US3910760A - Azeotropic solvents for permanent press treatments of cotton and cotton blend fabrics - Google Patents

Azeotropic solvents for permanent press treatments of cotton and cotton blend fabrics Download PDF

Info

Publication number
US3910760A
US3910760A US360281A US36028173A US3910760A US 3910760 A US3910760 A US 3910760A US 360281 A US360281 A US 360281A US 36028173 A US36028173 A US 36028173A US 3910760 A US3910760 A US 3910760A
Authority
US
United States
Prior art keywords
catalyst
water
urea
methylolated
cellulosic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US360281A
Inventor
Ralph J Berni
Ruth R Benerito
Elwood J Gonzales
Linda L Muller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Agriculture USDA
Original Assignee
US Department of Agriculture USDA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Agriculture USDA filed Critical US Department of Agriculture USDA
Priority to US360281A priority Critical patent/US3910760A/en
Application granted granted Critical
Publication of US3910760A publication Critical patent/US3910760A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/423Amino-aldehyde resins

Definitions

  • ABSTRACT This invention comprises the treatment of cellulosic textiles in the presence of a Lewis acid catalyst with N-methylolated ureas dissolved in azeotropes of water and any of a selected group of solvents including iso propyl alcohol, n-butyl alcohol, t-butyl alcohol, npropyl alcohol, or dioxane.
  • a Lewis acid catalyst with N-methylolated ureas dissolved in azeotropes of water and any of a selected group of solvents including iso propyl alcohol, n-butyl alcohol, t-butyl alcohol, npropyl alcohol, or dioxane.
  • solvents including iso propyl alcohol, n-butyl alcohol, t-butyl alcohol, npropyl alcohol, or dioxane.
  • This invention relates to the treatment of textiles with methylolated cyclic urea crosslinking agents dissolved in azeotropic solvents with added catalysts to impart permanent press properties to cellulosic materials.
  • This type of system should find use in decreasing water pollution since the azeotrope may be reclaimed at relatively low expenditure of power due to the decreased boiling points of these mixed solvents. From the standpoint of economics, cyclic processes involving reclamation of solvent would circumvent the need for discharge of waste water into streams resulting in a cheaper process.
  • an azeotropic mixture is defined as a solution of two or more liquids, the composition of which does not change upon distillation. Further, such a solution distills without a change in temperature or composition.
  • Azeotropes of water and one or more other solvents are well known and have been used in prior art processes throughout various chemical processes in which solvent recycling is desirable.
  • the main object of the instant invention is to provide a process wherein enhanced dry and wet wrinkle recoveries may be imparted to cellulosic textiles via low boiling azeotropic solvents using a number of N-methylol cyclic s in the presence of external catalysis.
  • a second object of the instant invention is to apply the process to cellulosic textiles from predominantly nonaqueous solvents without drying the fabric before curing.
  • a further object of the present invention is the contribution of a solution to ecological problems of the textile industry.
  • the azeotropes of this invention boil at temperatures lower than the boiling point of water alone, recycling of the azeotropic mixtures can be accomplished at lower expenditures of time and energy with the supplemental incentive and improvement in ecological service since disposal of waste water would be minimized or eliminated.
  • N-methylolated cyclic ureas such as dimethylolethylene urea (DMEU) or dimethyloldihydroxyethylene urea (DMDHEU)
  • DMEU dimethylolethylene urea
  • DMDHEU dimethyloldihydroxyethylene urea
  • Lewis acid type catalysts such as mineral acids or acid salts
  • azeotropic solvents which both solubilize a number of resins with added catalysts and allow the reaction to proceed at relatively low cure temperatures with reclamation of solvent feasible at much lower temperatures because of the azeotropic nature of the solvents employed.
  • Prior art processes required a drying step to produce desirable properties. Ziifle et al. employed a 60C drying period of 7 min. prior to curing at an elevated temperature in order to achieve the desirable permanent press properties.
  • the impregnation of a cellulosic textile is generally carried out in this manner.
