US3642072A - Fixed tire extinguishing system with additive injection apparatus - Google Patents

Fixed tire extinguishing system with additive injection apparatus Download PDF

Info

Publication number
US3642072A
US3642072A US864757A US3642072DA US3642072A US 3642072 A US3642072 A US 3642072A US 864757 A US864757 A US 864757A US 3642072D A US3642072D A US 3642072DA US 3642072 A US3642072 A US 3642072A
Authority
US
United States
Prior art keywords
water
motor
conduit
pump
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US864757A
Inventor
William L Livingston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Factory Mutual Research Corp
Original Assignee
Factory Mutual Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Factory Mutual Research Corp filed Critical Factory Mutual Research Corp
Application granted granted Critical
Publication of US3642072A publication Critical patent/US3642072A/en
Anticipated expiration legal-status Critical
Assigned to EBIOSCIENCE, INC. reassignment EBIOSCIENCE, INC. RELEASE OF SECURITY INTEREST IN TRADEMARKS Assignors: GENERAL ELECTRIC CAPITAL CORPORATION, AS ADMINISTRATIVE AGENT
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C5/00Making of fire-extinguishing materials immediately before use
    • A62C5/002Apparatus for mixing extinguishants with water
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0064Gels; Film-forming compositions

Definitions

  • ABSTRACT An injection apparatus for introducing a slurry of water-swellable gelling agent into a water line feeding a fixed fire-extinguishing system to form an ablative extinguishant therein.
  • the apparatus includes a peristaltic pump driven by a hydraulic motor using water at line pressure for motive fluid and controlled by a servomechanism driven in part by a flow sensor to ensure injection rates corresponding to flow rates of water in the line.
  • the injection apparatus is operated in a no-injection failure mode to avoid interference with normal flow of plain water to the fire-extinguishing system.
  • This invention relates to an additive injection system and more particularly, it concerns a system for injecting a gelling additive automatically into a waterline to provide a fire extinguishant in the form of an ablative gel for supply to thermally actuated sprinkler heads in a fixed fire protection system.
  • a method of fire protection in which a gelling agent in the form of a water-swellable polymer is injected into a flowing stream of water supplying the sprinkler heads of a fixed extinguishing system upon actuation thereof to put out a fire in the enclosure protected by the system.
  • a gelling agent in the form of a water-swellable polymer is injected into a flowing stream of water supplying the sprinkler heads of a fixed extinguishing system upon actuation thereof to put out a fire in the enclosure protected by the system.
  • the thermal absorption characteristics of the ablative gel is greater than water, but equally as important, the gel is substantially more viscous than plain water and tends to cling to the surfaces on which it is sprayed.
  • a much lower quantity of ablative extinguishant is required to put out a fire than that of plain water, thereby enabling system designs with lower flow capacity, not to mention a significant reduction in water damage to the space protected.
  • the injection system In light of the tolerances required of the various parameters of a gel additive injection system used with fixed extinguishing systems, and the need for the extinguishing system to be absolutely operative when called to extinguish a fire, it is also imperative that the additive injection system not impede the flow of plain water through the system. Hence, the injection system must be capable of achieving the characteristics outlined above without in any way presenting an obstruction in the conduit by which water is supplied to the sprinkler heads located in the building space protected.
  • a gel slurry additive injection system for fixed extinguishing systems by which substantially all of the problems heretofore experienced in the use of such additives are substantially avoided. More particularly, the injection system of this invention avoids the need for an external pumping power source by means of a hydraulic motor using as its motive fluid, water tapped at line pressure from the main conduit supplying the fire-extinguishing system. Water is supplied to the motor through a control valve operated by a servomechanism in turn controlled by means responsive to waterflow in the system feed conduit. The motor thus initiated and operated by water supplied to the fire-extinguishing system is employed to drive an injection pump by which the additive gel slurry is introduced into the flowing line. Preferably, means in the form of an impact clutch is-interposed between the motor and the pump so that the motor develops a sufficiently high torque after starting to drive the pump.
  • the pump employed in the injection system is preferably a peristaltic pump or one which develops a gradual buildup of pressure on the fluid being pumped, thereby avoiding an abnormal increase in the viscosity of the additive.
  • Uniform mixing of the additive with the flowing stream of water- is achieved with the injection system of the present invention by the employment of a baffle or eddy plate in the main water conduit at the point where the gel additive is introduced.
  • the eddy plate be formed of material which is flexible so that under conditions where the gel is being introduced, thereby developing lower system flow rates due to the formation of the ablative fluid extinguishant in the system, the eddy plate functions to develop the necessary mixing flow paths and turbulence.
  • the injection system fails upon the demand for extinguishant by the sprinkler heads in the fire-extinguishing system, significantly'greater flow rates are required by the system as a result of the relatively low viscosity of plain water.
  • the eddy plate responds to these greater flow rates by flexing so that the increase flow rates needed by the sprinkler heads of the system are not impeded by the eddy plate.
  • FIG. 1 is a schematic view illustrating the operative elements of the additive injections apparatus of the present invention in a fixed fire-extinguishing system
  • FIG. 2 is an enlarged fragmentary cross section taken on line 2-2 ofFIG. 1;
  • FIG. 3 is an enlarged cross section taken on line 33 of FIG. 2;
  • FIG. 4 is a fragmentary cross section taken on line 44 of FIG. 3;
  • FIG. 5 is a fragmentary cross section similar to FIG. 4 but under different operating conditions of the injection apparatus and tire extinguishing system.
  • the injection apparatus of this invention is generally designated by the reference numeral and incorporated in a fire-extinguishing system including a main feed conduit 12 connected by means of a T-coupling 14 to a riser 16.
  • the riser 16 extends upwardly to one or more branch lines 18 having a plurality of nozzles or sprinkler heads 20 depending therefrom.
  • each of the nozzles is provided with temperature-responsive release means 21 so that upon the development of a tire in the vicinity of one or more of the nozzles. the system is activated automatically to supply water from the main conduit 12 through the riser 16, the branch line 18 and out of the nozzles 20.
  • FIG. 1 the general organization of the apparatus is shown in FIG. 1 to include a storage tank 22 for a gel additive slurry preferably of the type described above.
  • the tank 22 is connected at its lower end by means of a discharge conduit 24 to the intake 26 of a peristaltic pump 28 having a discharge tube 30 coupled by a reducer 32 to the T- coupling 14.
  • a gearbox and bearing assembly 34 for transmitting torque from an input shaft 36 in turn drivably connected to a hydraulic motor 38 by a motor output shaft 40 and slip-impact clutch 42.
  • the motor 38 is preferably of a positive displacement piston type designed to develop full torque at low speeds and has communication with the main conduit 12 by way of a tap line 46 having a control valve 48 therein.
  • An exhaust pipe 50 is provided on the motor 38 so that the admission of water under line pressure to the intake port 44, through the pump 38 and out of the exhaust pipe 50 will effect rotation of the pump rotor (not shown) and correspondingly drive the output shaft 40 at speeds controlled by the valve 48 in a manner well known to those familiar with such pumps.
  • a servomechanism is provided to regulate the motor control valve 48 to insure that the pump 28 will be operated in conformity to flow rates in the conduit 12.
  • a flow-responsive device in the form of a rotatable screw 52 is supported in the main conduit 12. Rotation of the screw 52 is transmitted by means including a shaft 54 to one end input of a conventional differential gear 56 having output ring gear 58.
  • the shaft 54 providing the input at one end of the differential gear 56 is connected to the sensing screw 52 by one-way torque trans mitting means, such as a clutch 60, so that the shaft 54 may be rotated by the screw 52 but so that rotation of the screw by the shaft 54 is prevented.
  • the other end of the differential 56 is connected by a servo-shaft 62 to a similar one-way torquetransmitting device 64 on the motor 38. Because of this arrangement, the ring gear 58 will be driven in accordance with differential input from both ends by the'shafts 54 and 62.
