellulosic textiles and the products made therefrom
Tesoro et al. Chemical modification of cotton with derivatives of divinyl sulfone
US2993748A (en) Treatment of wool with acid chlorides in the presence of dimethylformamide
US2926063A (en) Cellulose anthranilate textile fibers and process for making the same
Vigo et al. Fibrous Chlorodeoxycellulose Yarn: Its Preparation, Properties, and Reaction With Nucleophilic Sulfur and Nitrogen Compounds
US2109295A (en) Textile fabric and process of making the same
US2906592A (en) Flame- and crease-resistant textiles from aziridine carboxyalkylcellulose
US3432252A (en) Method for producing resilient cotton fabrics through partial esterification
US2990234A (en) Production of strong, rot-resistant benzyl cellulose fibers
US2992881A (en) Process for production of perfluoroalkanoyl esters of cellulose
US3748364A (en) Diether sulfones
Zeronian et al. Phosphorylation of cellulose: effect of the reactivity of the starting polymer on the properties of the phosphorylated product
US2721784A (en) Process of reacting cellulose fibers with beta-propiolactone
US3920391A (en) Flame-retardant textiles by reaction of cellulose with the adduct of phosphorus trichloride and N,N-dimethylformamide
US3912449A (en) Process for preparing water repellent cotton textiles and the product
Reinhardt et al. The Properties of Cotton Reacted with β-Propiolactone
Vigo et al. Flame‐retardant cotton fabrics by reaction of cellulose with phosphorus trichloride–DMF adduct