  • the material is immersed in an azeotropic solvent such as isopropanol-water (87% to 12.3% by weight), tertiary butyl alcohol-water (88.3 to l 1.7%), n-propanal alcohol-water (71.7 to 28.3%), dioxane-water (8 1.6 to 18.4%), or methyl ethyl ketonewater (89% to 11%).
  • the treating bath is also about 0.55 molar concentration in DMDHEU or DMEU with added 0.03 M Zn(NO as catalyst.
  • N-methylolated compounds may be used in the process and they include urea formaldehyde, dimethylol urea, dihydroxyethylene urea, propylene urea, trimethylolmelamine and the like. Concentration of the N- methylol compounds can range from 2% on up to 50% limited only by their solubility in the azeotropes aforementioned. Catalysts that can be used are any of a number of Lewis acids and include ZnCl ,Zn(NO MgCl MG(NO citric acid, hydrochloric acid.
  • the cellulosic textiles to which our invention can be applied include cotton, cotton-polyester blends, rayon, ramie, jute, flax, and the like and in the case of cotton we have specifically applied our invention to the textile in the form of woven fabrics with satisfactory results.
  • Those skilled in the art can readily visualize the extention of this application to other forms of textiles in the realm of cellulosic materials.
  • the treated cotton fabrics were submitted to selected standard tests as well as the other tests indicated here. Breaking strength determinations were done by the ASTM Method D39-49; dry wrinkle recovery determinations were done by the ASTM Method D1295-6OT; flex abrasion (bar 575) values were obtained by the ASTM Method D1 l75-64T; and wet wrinkle recovery determinations were done by the Lawrence and Phillips method described in American Dyestuff Reporter, vol. 45, P. 548-550, 5 6 l 1956). Nitrogen values were obtained by the Kjeldahl Method and formaldehyde values were obtained by the chromotropic acid method.
  • EXAMPLE 1 Desized, scoured and bleached (80x80) cotton printcloth was twice padded with a 0.55 M solution of dimethyloldihydroxyethylencurea (DMDHEU) in 87.7% isopropanol 12.3% H O azeotrope with 0.03M Zn(NO added to about 90% wet pickup and cured for 3 minutes at 160C. The fabric was then rinsed free of excess reagents in hot tap (pH water for minutes, rinsed in distilled water, ironed dry and allowed to air equilibrate before testing. The fabric had a 7.0% weight add-on, a 1.61% nitrogen and a 3.38% formaldehyde content with dry and wet wrinkle recovery of 293 and 278 (W+F).
  • DMDHEU dimethyloldihydroxyethylencurea
  • the breaking strength was 30.4 lbs and the elongation at break was 4.4%.
  • the abrasion resistance was 52 cycles.
  • Control fabric properties were 200 and 156 (W+F) for the dry and wet wrinkle recovery, 55 lbs breaking strength and 7.1% elongation at break with 764 cycles for flex abrasion.
  • EXAMPLE 2 The following examples are provided to show that the cure temperature may be lowered to give excellent wrinkle recovery properties where fabrics are treated as in Example 1 with the resultant fabric properties listed in the following table.
  • a process for improving the treatment of cellulosic textiles with N-methylolated ureas in the presence of Lewis acid catalyst wherein the improvement consists of dissolving said methylolated ureas in azeotropes of water and a member of the group consisting of isopropyl alcohol, methylethyl ketone, t-butyl alcohol, npropyl alcohol, and dioxane, to produce nitrogencontaining chemically modified cellulosic textiles and a recyclable reagent bath.
  • An improved method of producing nitrogencontaining chemically modified cellulosic textiles in the reaction of the cellulosic textile with an N- methylolated compound consisting of the employment of azeotropic recyclable mixtures, the method comprising:
  • a cellulosic textiel to a wet-pickup of about from 80 to 100% with a solution containing about from 2 to 50% of an N-methylolated com-- pound selected from the group consisting of dimethylolethyleneurea, dimethyloldihydroxyethyleneurea. urea formaldehyde, dimethylol urea, dihydroxyethylene urea, propylene urea, and trimethylolmelamine, and about from 0.01 to 0.5 mole of a Lewis acid catalyst selected from the group consisting of zinc nitrate, zinc chloride, magnesium chloride magnesium nitrate, citric acid, bydrochloric acid. zinc flouroborate, acetic acid, acetic acid/citric acid misture, and aluminum chlorhydroxide dissolved in an aqueous azeotropic mixture consisting of:
  • N- methylolated compound is dimethylol ethyleneurea.
  • methylolated compound is propylene urea.
  • the method of claim 2 wherein the azeotropic mixture is 88.3% tertiary butyl alcohol and l 1.7% water.