  • the ring gear 58 is in mesh with a gear 66 keyed to an actuating and control shaft 68 connected at its opposite end with the valve 48.
  • valve 48 is preferably of the type having an inherent bias toward the open position to bring about an opening movement with a minimum of torque delivered to the shaft 68.
  • the peristaltic pump 28 as above mentioned, is available commercially and is known to be a positive displacement, progressive cavity type.
  • Such pumps as shown in FIG. 2 of the drawings, include a wormlike rotor 70 disposed within a stator 72 which cooperates with the rotor upon rotation thereof to establish a series of progressively developed, discrete chambers advancing from the feed chamber 26 through the discharge tube 30.
  • the tube 30 extends through the T-coupling 14 in the embodiment shown and terminates at its open end 74 within the lower horizontal portion of the riser 16.
  • Peristaltic pumps of this design are particularly suited for use in the injection apparatus of this invention because of their peristaltic action (i.e., a gradual buildup of pumping pressure) in light of the dilatant physical characteristics of the gel additive slurry, and also because they function as a valve and will not pass fluid as long as the rotor 70 is stationary. While this latter characteristic, in itself, would prevent inadvertent discharge of the additive into the riser 16, it is contemplated that a frangible cap 76 be provided over the open end 74 of the pump to provide a positive seal between the additive and water within the line.
  • the cap 76 is equipped with an explosive actuator 78 connected by a conductor 80 to a pulse generator 82 mechanically coupled to the output shaft 40 of the motor 38.
  • a capacitor 84 may be placed in the line 80 to store small electrical charges accumulated as a result of such slight rotation of the shaft 36.
  • the capacitor 84 is selected, on the other hand, so that upon any continuous operation of the shaft 40, the capacitor will discharge to explode the charge 78 and disintegrate the seal cap 76.
  • a mixing means in the form of an eddy plate 86 is provided at the open or discharge end of the tube 30 at the point where the gel additive is introduced into the horizontal portion of the riser 16.
  • the characteristics of the gel additive are such that upon contact with water, the gel particles thereof immediately swell to form a relatively viscous fluid.
  • the addi tive is not thoroughly mixed with the water to which it is injected, there is a likelihood that large globs of gelatin will be formed, capable of developing flow stoppages in the riser 16, the branch line 18, or in the sprinkler heads 20 and resulting in a malfunction of the fire-extinguishing system.
  • the eddy plate 86 is in the form of a circular disc and is fixed at the open end of the tube 30 by appropriate means such as collars 88.
  • the eddy plate 86 is formed of reasonably stiff rubber or other elastomeric materials having resilient, yieldable qualities so that at flow rates of the type that exist when ablative fluid is being fed to the sprinkler heads 20, it maintains a position normal to the pump discharge tube 30 as shown in FIGS. 3 and 4 of the drawings. In this position, the eddy plate 86 operates to create a zone of turbulence in the water as depicted in the solid line arrows in FIG. 4 of the drawings.
  • the pump 28 will be operative under these conditions to inject the gel additive out of the discharge end 74 thereof, the additive will pass into the turbulent zone as depicted by the dash line arrows in FIG. 4 and be uniformly and thoroughly mixed with the water to provide the desired viscosity of the ablative extinguishant delivered to the sprinkler heads 20. If, on the other hand, the injection apparatus should malfunction so that the ablative extinguishant isnot formed, the fire-extinguishing system plumbing including the riser l6, branch line 18, and sprinkler heads will permit flow at significantly higher rates.
  • the eddyplate if rigid, would present an obstacle to such high flow rates between the main conduit 12 and the riser 16, being formed of flexible material, it will partially collapse to the position illustrated in FIG. 5 of the drawings and permit water to flow at high rates into the riser 16.
  • the gel additive slurry which is passed by gravity from the tank 22 through the discharge pipe 24 into the pump feed chamber 26, will be pumped through the tube and out through the open end 74 thereof to be mixed with the flowing stream of water in the turbulent zone immediately downstream from the eddy plate 86 in the manner described above.
  • the danger of over injection of the additive to the system is avoided by virtue of the fact that the motor uses as its motive fluid, water in the feed line 12 and also because of the underinject failure mode of the injection apparatus. In other words, should any component of the injection apparatus 10 malfunction, the result will be under injection or no injection, in which case the eddy plate would flex out of the way as described above to permit an adequate supply of water to reach the sprinkler heads to be effective in extinguishing the fire.
  • a fixed fire extinguishing system for a space to be protected comprising a plurality of fixed extinguishant dispersing heads located in said space in horizontally spaced apart relation, each of said heads producing a spray of droplets when activated, means for automatically opening said heads in response to information received from a fire in said space, a plurality of branch pipelines connected to said heads, a conduit for supplying water under pressure to said branch lines and heads, injecting means for injecting a water-swellable gelling agent into said conduit, means for activating said injecting means automatically in response to the flow of water through said conduit caused by the opening of one or more of said heads by the fire, and means for controlling the rate of injection of said gelling agent into said conduit to maintain the ratio by weight of gelling agent to water between predetermined maximum and minimum ratios while the water flowing through said conduit varies, the mixture of gelling agent and water producing a uniform gel without free water for delivery from said heads in a spray of droplets.
  • said injecting means comprises a peristaltic pump for injecting into said conduit a dilatant slurry of said water-swellable gelling agent, said pump having intake means to receive said slurry and discharge means opening into said conduit, and means to drive said pump to inject said slurry into said conduit.
  • said activating means comprises sensing means for sensing waterflow through the conduit and generating a corresponding output
  • said control means comprises means operatively connected between said sensing means and said injecting means for actuating said injecting means in response to said output.
  • said means to drive said pump comprises a motor, means drivably connecting said motor to said pump, and wherein said control means controls the speed of said motor in accordance with the flow rate of water in said conduit.
  • said motor speed control means includes a valve in said intake passage, and regulating means connecting said activating means to said valve.
  • said regulating means comprises servomeans having a first input means connected to said activating means, second input means drivably connected to said motor, and output means driven by the differential of said input means.
  • said activating means comprises a rotatable screw in said conduit and means to prevent rotation of said screw by said servo means.
  • said servo means comprises a differential gear unit having end gears to define said input means and a ring gear defining said output.
  • slip clutch means to delay driving connection of said motor to said pump after starting said motor whereby said pump is driven by said motor after said motor develops operating torque.
  • the apparatus recited in claim 4 including cap means for sealing the discharge of said end of said pump and means to remove said cap means in response to operation of said motor.
  • the apparatus recited in claim 11 including a pulse generator drivably connected to the output of said motor and explosive means connected to said pulse generator to destroy said sealing cap upon operation of said motor.
  • the apparatus recited in claim 12 including capacitor means to store the discharge of said generator as a result of minor flow fluctuations in said conduit.
  • said injecting means comprises a pump, and a motor adapted to be connected to said conduit and driven by said water, said motor being drivingly connected to said pump.
  • said injecting means comprises a pump, and a motor adapted to be connected to said conduit and driven by said water, said motor being drivingly connected to said pump
  • said controlling means comprises a valve disposed in said conduit for varying the quantity of waterflow into said motor, and a differential device having an input connected to said sensing means and to said motor and an output adapted to control the operation of said valve.
  • controlling means maintains said ratio. substantially constant at a point between one part per thousand of said gelling agent to said water and four parts per thousand of gelling agent to water, said gelling agent being an ablative gelling agent to produce at said ratio an ablative fluid material for delivery from said heads.
  • controlling means is responsive to the flow rate of the water flowing through said conduit.

