US3643262A - Microstrip aerials - Google Patents
Microstrip aerials Download PDFInfo
- Publication number
- US3643262A US3643262A US855234A US3643262DA US3643262A US 3643262 A US3643262 A US 3643262A US 855234 A US855234 A US 855234A US 3643262D A US3643262D A US 3643262DA US 3643262 A US3643262 A US 3643262A
- Authority
- US
- United States
- Prior art keywords
- strips
- edges
- discontinuities
- line
- lines
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000523 sample Substances 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 241001620634 Roger Species 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/26—Surface waveguide constituted by a single conductor, e.g. strip conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/206—Microstrip transmission line antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/28—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric
Definitions
- the present invention relate to directional aerials and more particularly to directional aerials for-use in moving bodies whose aerodynamical characteristics should be affected as little as possible by the presence of theaerial.
- An aerial according to the invention comprises, at least, one microstrip having a plurality of equally spaced radiating discontinuities obtained by laterally sifting the edges of the strip, thus forming laterally set off rectangular strip portions.
- FIG. I is a diagrammatic top view of the microstrip aerial according to the invention.
- FIG. 2 is a detail of the aerial of FIG. ll;
- FIGS. 3 to it are explanatory curves
- FIG. 9 is an embodiment of a directive aerial according to the invention.
- FIG. 10 illustrates a cross section of the aerial of FIG. 9
- FIG. I1 is an explanatory perspective view
- FIG. 12 is a radiating pattern of an aerial according to the invention. i
- a microstrip line 11 is illustrated as viewed from above, the ground plate being disposed in the plane of the figure.
- this line comprises a plurality of discontinuities 2, spaced from each other by x,, A, designating the wavelength in the line of the energy propagating along the same.
- each discontinuity 2 is formed by laterally shifting the edges of a portion of the strip in a direction perpendicular to the longitudinal axis thereof.
- edge 3 is shifted by a distance c and edge 4 by a distance d.
- each discontinuity is, in the embodiment shown, substantially equal to M4.
- the radiation factor i.e., the ratio of the radiated energy to the incident energy, varies as a function ofd.
- each length d corresponds a length c for which the discontinuity is matched to the line. All discontinuities being matched to the line, the energy fed to the line propagates as a progressive wave.
- the projecting strip portions radiate energy and the reentrant portions insure the matching.
- FIGS. 3, 4 and 5 show curves indicating how different parameters vary as a function of d, namely: the standing wave ratio with F (FIG. 3); the radiation factor p (FIG. A), distance c with the standing wave ratioequal to 1.
- FIG. 6 shows the phase shift 1 due to energy radiation as a function ofd.
- FIG. 9 illustrates a guide, which feeds a plurality of lines 1111, III, 13 and MI, each line being fed at its center. The distance between two adjacent lines is M2, it being the operating wavelength.
- FIG. l0 shows in section how each line is coupled to guide 110.
- a metal plate 5 which is common to microstrips l0 and M, is supported on a metal bloclt II which rests on guide 110.
- a passage 15 is formed in bloclt 9, symmetrically with respect to guide 110, for coupling strips 1111 to M to the guide.
- a dielectric layer 117 rests on plate 5, the same dielectric lining passages 15.
- a probe lb couples the conductive strips 1 to guide It), probe lb and lining 115 thus forming a coaxial cable.
- the discontinuities 20 are all fed in phase; they are separated by an electrical distance I substantially equal to it, and given more precisely by the formula:
- An aerial according to the invention is directional.
- the radiation direction is along a straight line defined by the intersection of:
- a plane including axis by and making an angle 0 with the axis 0x, with cos 0 c./Vg., c being the velocity of light and Vg. the phase velocity of the wave in guide 10.
- FIG. 112 shows the directive pattern obtained with an aerial according to the invention, operating at 10,000 mc., in the above defined planes.
- the width M of the beam at a level 3 db. below the maximum is given by the fonnula;
- the distance between the discontinuities could be different from A.
- the two planes respectively comprising the radiation directions would be inclined over the horizontal.
- the distance between the points where the strips are coupled to the guide could be separated by distance different from M 2.
- a microwave directional aerial comprising at least one microstrip line having a ground plate, an insulating plate and a conductive strip superimposed upon each other, said strip having edges; means for feeding to said line ultrahigh frequency energy; both edges being laterally set off in the same direction at uniformly spaced points, thus forming radiating discontinuities.
- a microwave directional aerial comprising a plurality of parallel, equally spaced lines having a common ground plate and a common insulating plate, each line having a conductive strip, said strips having edges; means for feeding to said lines ultrahigh frequency energy; both edges of each line being laterally set off in the same direction at uniformly spaced points, thus forming radiating discontinuities.
- a microwave directional aerial comprising a plurality of parallel equally spaced lines, having a common ground plate and a common insulating plate, each line having a conductive strip, said strips having edges; means for feeding to said lines ultrahigh frequency energy; both said edges being laterally set off in the same direction, thus forming along a predetermined length of said strips radiating discontinuities, said discontinuities being spaced apart by the length in said microstrip of the operating wave and said predetermined length being the same for all the strips.
- a microwave directional aerial comprising a plurality of parallel equally spaced strip lines, having a common ground plate and a common insulating plate, each line having a conductive strip, said strips having edges; both said edges being laterally set off in the same direction thus forming along a predetermined length of said strips radiating discontinuities, said discontinuities being spaced apart by the length in said microstrip of the operating wave and said predetermined length being the same for all the strips; a wave guide extending normally to said strip lines, said guide having a pair of large walls, one of said walls supporting said ground plate; and probes respectively coupling said strips to said guide.