Abstract

This invention comprises the treatment of cellulosic textiles in the presence of a Lewis acid catalyst with N-methylolated ureas dissolved in azeotropes of water and any of a selected group of solvents including isopropyl alcohol, n-butyl alcohol, t-butyl alcohol, n-propyl alcohol, or dioxane. The cellulosic products thus modified have high dry and wet wrinkle recovery and the solvent used can be reclaimed with a minimum expenditure of energy as compared to all-aqueous treatments.

Description

United States Patent 11 1 Berni et al.
1 1 Oct. 7, 1975 [54] AZEOTROPIC SOLVENTS FOR PERMANENT PRESS TREATMENTS OF COTTON AND COTTON BLEND FABRICS [75] Inventors: Ralph J. Berni, Metairie; Ruth R.
Benerito, New Orleans; Elwood J. Gonzales, Gretna; Linda L. Muller, Metairie, all of La.
[73] Assignee: The United States of America as represented by the Secretary of Agriculture, Washington, DC
[22] Filed: May 14, 1973 [21] Appl. No: 360,281
OTHER PUBLICATIONS Textile Research Journal, Feb. 1965, pp, 192-193. Textile Research Journal, Apr, 1961, pp. 349365.
American Dyestuff Reporter, Aug. 6, 1962. pp. 28-32,
3,772,292 Martin 8/185 Primary ExaminerBenjamin R, Padgett Assistant Examiner-Donald P. Walsh Attorney, Agent, or FirmM. Howard Silverstein; Max D. Hensley [57] ABSTRACT This invention comprises the treatment of cellulosic textiles in the presence of a Lewis acid catalyst with N-methylolated ureas dissolved in azeotropes of water and any of a selected group of solvents including iso propyl alcohol, n-butyl alcohol, t-butyl alcohol, npropyl alcohol, or dioxane. The cellulosic products thus modified have high dry and wet wrinkle recovery and the solvent used can be reclaimed with a minimum expenditure of energy as compared to allaqueous treatments.
24 Claims, N0 Drawings AZEOTROPIC SOLVENTS FOR PERMANENT PRESS TREATMENTS OF COTTON AND COTTON BLEND FABRICS A non-exclusive, irrevocable, royalty-free license in the invention herein described, throughout the world for all purposes of the United States Government. with the power to grant sublicenses for such purposes, is hereby granted to the Government of the United States of America.
This invention relates to the treatment of textiles with methylolated cyclic urea crosslinking agents dissolved in azeotropic solvents with added catalysts to impart permanent press properties to cellulosic materials. This type of system should find use in decreasing water pollution since the azeotrope may be reclaimed at relatively low expenditure of power due to the decreased boiling points of these mixed solvents. From the standpoint of economics, cyclic processes involving reclamation of solvent would circumvent the need for discharge of waste water into streams resulting in a cheaper process.
DEFINITION For the purpose of this patent, an azeotropic mixture is defined as a solution of two or more liquids, the composition of which does not change upon distillation. Further, such a solution distills without a change in temperature or composition. Azeotropes of water and one or more other solvents are well known and have been used in prior art processes throughout various chemical processes in which solvent recycling is desirable.
The main object of the instant invention is to provide a process wherein enhanced dry and wet wrinkle recoveries may be imparted to cellulosic textiles via low boiling azeotropic solvents using a number of N-methylol cyclic urcas in the presence of external catalysis.