Abstract

An injection apparatus for introducing a slurry of waterswellable gelling agent into a water line feeding a fixed fireextinguishing system to form an ablative extinguishant therein. The apparatus includes a peristaltic pump driven by a hydraulic motor using water at line pressure for motive fluid and controlled by a servomechanism driven in part by a flow sensor to ensure injection rates corresponding to flow rates of water in the line. The injection apparatus is operated in a no-injection failure mode to avoid interference with normal flow of plain water to the fire-extinguishing system.

Description

United States Patent Livingston Feb. 15, 1972 [54] FIXED TIRE EXTINGUISHING SYSTEM WITH ADDITIVE INJECTION APPARATUS [72] Inventor:
[73] Assignee:
William L. Livingston, Sharon, Mass.
Factory Mutual Research Corporation, Boston, Mass.
[221 Filed: Oct. 8, 1969 21 Appl.No.: 864,757
[52] U.S.Cl ..169/15, 169/14, 239/310 [51] lnt. Cl ..A62c 37/06 [58] FieldofSearch ..169/14, l5;239/310 [56] References Cited UNITED STATES PATENTS 2,356,286 8/1944 Timpson ..169/14 X 2,543,941 3/ 1951 Sargent 3,354,084 11/1967 Katzer et al.. 3,433,171 3/1969 Corneil ..417/474 3,570,508 3/1971 Boggs et al ..239/310 X OTHER PU BLlCATlONS Fire Technology, Vol. 1, No. 3, National Fire Protection Association, Boston, Mass. August, 1965. Gelgard-A New Fire Retardant for Air and Ground Attack pp. 216 eme 1r Primary ExaminerLloyd L. King Assistant ExaminerReinhold W. Thieme Att0rneyLane, Aitken, Dunner & Ziems and Warren B. Kice [5 7] ABSTRACT An injection apparatus for introducing a slurry of water-swellable gelling agent into a water line feeding a fixed fire-extinguishing system to form an ablative extinguishant therein. The apparatus includes a peristaltic pump driven by a hydraulic motor using water at line pressure for motive fluid and controlled by a servomechanism driven in part by a flow sensor to ensure injection rates corresponding to flow rates of water in the line. The injection apparatus is operated in a no-injection failure mode to avoid interference with normal flow of plain water to the fire-extinguishing system.
25 Claims, 5 Drawing Figures 'PATENTEDFEB 15 1912 3.642.072
' saw 1 OF 2 mvmmn WiLLiAM L LEVINGSTON BY p PATENTEDFEH 15 I972 SHEET 2 OF 2 FIG.5.
FIG.4.
FIG.3.
- mvzmoa WILLBAM L. LWINGSTON FIXED TIRE EXTINGUISHING SYSTEM WITH ADDITIVE INJECTION-APPARATUS BACKGROUND OF THE INVENTION This invention relates to an additive injection system and more particularly, it concerns a system for injecting a gelling additive automatically into a waterline to provide a fire extinguishant in the form of an ablative gel for supply to thermally actuated sprinkler heads in a fixed fire protection system.
In a copending application entitled Method of Controlling Fire," Ser. No. 766,475, filed Oct. 10, I968 by William L. Livingston and Russell W. Pierce and assigned to the assignee of the present invention, a method of fire protection is disclosed in which a gelling agent in the form of a water-swellable polymer is injected into a flowing stream of water supplying the sprinkler heads of a fixed extinguishing system upon actuation thereof to put out a fire in the enclosure protected by the system. By so introducing the gel into the flowing water stream, an ablative gel extinguishant is formed having certain advantages over plain water. Not only is the thermal absorption characteristics of the ablative gel greater than water, but equally as important, the gel is substantially more viscous than plain water and tends to cling to the surfaces on which it is sprayed. As a result, a much lower quantity of ablative extinguishant is required to put out a fire than that of plain water, thereby enabling system designs with lower flow capacity, not to mention a significant reduction in water damage to the space protected.
Although systems employing an ablative gel extinguishant, formed by introducing the polymer additive to a water main supplying sprinkler heads, have been found to be extremely effective in experimentation with actual fires, several problems have been presented in the development ofa commercially ac ceptable system. For example, fixed fire-extinguishing systems, in general, remain inactive for long periods of time, often exceeding several years duration. Under such circumstances, conventional items of fluid-handling hardware can and most likely will become deteriorated due to corrosion and the like, presenting the possibility of malfunction at the same time when the system is called on to extinguish a fire. Also, operation of the system cannot be predicated on conventional power sources such as electricity, because of the probability that the power supply will be cut out during the conditions existin g during a fire, particularly large fires of the type in which excessive property damage is likely to occur upon malfunction ofthe system.
The very nature of the swellable polymer gel additive, both in itself before injection and its behavior after injection in a flowing stream of water, pose further serious problems to the design of an acceptable injection system. Perhaps the most serious of these problems arises out of the possibility of over injection. In this context, experimentation with ablative gel additives has demonstrated that optimum injection rates, from the standpoint of developing an ablative fluid which will readi ly flow through the system plumbing while at the same time maintaining the desired level of extinguishing capabilities, is approximately one to four parts gelling agent per thousand parts of water by weight. Injection at higher rates than that indicated can and is very likely to create stoppages in the plumbing system. Obviously, such stoppages not only preclude the attainment of the desirable characteristics of the ablative fluid, but more significantly, disable the system to the extent that even plain water is prevented from reaching the sprinkler heads opened as a result of fire temperatures. The development of improved additive slurries has contributed greatly to solving the problems of handling polymer gel additives in fixed fire-extinguishing systems Generally, such slurries involve mixing the gelling powder with a water soluble, thickened carrier which is chemically inert with the powder and which has a sufficiently high plastic flow yield value to suspend the polymer particles indefinitely. Yet, the avoidance of overinjection remains important.
Another problem presented by the injection of additive gel slurries into a flowing stream of water is that of pumping and mixing the additive instantly and completely in the flowing stream. From the standpoint of pumping the slurries, a serious problem is presented by virtue of their dilatant characteristics, that is, their tendency to increase in viscosity with corresponding increases in shear stress. Hence, conventional injection pumps which subject the slurry to high shear stresses cannot be used because of the tendency for the slurry viscosity to increase to a point where it becomes unpumpable. Also, it will be appreciated that the additive must be mixed uniformly in the flowing stream'to avoid a localized gel buildup or the formation of globs likely to create stoppages in the same manner as that caused by over injection.
In light of the tolerances required of the various parameters of a gel additive injection system used with fixed extinguishing systems, and the need for the extinguishing system to be absolutely operative when called to extinguish a fire, it is also imperative that the additive injection system not impede the flow of plain water through the system. Hence, the injection system must be capable of achieving the characteristics outlined above without in any way presenting an obstruction in the conduit by which water is supplied to the sprinkler heads located in the building space protected.