Landscapes
- Waveguide Aerials (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR780929 | 1958-12-05 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3643262A true US3643262A (en) | 1972-02-15 |
Family
ID=8708979
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US855234A Expired - Lifetime US3643262A (en) | 1958-12-05 | 1959-11-24 | Microstrip aerials |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US3643262A (enrdf_load_stackoverflow) |
| FR (1) | FR1603303A (enrdf_load_stackoverflow) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4063245A (en) * | 1975-02-17 | 1977-12-13 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Microstrip antenna arrays |
| US4152762A (en) * | 1976-03-03 | 1979-05-01 | Operating Systems, Inc. | Associative crosspoint processor system |
| US4180817A (en) * | 1976-05-04 | 1979-12-25 | Ball Corporation | Serially connected microstrip antenna array |
| US4475107A (en) * | 1980-12-12 | 1984-10-02 | Toshio Makimoto | Circularly polarized microstrip line antenna |
| US4689629A (en) * | 1982-09-27 | 1987-08-25 | Rogers Corporation | Surface wave antenna |
| US4937585A (en) * | 1987-09-09 | 1990-06-26 | Phasar Corporation | Microwave circuit module, such as an antenna, and method of making same |
| US20090160612A1 (en) * | 2005-07-04 | 2009-06-25 | Valtion Teknillinen Tutkimuskeskus | Measurement System, Measurement Method and New Use of Antenna |
| US9585203B2 (en) * | 2011-08-04 | 2017-02-28 | Panasonic Intellectual Property Management Co., Ltd. | Microwave heating device |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2605413A (en) * | 1943-11-10 | 1952-07-29 | Luis W Alvarez | Antenna system with variable directional characteristic |
| FR1123769A (fr) * | 1955-03-17 | 1956-09-27 | Csf | Aérien incorporable pour engins mobiles |
-
1959
- 1959-11-24 US US855234A patent/US3643262A/en not_active Expired - Lifetime
-
1968
- 1968-12-05 FR FR780929A patent/FR1603303A/fr not_active Expired
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2605413A (en) * | 1943-11-10 | 1952-07-29 | Luis W Alvarez | Antenna system with variable directional characteristic |
| FR1123769A (fr) * | 1955-03-17 | 1956-09-27 | Csf | Aérien incorporable pour engins mobiles |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4063245A (en) * | 1975-02-17 | 1977-12-13 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Microstrip antenna arrays |
| US4152762A (en) * | 1976-03-03 | 1979-05-01 | Operating Systems, Inc. | Associative crosspoint processor system |
| US4180817A (en) * | 1976-05-04 | 1979-12-25 | Ball Corporation | Serially connected microstrip antenna array |
| US4475107A (en) * | 1980-12-12 | 1984-10-02 | Toshio Makimoto | Circularly polarized microstrip line antenna |
| US4689629A (en) * | 1982-09-27 | 1987-08-25 | Rogers Corporation | Surface wave antenna |
| US4937585A (en) * | 1987-09-09 | 1990-06-26 | Phasar Corporation | Microwave circuit module, such as an antenna, and method of making same |
| US20090160612A1 (en) * | 2005-07-04 | 2009-06-25 | Valtion Teknillinen Tutkimuskeskus | Measurement System, Measurement Method and New Use of Antenna |
| US8525647B2 (en) * | 2005-07-04 | 2013-09-03 | Valtion Teknillinen Tutkimiskeskus | Measurement system, measurement method and new use of antenna |
| US9585203B2 (en) * | 2011-08-04 | 2017-02-28 | Panasonic Intellectual Property Management Co., Ltd. | Microwave heating device |
Also Published As
| Publication number | Publication date |
|---|---|
| FR1603303A (enrdf_load_stackoverflow) | 1971-04-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3234559A (en) | Multiple horn feed for parabolic reflector with phase and power adjustments | |
| US4387377A (en) | Apparatus for converting the polarization of electromagnetic waves | |
| US10539656B2 (en) | Antenna and radar system that include a polarization-rotating layer | |
| US5117237A (en) | Quasi-optical stripline devices | |
| US5173714A (en) | Slot array antenna | |
| US2810905A (en) | High frequency directive beam apparatus | |
| US2840818A (en) | Slotted antenna | |
| US4318107A (en) | Printed monopulse primary source for airport radar antenna and antenna comprising such a source | |
| US20180145420A1 (en) | Wideband antenna radiating element and method for producing wideband antenna radiating element | |
| US2822541A (en) | Lens antenna system | |
| US3225351A (en) | Vertically polarized microstrip antenna for glide path system | |
| JP2010171836A (ja) | レーダ装置用アンテナ | |
| US2840819A (en) | Reflecting surfaces | |
| US2846678A (en) | Dual frequency antenna | |
| US3643262A (en) | Microstrip aerials | |
| US3964069A (en) | Constant beamwidth antenna | |
| US4460901A (en) | Integrated antenna-radome structure that functions as a self-referencing interferometer | |
| US3721988A (en) | Leaky wave guide planar array antenna | |
| US3311917A (en) | Stepped beam slot antenna array | |
| US2937373A (en) | Slotted waveguide aerials | |
| US3430247A (en) | Centerfed travelling wave array having a squinted aperture | |
| US2597391A (en) | Antenna | |
| US3018480A (en) | Improvements in aerials of the cosecantsquared type | |
| CA1237809A (en) | Interleaved microstrip planar array | |
| US2895134A (en) | Directional antenna systems |