A second object of the instant invention is to apply the process to cellulosic textiles from predominantly nonaqueous solvents without drying the fabric before curing.
A further object of the present invention is the contribution of a solution to ecological problems of the textile industry. Bearing in mind that the azeotropes of this invention boil at temperatures lower than the boiling point of water alone, recycling of the azeotropic mixtures can be accomplished at lower expenditures of time and energy with the supplemental incentive and improvement in ecological service since disposal of waste water would be minimized or eliminated.
THE PRIOR ART To those skilled in the art it is well known that aqueous solutions of N-methylolated cyclic ureas such as dimethylolethylene urea (DMEU) or dimethyloldihydroxyethylene urea (DMDHEU) can be reacted with cellulosic textiles in the presence of added Lewis acid type catalysts, such as mineral acids or acid salts, to impart desirable permanent press properties to the finished fabric or garment. Ziifle et al. (Textile Res. J. 31, No. 4, pp. 349-365, 1964) have applied DMEU to cotton cellulose in the presence of several metal salt catalysts to obtain enhanced dry and wet wrinkle recovery. Further, Gonzales et al. (U.S. Pat. No. 3,645,667) have shown the utility of certain mixed solvents to dissolve DMEU to impart these same desirable permanent press properties.
in accordance with the main object of the instant invention, it is required that specific azeotropic solvents be used which both solubilize a number of resins with added catalysts and allow the reaction to proceed at relatively low cure temperatures with reclamation of solvent feasible at much lower temperatures because of the azeotropic nature of the solvents employed. Prior art processes required a drying step to produce desirable properties. Ziifle et al. employed a 60C drying period of 7 min. prior to curing at an elevated temperature in order to achieve the desirable permanent press properties In accordance with the second object of the instant invention described above, we do not require a drying step; in fact, the treatments are superior without a drying step previous to the curing step because of the high volatility of the azeotropic mixtures.
The impregnation of a cellulosic textile is generally carried out in this manner. The material is immersed in an azeotropic solvent such as isopropanol-water (87% to 12.3% by weight), tertiary butyl alcohol-water (88.3 to l 1.7%), n-propanal alcohol-water (71.7 to 28.3%), dioxane-water (8 1.6 to 18.4%), or methyl ethyl ketonewater (89% to 11%). The treating bath is also about 0.55 molar concentration in DMDHEU or DMEU with added 0.03 M Zn(NO as catalyst. Any of a number of N-methylolated compounds may be used in the process and they include urea formaldehyde, dimethylol urea, dihydroxyethylene urea, propylene urea, trimethylolmelamine and the like. Concentration of the N- methylol compounds can range from 2% on up to 50% limited only by their solubility in the azeotropes aforementioned. Catalysts that can be used are any of a number of Lewis acids and include ZnCl ,Zn(NO MgCl MG(NO citric acid, hydrochloric acid. Zn(BF,,) acetic acid, acetic acid-citric acid mixtures and the like, amine hydrochlorides, and aluminum chlorohydroxide. Concentration of the catalyst can range from 0.01 molar up to 0.5 molar. Once the textile has been impregnated from the treating bath to a wet pickup of about to it is then submitted to a cure of from about 100 to C for from 0.5 to 3 minutes. For the process of this invention, it is desirable to add a catalyst for the purpose of obtaining improved wrinkle recovery properties of a fabric.