SUMMARY OF THE INVENTION In accordance with the present invention, a gel slurry additive injection system is provided for fixed extinguishing systems by which substantially all of the problems heretofore experienced in the use of such additives are substantially avoided. More particularly, the injection system of this invention avoids the need for an external pumping power source by means of a hydraulic motor using as its motive fluid, water tapped at line pressure from the main conduit supplying the fire-extinguishing system. Water is supplied to the motor through a control valve operated by a servomechanism in turn controlled by means responsive to waterflow in the system feed conduit. The motor thus initiated and operated by water supplied to the fire-extinguishing system is employed to drive an injection pump by which the additive gel slurry is introduced into the flowing line. Preferably, means in the form of an impact clutch is-interposed between the motor and the pump so that the motor develops a sufficiently high torque after starting to drive the pump.
To overcome the problems arising as a result of the dilatant physical characteristics of the slurry, the pump employed in the injection system is preferably a peristaltic pump or one which develops a gradual buildup of pressure on the fluid being pumped, thereby avoiding an abnormal increase in the viscosity of the additive. Uniform mixing of the additive with the flowing stream of water-is achieved with the injection system of the present invention by the employment of a baffle or eddy plate in the main water conduit at the point where the gel additive is introduced. It is preferred that the eddy plate be formed of material which is flexible so that under conditions where the gel is being introduced, thereby developing lower system flow rates due to the formation of the ablative fluid extinguishant in the system, the eddy plate functions to develop the necessary mixing flow paths and turbulence. Where however, the injection system fails upon the demand for extinguishant by the sprinkler heads in the fire-extinguishing system, significantly'greater flow rates are required by the system as a result of the relatively low viscosity of plain water. The eddy plate responds to these greater flow rates by flexing so that the increase flow rates needed by the sprinkler heads of the system are not impeded by the eddy plate.
Among the principal objects of the present invention are, therefore: the provision of a novel gel additive injection apparatus for fixed fire-extinguishing systems by which the problems heretofore experienced are substantially overcome; the provision of such injection apparatus which is extremely reliable in operation, even though standing idle for long durations of time, to achieve a mixing of the additive with the flowing stream of water, thereby to develop an ablative extinguishant; the provision of an ablative gel injection apparatus of a type referred to which avoids over injection of the additive as well as measuring a uniform mixing of additive with water to avoid flow stoppages as a result of large globs of very viscous material in the flow line; and the provision of an injection apparatus of the type referred to which in no way impedes the flow of water to the sprinkler heads of the fire-extinguishing system in the event of malfunction of the injection apparatus.
Other objects and further scope of applicability of the present invention will become apparent from the detailed description that follows taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view illustrating the operative elements of the additive injections apparatus of the present invention in a fixed fire-extinguishing system;
FIG. 2 is an enlarged fragmentary cross section taken on line 2-2 ofFIG. 1;
FIG. 3 is an enlarged cross section taken on line 33 of FIG. 2;
FIG. 4 is a fragmentary cross section taken on line 44 of FIG. 3; and
FIG. 5 is a fragmentary cross section similar to FIG. 4 but under different operating conditions of the injection apparatus and tire extinguishing system.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT As shown in the drawings particularly in FIG. 1 thereof, the injection apparatus of this invention is generally designated by the reference numeral and incorporated in a fire-extinguishing system including a main feed conduit 12 connected by means of a T-coupling 14 to a riser 16. In accordance with conventional practice, the riser 16 extends upwardly to one or more branch lines 18 having a plurality of nozzles or sprinkler heads 20 depending therefrom. Also in accordance with conventional practice, each of the nozzles is provided with temperature-responsive release means 21 so that upon the development of a tire in the vicinity of one or more of the nozzles. the system is activated automatically to supply water from the main conduit 12 through the riser 16, the branch line 18 and out of the nozzles 20.
Although the specific details of the injection apparatus 10 are not apparent from FIG. 1 and will be described in more detail below, the general organization of the apparatus is shown in FIG. 1 to include a storage tank 22 for a gel additive slurry preferably of the type described above.
The tank 22 is connected at its lower end by means of a discharge conduit 24 to the intake 26 of a peristaltic pump 28 having a discharge tube 30 coupled by a reducer 32 to the T- coupling 14. At the opposite end of the pump 28 from the tube 30 is a gearbox and bearing assembly 34 for transmitting torque from an input shaft 36 in turn drivably connected to a hydraulic motor 38 by a motor output shaft 40 and slip-impact clutch 42.
The motor 38 is preferably of a positive displacement piston type designed to develop full torque at low speeds and has communication with the main conduit 12 by way of a tap line 46 having a control valve 48 therein. An exhaust pipe 50 is provided on the motor 38 so that the admission of water under line pressure to the intake port 44, through the pump 38 and out of the exhaust pipe 50 will effect rotation of the pump rotor (not shown) and correspondingly drive the output shaft 40 at speeds controlled by the valve 48 in a manner well known to those familiar with such pumps.
Because of the high-reactive character of the contemplated additive when mixed with water to form a viscous gel capable of creating stoppages if over injection occurs, it is imperative that the rate of injection be controlled in a manner to avoid over injection and preferably by means having an under injection or no-injection failure mode. To this end, a servomechanism is provided to regulate the motor control valve 48 to insure that the pump 28 will be operated in conformity to flow rates in the conduit 12. To this end, a flow-responsive device in the form of a rotatable screw 52 is supported in the main conduit 12. Rotation of the screw 52 is transmitted by means including a shaft 54 to one end input of a conventional differential gear 56 having output ring gear 58. The shaft 54 providing the input at one end of the differential gear 56 is connected to the sensing screw 52 by one-way torque trans mitting means, such as a clutch 60, so that the shaft 54 may be rotated by the screw 52 but so that rotation of the screw by the shaft 54 is prevented. The other end of the differential 56 is connected by a servo-shaft 62 to a similar one-way torquetransmitting device 64 on the motor 38. Because of this arrangement, the ring gear 58 will be driven in accordance with differential input from both ends by the'shafts 54 and 62. The ring gear 58 is in mesh with a gear 66 keyed to an actuating and control shaft 68 connected at its opposite end with the valve 48. Hence, with the shaft 62 stationary, rotation of the screw 52 as a result of waterflow through the main conduit 12 will effect rotation of the shaft 54 to develop a differential output rotation of the ring gear 58. The ring gear 58 in turn rotates the gear 66 and shaft 68 to open the valve 48. At this point, it is to be noted that the valve 48 is preferably of the type having an inherent bias toward the open position to bring about an opening movement with a minimum of torque delivered to the shaft 68.