The cellulosic textiles to which our invention can be applied include cotton, cotton-polyester blends, rayon, ramie, jute, flax, and the like and in the case of cotton we have specifically applied our invention to the textile in the form of woven fabrics with satisfactory results. Those skilled in the art can readily visualize the extention of this application to other forms of textiles in the realm of cellulosic materials.
The treated cotton fabrics were submitted to selected standard tests as well as the other tests indicated here. Breaking strength determinations were done by the ASTM Method D39-49; dry wrinkle recovery determinations were done by the ASTM Method D1295-6OT; flex abrasion (bar 575) values were obtained by the ASTM Method D1 l75-64T; and wet wrinkle recovery determinations were done by the Lawrence and Phillips method described in American Dyestuff Reporter, vol. 45, P. 548-550, 5 6 l 1956). Nitrogen values were obtained by the Kjeldahl Method and formaldehyde values were obtained by the chromotropic acid method.
The following examples are presented to illustrate the invention, and since procedure and conditions can be varied by those skilled in the art. the examples are not set forth to establish any particular limits.
EXAMPLE 1 Desized, scoured and bleached (80x80) cotton printcloth was twice padded with a 0.55 M solution of dimethyloldihydroxyethylencurea (DMDHEU) in 87.7% isopropanol 12.3% H O azeotrope with 0.03M Zn(NO added to about 90% wet pickup and cured for 3 minutes at 160C. The fabric was then rinsed free of excess reagents in hot tap (pH water for minutes, rinsed in distilled water, ironed dry and allowed to air equilibrate before testing. The fabric had a 7.0% weight add-on, a 1.61% nitrogen and a 3.38% formaldehyde content with dry and wet wrinkle recovery of 293 and 278 (W+F). The breaking strength was 30.4 lbs and the elongation at break was 4.4%. The abrasion resistance was 52 cycles. Control fabric properties were 200 and 156 (W+F) for the dry and wet wrinkle recovery, 55 lbs breaking strength and 7.1% elongation at break with 764 cycles for flex abrasion.
EXAMPLE 2 The following examples are provided to show that the cure temperature may be lowered to give excellent wrinkle recovery properties where fabrics are treated as in Example 1 with the resultant fabric properties listed in the following table.
Cure Temp. Add-on Nitrogen Formaldehyde Wrinkle (C' "l: l2 /1 Recovery- (3 min. (W+F) cure] Dry Wet EXAMPLE 3 The following examples are illustrated to show that other azeotropes can be substituted for that in Example l with the following conditions as listed in The following examples are illustrated to show that 0.55 M dimethylolethyleneurea (DMEU) can be used instead of DMDHEU with Zn( N09 catalyst as shown in the following table.
Cure Formal- Wrinkle Azeo- Temp (C l Nitro- Llehyde Add-on Recovery trope (3 minv gen A l: l (W+ cure) Dry Wet "l is 38.3% t-hutanol 11.7% Hp 2 is 1W6; methylethylketone 1 1'4 H 0 3 is 71.7% n-propylalcnl'ml 28.3% H D 4 is 81.6% dioxane 18.4); 14,0
We claim:
1. A process for improving the treatment of cellulosic textiles with N-methylolated ureas in the presence of Lewis acid catalyst wherein the improvement consists of dissolving said methylolated ureas in azeotropes of water and a member of the group consisting of isopropyl alcohol, methylethyl ketone, t-butyl alcohol, npropyl alcohol, and dioxane, to produce nitrogencontaining chemically modified cellulosic textiles and a recyclable reagent bath.
2. An improved method of producing nitrogencontaining chemically modified cellulosic textiles in the reaction of the cellulosic textile with an N- methylolated compound, the improvement consisting of the employment of azeotropic recyclable mixtures, the method comprising:
a. impregnating a cellulosic textiel to a wet-pickup of about from 80 to 100% with a solution containing about from 2 to 50% of an N-methylolated com-- pound selected from the group consisting of dimethylolethyleneurea, dimethyloldihydroxyethyleneurea. urea formaldehyde, dimethylol urea, dihydroxyethylene urea, propylene urea, and trimethylolmelamine, and about from 0.01 to 0.5 mole of a Lewis acid catalyst selected from the group consisting of zinc nitrate, zinc chloride, magnesium chloride magnesium nitrate, citric acid, bydrochloric acid. zinc flouroborate, acetic acid, acetic acid/citric acid misture, and aluminum chlorhydroxide dissolved in an aqueous azeotropic mixture consisting of:
87.7 12.3% isopropanol-water,
88.3 11.7% tertiary butyl alcohol-water, 71.7 28.3% n-propyl alcohol-water, 81.6 18.4% dioxane-water, and
89 l 1% methylethyl ketone-water;
b. curing rhe wet impregnated cellulosie textile for about from 0.5 to 3 minutes at about from 100 to C, and
c; washing and drying the cured textile.
3. The method of claim 2 wherein the N- methylolated compound is dimethylol ethyleneurea.
4. The method of claim 2 wherein the N- methylolated compound is dimethyloldihydroxyethyleneurea.
5. The method of claim 2 wherein the N- methylolated compound is urea formaldehyde.
6. The method of claim 2 wherein the N- methylolated compound is dimethylol urea.
7. The method of claim 2 wherein the N- methylolated compound is dihydroxyethylene urea.
8. The method of claim 2 wherein methylolated compound is propylene urea.
9. The method of claim 2 wherein the N- methylolated compound is trimethylolmelamine.
10. The method of claim 2 wherein the catalyst is zinc nitrate.
ll. The method of claim 2 wherein the catalyst is zinc chloride.
12. The method of claim 2 wherein the catalyst is magnesium chloride.
13. The method of claim 2 wherein the catalyst is magnesium nitrate.
14. The method of claim 2 wherein the catalyst is citric acid.
15. The method of claim 2 wherein the catalyst is hydrochloric acid.
16. The method of claim 2 wherein the catalyst is zinc fluoborate.
the N- 17. The method of claim 2 wherein the catalyst is acetic acid.
18. The method of claim 2 wherein the catalyst is a mixture of acetic acid and citric acid.
19. The method of claim 2 wherein the catalyst is aluminum chlorhydroxide.
20. The method of claim 2 wherein the azeotropic mixture is 88% isopropanol and 12% water.
2|. The method of claim 2 wherein the azeotropic mixture is 88.3% tertiary butyl alcohol and l 1.7% water.
22. The method of claim 2 wherein the azeotropic mixture is 7l.7% n-propyl alcohol and 28.3% water.
23. The method of claim 2 wherein the azeotropic mixture is 8|.671 dioxane and 18.4% water.
24. The method of claim 2 wherein the azeotropic mixture is 89% methyl ethyl ketone and l I% water.

Claims (24)

1. A PROCESS FOR IMPROVING THE TREATMENT OF CELLULOSIC TEXTILES WITH N-METHYLOLATED UREAS IN THE PRESENCE OF LEWIS ACID CATALYST WHEREIN THE IMPROVEMENT CONSISTS OF DISSOLVING SAID METHYLATED UREAS IN AZEOTROPES OF WATER AND A MEMBER OF THE GROUP CONSISTING OF ISOPROPYL ALCOHOL, METHYLETHYL KETONE, T-BUTY ALCOHOL, N-PROPYL ALCOHOL, AND DIOXANE, TO PRODUCE NITROGEN CONTAINING CHEMICALLY MODIFIED CELLULOSIC TESTILES AND A RECYCLABLE REAGENT BATH.
2. An improved method of producing nitrogen-containing chemically modified cellulosic textiles in the reaction of the cellulosic textile with an N-methylolated compound, the improvement consisting of the employment of azeotropic recyclable mixtures, the method comprising: a. impregnating a cellulosic textiel to a wet-pickup of about from 80 to 100% with a solution containing about from 2 to 50% of an N-methylolated compound selected from the group consisting of dimethylolethyleneurea, dimethyloldihydroxyethyleneurea, urea formaldehyde, dimethylol urea, dihydroxyethylene urea, propylene urea, and trimethylolmelamine, and about from 0.01 to 0.5 mole of a Lewis acid catalyst selected from the group consisting of zinc nitrate, zinc chloride, magnesium chloride, magnesium nitrate, citric acid, hydrochloric acid, zinc flouroborate, acetic acid, acetic acid/citric acid misture, and aluminum chlorhydroxide dissolved in an aqueous azeotropic mixture consisting of: 87.7 - 12.3% isopropanol-water, 88.3 - 11.7% tertiary butyl alcohol-water, 71.7 - 28.3% n-propyl alcohol-water, 81.6 - 18.4% dioxane-water, and 89 - 11% methylethyl ketone-water; b. curing rhe wet impregnated cellulosic textile for about from 0.5 to 3 minutes at about from 100* to 160*C, and c. washing and drying the cured textile.
3. The method of claim 2 wherein the N-methylolated compound is dimethylol ethyleneurea.
4. The method of claim 2 wherein the N-methylolated compound is dimethyloldihydroxyethyleneurea.
5. The method of claim 2 wherein the N-methylolated compound is urea formaldehyde.
6. The method of claim 2 wherein the N-methylolated compound is dimethylol urea.
7. The method of claim 2 wherein the N-methylolated compound is dihydroxyethylene urea.
8. The method of claim 2 wherein the N-methylolated compound is propylene urea.
9. The method of claim 2 wherein the N-methylolated compound is trimethylolmelamine.
10. The method of claim 2 wherein the catalyst is zinc nitrate.
11. The method of claim 2 wherein the catalyst is zinc chloride.
12. The method of claim 2 wherein the catalyst is magnesium chloride.
13. The method of claim 2 wherein the catalyst is magnesium nitrate.
14. The method of claim 2 wherein the catalyst is citric acid.
15. The method of claim 2 wherein the catalyst is hydrochloric acid.
16. The method of claim 2 wherein the catalyst is zinc fluoborate.
17. The method of claim 2 wherein the catalyst is acetic acid.
18. The method of claim 2 wherein the catalyst is a mixture of acetic acid and citric acid.
19. The method of claim 2 wherein the catalyst is aluminum chlorhydroxide.
20. The method of claim 2 wherein the azeotropic mixture is 88% isopropanol and 12% water.
21. The method of claim 2 wherein the azeotropic mixture is 88.3% tertiary butyl alcohol and 11.7% water.
22. The method of claim 2 wherein the azeotropic mixture is 71.7% n-propyl alcohol and 28.3% waTer.
23. The method of claim 2 wherein the azeotropic mixture is 81.6% dioxane and 18.4% water.
24. The method of claim 2 wherein the azeotropic mixture is 89% methyl ethyl ketone and 11% water.
US360281A 1973-05-14 1973-05-14 Azeotropic solvents for permanent press treatments of cotton and cotton blend fabrics Expired - Lifetime US3910760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US360281A US3910760A (en) 1973-05-14 1973-05-14 Azeotropic solvents for permanent press treatments of cotton and cotton blend fabrics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US360281A US3910760A (en) 1973-05-14 1973-05-14 Azeotropic solvents for permanent press treatments of cotton and cotton blend fabrics

Publications (1)

Publication Number Publication Date
US3910760A true US3910760A (en) 1975-10-07

Family

ID=23417341

Family Applications (1)

Application Number Title Priority Date Filing Date
US360281A Expired - Lifetime US3910760A (en) 1973-05-14 1973-05-14 Azeotropic solvents for permanent press treatments of cotton and cotton blend fabrics

Country Status (1)