It will also be appreciated that in light of the differential being connected at the end thereof, opposite from the screwdriven shaft 54, to the servo-shaft 62, coupled to the motor 38, speed regulation of the motor 38 may be provided. Specifically, when the servo shaft 62 rotates faster than the shaft 54, the output ring gear 58 and correspondingly the gear66 and control shaft 68 will be driven in a direction to close the valve will be regulated to insure the proper agent-water ratio in the riser 16.
The peristaltic pump 28, as above mentioned, is available commercially and is known to be a positive displacement, progressive cavity type. Such pumps, as shown in FIG. 2 of the drawings, include a wormlike rotor 70 disposed within a stator 72 which cooperates with the rotor upon rotation thereof to establish a series of progressively developed, discrete chambers advancing from the feed chamber 26 through the discharge tube 30. Also, as shown, the tube 30 extends through the T-coupling 14 in the embodiment shown and terminates at its open end 74 within the lower horizontal portion of the riser 16. Peristaltic pumps of this design are particularly suited for use in the injection apparatus of this invention because of their peristaltic action (i.e., a gradual buildup of pumping pressure) in light of the dilatant physical characteristics of the gel additive slurry, and also because they function as a valve and will not pass fluid as long as the rotor 70 is stationary. While this latter characteristic, in itself, would prevent inadvertent discharge of the additive into the riser 16, it is contemplated that a frangible cap 76 be provided over the open end 74 of the pump to provide a positive seal between the additive and water within the line. The cap 76 is equipped with an explosive actuator 78 connected by a conductor 80 to a pulse generator 82 mechanically coupled to the output shaft 40 of the motor 38. Hence, rotation of the shaft 40 upon initiation of the system will operate the generator to deliver an electric pulse to the explosive 78 and quickly disintegrate the cap 76. To avoid occurrence of this function as a result of slight movements in the shaft 40 that may be brought about by minor pressure fluctuations in the waterline 12, a capacitor 84 may be placed in the line 80 to store small electrical charges accumulated as a result of such slight rotation of the shaft 36. The capacitor 84 is selected, on the other hand, so that upon any continuous operation of the shaft 40, the capacitor will discharge to explode the charge 78 and disintegrate the seal cap 76.
In accordance with an important feature of the present invention, a mixing means in the form of an eddy plate 86 is provided at the open or discharge end of the tube 30 at the point where the gel additive is introduced into the horizontal portion of the riser 16. In this context it should be borne in mind that the characteristics of the gel additive are such that upon contact with water, the gel particles thereof immediately swell to form a relatively viscous fluid. Hence, in the event the addi tive is not thoroughly mixed with the water to which it is injected, there is a likelihood that large globs of gelatin will be formed, capable of developing flow stoppages in the riser 16, the branch line 18, or in the sprinkler heads 20 and resulting in a malfunction of the fire-extinguishing system. Also, it is to be noted that the flow rate in the extinguishing system, when handling the ablative gel formed by the injection of the gel additive is significantly lower than it would be where plain water is used. Yet, because of the requirement for plain water to be delivered to the sprinkler heads 20 at sufficient rates to extinguish the fire in the event the injection apparatus malfunctions, it is imperative that both flow rates be accommodated.
With the aforementioned design requirements in mind, the eddy plate 86 is in the form of a circular disc and is fixed at the open end of the tube 30 by appropriate means such as collars 88. The eddy plate 86 is formed of reasonably stiff rubber or other elastomeric materials having resilient, yieldable qualities so that at flow rates of the type that exist when ablative fluid is being fed to the sprinkler heads 20, it maintains a position normal to the pump discharge tube 30 as shown in FIGS. 3 and 4 of the drawings. In this position, the eddy plate 86 operates to create a zone of turbulence in the water as depicted in the solid line arrows in FIG. 4 of the drawings. Inasmuch as the pump 28 will be operative under these conditions to inject the gel additive out of the discharge end 74 thereof, the additive will pass into the turbulent zone as depicted by the dash line arrows in FIG. 4 and be uniformly and thoroughly mixed with the water to provide the desired viscosity of the ablative extinguishant delivered to the sprinkler heads 20. If, on the other hand, the injection apparatus should malfunction so that the ablative extinguishant isnot formed, the fire-extinguishing system plumbing including the riser l6, branch line 18, and sprinkler heads will permit flow at significantly higher rates. Although the eddyplate, if rigid, would present an obstacle to such high flow rates between the main conduit 12 and the riser 16, being formed of flexible material, it will partially collapse to the position illustrated in FIG. 5 of the drawings and permit water to flow at high rates into the riser 16.
Summarizing the operation of the injection apparatus 10, it will be apparent that upon opening any one of the sprinkler heads 20, water will pass through the main conduit 12, rotating the screw 52 and effect opening of the valve 48 by way of the differential 56 as described. Thereupon, the motor 38 will be operated to rotate the shaft 40 and immediately operate the generator 82 to deliver an electric pulse through the capacitor 84 to the explosive 78 and disintegrate the sealing cap 76 on the open discharge end of the pump 28. As soon as the motor 38 has developed its operating output torque, the shaft 40 will be coupled with the drive shaft 36 of the pump 28 by way of the slip-impact clutch 42 to initiate rotation of the pump rotor 70. The gel additive slurry, which is passed by gravity from the tank 22 through the discharge pipe 24 into the pump feed chamber 26, will be pumped through the tube and out through the open end 74 thereof to be mixed with the flowing stream of water in the turbulent zone immediately downstream from the eddy plate 86 in the manner described above. The danger of over injection of the additive to the system is avoided by virtue of the fact that the motor uses as its motive fluid, water in the feed line 12 and also because of the underinject failure mode of the injection apparatus. In other words, should any component of the injection apparatus 10 malfunction, the result will be under injection or no injection, in which case the eddy plate would flex out of the way as described above to permit an adequate supply of water to reach the sprinkler heads to be effective in extinguishing the fire.
Thus it will be appreciated that by this invention there is provided a highly effective and unique injection apparatus particularly suited for use with fire-extinguishing systems of the type described and by which the above-mentioned objectives are completely fulfilled. Also, it is contemplated that numerous variations may be made in the injection apparatus depicted by the disclosed embodiment, which variations fall within the true spirit and scope of the present invention.
1 claim:
1. A fixed fire extinguishing system for a space to be protected comprising a plurality of fixed extinguishant dispersing heads located in said space in horizontally spaced apart relation, each of said heads producing a spray of droplets when activated, means for automatically opening said heads in response to information received from a fire in said space, a plurality of branch pipelines connected to said heads, a conduit for supplying water under pressure to said branch lines and heads, injecting means for injecting a water-swellable gelling agent into said conduit, means for activating said injecting means automatically in response to the flow of water through said conduit caused by the opening of one or more of said heads by the fire, and means for controlling the rate of injection of said gelling agent into said conduit to maintain the ratio by weight of gelling agent to water between predetermined maximum and minimum ratios while the water flowing through said conduit varies, the mixture of gelling agent and water producing a uniform gel without free water for delivery from said heads in a spray of droplets.
2. The apparatus of claim 1 wherein said injecting means comprises a peristaltic pump for injecting into said conduit a dilatant slurry of said water-swellable gelling agent, said pump having intake means to receive said slurry and discharge means opening into said conduit, and means to drive said pump to inject said slurry into said conduit.
3. The apparatus of claim 1 wherein said activating means comprises sensing means for sensing waterflow through the conduit and generating a corresponding output, and wherein said control means comprises means operatively connected between said sensing means and said injecting means for actuating said injecting means in response to said output.
4. The apparatus recited in claim 2 wherein said means to drive said pump comprises a motor, means drivably connecting said motor to said pump, and wherein said control means controls the speed of said motor in accordance with the flow rate of water in said conduit.
5. The apparatus recited in claim 4 wherein said motor is a hydraulic motor having an intake passage communicating with said conduit, whereby the water in said conduit provides the motive fluid for said motor.
6. The apparatus recited in claim 5 wherein said motor speed control means includes a valve in said intake passage, and regulating means connecting said activating means to said valve.
7. The apparatus recited in claim 6 wherein said regulating means comprises servomeans having a first input means connected to said activating means, second input means drivably connected to said motor, and output means driven by the differential of said input means.
8. The apparatus recited in claim 7 wherein said activating means comprises a rotatable screw in said conduit and means to prevent rotation of said screw by said servo means.
9. The apparatus recited in claim 7 wherein said servo means comprises a differential gear unit having end gears to define said input means and a ring gear defining said output.
10. The apparatus recited in claim including slip clutch means to delay driving connection of said motor to said pump after starting said motor whereby said pump is driven by said motor after said motor develops operating torque.
11. The apparatus recited in claim 4 including cap means for sealing the discharge of said end of said pump and means to remove said cap means in response to operation of said motor.
12. The apparatus recited in claim 11 including a pulse generator drivably connected to the output of said motor and explosive means connected to said pulse generator to destroy said sealing cap upon operation of said motor.
13. The apparatus recited in claim 12 including capacitor means to store the discharge of said generator as a result of minor flow fluctuations in said conduit.
14. The apparatus recited in claim 2 comprising further, means for mixing said slurry with water at the point where said discharge means opens into said conduit.
15. The apparatus recited in claim 14 in which said mixing means comprises an eddy plate on the end of said discharge means to develop a zone of turbulence immediately downstream from said point.
16. The apparatus recited in claim 15 wherein said eddy plate is flexible and thus collapses under relatively high flow rates of plain water in said conduit as a result of malfunction of said injection means.
17. The apparatus of claim 1 wherein said injecting means comprises a pump, and a motor adapted to be connected to said conduit and driven by said water, said motor being drivingly connected to said pump.
18. The apparatus of claim 1 wherein said injecting means comprises a pump, and a motor adapted to be connected to said conduit and driven by said water, said motor being drivingly connected to said pump, and said controlling means comprises a valve disposed in said conduit for varying the quantity of waterflow into said motor, and a differential device having an input connected to said sensing means and to said motor and an output adapted to control the operation of said valve.
19. The system of claim 1 wherein said controlling means maintains said ratio. substantially constant at a point between one part per thousand of said gelling agent to said water and four parts per thousand of gelling agent to water, said gelling agent being an ablative gelling agent to produce at said ratio an ablative fluid material for delivery from said heads.
20. The system recited in claim 1 wherein said injecting means includes motor means energized in said water.
21. The system as recited in claim 18 wherein said injecting means injects said gelling agent into said conduit at a rate determined by said motor means, and wherein said controlling means controls said motor'means.
22. The system as recited in claim 21 wherein said last mentioned means comprises slip clutch means for applying an initial impact to said pump to get it started.
23. The system as recited in claim 19 including means in said conduit acting on the gelling agent and water to improve the mixing of the two components forming said ablative fluid material before the material reaches said branch lines.
24. The system as recited in claim 1 wherein said system automatically continues to deliver water to said heads for fighting the fire in the event said injecting means fails to operate after a head has been opened by the fire.
25. The system as recited in claim 19 wherein said controlling means is responsive to the flow rate of the water flowing through said conduit.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,642 072 Dared FQKP Iy I %Q7Z Inventor(s) William Livingston It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below.
Column '8, line 14, claim 20, change "in" to read -by-.
Signed and sealed this 17th day of October 1972" (SEAL) Atte stz EDWARD M.FLETCHER,JR. ROBERT GO TTSCHALK Commissioner of Patents At testing Officer