Country Link
US (1) US3910760A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2679449A (en) * 1948-12-16 1954-05-25 American Viscose Corp Cellulosic textiles reacted with aldehydes in an azeotropic medium
US3565846A (en) * 1966-07-30 1971-02-23 Pfersee Chem Fab Agent for making textiles crease proof and textiles treated by such agent
US3645667A (en) * 1970-05-22 1972-02-29 Us Agriculture Nonaqueous cross linking of cellulose with a methylolated urea in the absence of an acidic catalyst
US3650671A (en) * 1968-03-16 1972-03-21 Hoesch Chemie Gmbh Process for finishing cellulosic textile materials with n-methylol compounds
US3676053A (en) * 1968-09-26 1972-07-11 Mitsui Toatsu Chemicals Method of modifying fibrous materials
US3772292A (en) * 1970-12-30 1973-11-13 Eastman Kodak Co N-hydroxymethyl compounds,compositions containing such compounds and cellulose-containing textile materials treated therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2679449A (en) * 1948-12-16 1954-05-25 American Viscose Corp Cellulosic textiles reacted with aldehydes in an azeotropic medium
US3565846A (en) * 1966-07-30 1971-02-23 Pfersee Chem Fab Agent for making textiles crease proof and textiles treated by such agent
US3650671A (en) * 1968-03-16 1972-03-21 Hoesch Chemie Gmbh Process for finishing cellulosic textile materials with n-methylol compounds
US3676053A (en) * 1968-09-26 1972-07-11 Mitsui Toatsu Chemicals Method of modifying fibrous materials
US3645667A (en) * 1970-05-22 1972-02-29 Us Agriculture Nonaqueous cross linking of cellulose with a methylolated urea in the absence of an acidic catalyst
US3772292A (en) * 1970-12-30 1973-11-13 Eastman Kodak Co N-hydroxymethyl compounds,compositions containing such compounds and cellulose-containing textile materials treated therewith

Similar Documents

Publication Publication Date Title
Welch Formaldehyde‐free durable‐press finishes
US4396391A (en) Treating cellulose textile fabrics with dimethylol dihydroxyethyleneurea-polyol
US4300898A (en) Compositions for treating textile fabrics
US4102840A (en) PROCESS FOR THE MANUFACTURE OF UREA-HCHO-isobutyraldehyde condesnation products and compositions thereof
US4295847A (en) Finishing process for textiles
US3910760A (en) Azeotropic solvents for permanent press treatments of cotton and cotton blend fabrics
US3015584A (en) Wrinkle resistance treatment for cellulosic textile fabrics
US3933426A (en) Process for making textiles containing cellulose crease-resistant
US3910370A (en) Disconnecting steer system
Lewin et al. The role of liquid ammonia in functional textile finishes
US3676053A (en) Method of modifying fibrous materials
US3043719A (en) Process for applying crease resistant finishes to cellulosic fabrics and products thereof
US3556713A (en) Acetylated methylol carbamate finishing agents with reduced formaldehyde odor for cellulosic containing textile materials
US3041199A (en) Wrinkle resistant cellulose fabric and method of production
US3311496A (en) Process for producing rot and wrinkle resistant cellulose containing textile and textile obtained therewith
US3185539A (en) Process of treating cellulose textiles with certain alkylenebis(n-carboxamides) and products produced therefrom
US3317345A (en) Rot-resistant finish for textile materials
Reid et al. Hydroxymethanesulfonic acid as a catalyst for durable press finishing
US3909861A (en) Aluminum chlorhydroxide catalyst systems for treatments to give wrinkle resistant textiles
US3153003A (en) Aqueous dispersion of an aminoplast and an epoxy compound
US3518044A (en) Process for producing wrinkle resistant carbamate-modified cellulosic textile materials by catalysis with hydrogen halide gas
US3177093A (en) Method of treating cellulose textile material and the treated material
US3811210A (en) Mild cure finishing process incorporating improved catalyst systems to produce wrinkle resistant, durably pressed and creased cellulosic textile products
US3671307A (en) Crease-proofing compositions containing glyoxal modified uron resins and processes for making same
US3645667A (en) Nonaqueous cross linking of cellulose with a methylolated urea in the absence of an acidic catalyst