Claims (25)

1. A fixed fire extinguishing system for a space to be protected comprising a plurality of fixed extinguishant dispersing heads located in said space in horizontally spaced apart relation, each of said heads producing a spray of droplets when activated, means for automatically opening said heads in response to information received from a fire in said space, a plurality of branch pipelines connected to said heads, a conduit for supplying water under pressure to said branch lines and heads, injecting means for injecting a water-swellable gelliNg agent into said conduit, means for activating said injecting means automatically in response to the flow of water through said conduit caused by the opening of one or more of said heads by the fire, and means for controlling the rate of injection of said gelling agent into said conduit to maintain the ratio by weight of gelling agent to water between predetermined maximum and minimum ratios while the water flowing through said conduit varies, the mixture of gelling agent and water producing a uniform gel without free water for delivery from said heads in a spray of droplets.
2. The apparatus of claim 1 wherein said injecting means comprises a peristaltic pump for injecting into said conduit a dilatant slurry of said water-swellable gelling agent, said pump having intake means to receive said slurry and discharge means opening into said conduit, and means to drive said pump to inject said slurry into said conduit.
3. The apparatus of claim 1 wherein said activating means comprises sensing means for sensing waterflow through the conduit and generating a corresponding output, and wherein said control means comprises means operatively connected between said sensing means and said injecting means for actuating said injecting means in response to said output.
4. The apparatus recited in claim 2 wherein said means to drive said pump comprises a motor, means drivably connecting said motor to said pump, and wherein said control means controls the speed of said motor in accordance with the flow rate of water in said conduit.
5. The apparatus recited in claim 4 wherein said motor is a hydraulic motor having an intake passage communicating with said conduit, whereby the water in said conduit provides the motive fluid for said motor.
6. The apparatus recited in claim 5 wherein said motor speed control means includes a valve in said intake passage, and regulating means connecting said activating means to said valve.
7. The apparatus recited in claim 6 wherein said regulating means comprises servomeans having a first input means connected to said activating means, second input means drivably connected to said motor, and output means driven by the differential of said input means.
8. The apparatus recited in claim 7 wherein said activating means comprises a rotatable screw in said conduit and means to prevent rotation of said screw by said servo means.
9. The apparatus recited in claim 7 wherein said servo means comprises a differential gear unit having end gears to define said input means and a ring gear defining said output.
10. The apparatus recited in claim 5 including slip clutch means to delay driving connection of said motor to said pump after starting said motor whereby said pump is driven by said motor after said motor develops operating torque.
11. The apparatus recited in claim 4 including cap means for sealing the discharge of said end of said pump and means to remove said cap means in response to operation of said motor.
12. The apparatus recited in claim 11 including a pulse generator drivably connected to the output of said motor and explosive means connected to said pulse generator to destroy said sealing cap upon operation of said motor.
13. The apparatus recited in claim 12 including capacitor means to store the discharge of said generator as a result of minor flow fluctuations in said conduit.
14. The apparatus recited in claim 2 comprising further, means for mixing said slurry with water at the point where said discharge means opens into said conduit.
15. The apparatus recited in claim 14 in which said mixing means comprises an eddy plate on the end of said discharge means to develop a zone of turbulence immediately downstream from said point.
16. The apparatus recited in claim 15 wherein said eddy plate is flexible and thus collapses under relatively high flow rates of plain water in said conduit as a result of malfunction of said injection means.
17. The apparatus of claim 1 wherein said injecting means comprises a pumP, and a motor adapted to be connected to said conduit and driven by said water, said motor being drivingly connected to said pump.
18. The apparatus of claim 1 wherein said injecting means comprises a pump, and a motor adapted to be connected to said conduit and driven by said water, said motor being drivingly connected to said pump, and said controlling means comprises a valve disposed in said conduit for varying the quantity of waterflow into said motor, and a differential device having an input connected to said sensing means and to said motor and an output adapted to control the operation of said valve.
19. The system of claim 1 wherein said controlling means maintains said ratio substantially constant at a point between one part per thousand of said gelling agent to said water and four parts per thousand of gelling agent to water, said gelling agent being an ablative gelling agent to produce at said ratio an ablative fluid material for delivery from said heads.
20. The system recited in claim 1 wherein said injecting means includes motor means energized in said water.
21. The system as recited in claim 18 wherein said injecting means injects said gelling agent into said conduit at a rate determined by said motor means, and wherein said controlling means controls said motor means.
22. The system as recited in claim 21 wherein said last mentioned means comprises slip clutch means for applying an initial impact to said pump to get it started.
23. The system as recited in claim 19 including means in said conduit acting on the gelling agent and water to improve the mixing of the two components forming said ablative fluid material before the material reaches said branch lines.
24. The system as recited in claim 1 wherein said system automatically continues to deliver water to said heads for fighting the fire in the event said injecting means fails to operate after a head has been opened by the fire.
25. The system as recited in claim 19 wherein said controlling means is responsive to the flow rate of the water flowing through said conduit.
US864757A 1969-10-08 1969-10-08 Fixed tire extinguishing system with additive injection apparatus Expired - Lifetime US3642072A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86475769A 1969-10-08 1969-10-08

Publications (1)

Publication Number Publication Date
US3642072A true US3642072A (en) 1972-02-15

Family

ID=25344001

Family Applications (1)

Application Number Title Priority Date Filing Date
US864757A Expired - Lifetime US3642072A (en) 1969-10-08 1969-10-08 Fixed tire extinguishing system with additive injection apparatus

Country Status (7)

Country Link
US (1) US3642072A (en)
JP (1) JPS5142879B1 (en)
CA (1) CA968563A (en)
CH (1) CH556669A (en)
DE (2) DE2048904C3 (en)
FR (1) FR2065172A5 (en)
GB (2) GB1328846A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739794A (en) * 1971-09-10 1973-06-19 Gelco Project Lindgren & Co Method and apparatus for continuously preparing a gel
US3853179A (en) * 1972-09-06 1974-12-10 Incentive Res & Dev Ab Apparatus for forming water gel
US4164960A (en) * 1978-02-13 1979-08-21 Early California Industries Inc. Apparatus for mixing fluids
US20160006714A1 (en) * 2005-04-22 2016-01-07 Microsoft Technology Licensing, Llc Protected media pipeline
US10160908B2 (en) * 2013-08-02 2018-12-25 S.P.C.M. Sa Method of soil conditioning by application of water-soluble or water-swelling polymer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT401693B (en) * 1993-10-08 1996-11-25 Rosenbauer Int Ag ADMINISTERING DEVICE FOR ADDING ADDITIVES TO A LIQUID
DE10013974A1 (en) 2000-03-21 2001-10-04 Andreas Vigh Mixer for fire pump outlet has branch connection pipe for foam feed connected across venturi
CN109331382A (en) * 2018-10-25 2019-02-15 娄素荷 A kind of novel fire-fighting multifunctional fire extinguishing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2356286A (en) * 1942-09-15 1944-08-22 Pyrene Minimax Corp Method of and apparatus for proportioning liquids
US2543941A (en) * 1946-03-06 1951-03-06 Hale Fire Pump Co Proportioning device
US3354084A (en) * 1964-06-24 1967-11-21 Dow Chemical Co Aqueous gel of water-swellable acrylic polymer and non-ionic filler
US3433171A (en) * 1966-11-23 1969-03-18 Ernest R Corneil Peristaltic fluid pump
US3570508A (en) * 1966-01-03 1971-03-16 Boggs Farmers Supply Inc Fertilizer injectors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2356286A (en) * 1942-09-15 1944-08-22 Pyrene Minimax Corp Method of and apparatus for proportioning liquids
US2543941A (en) * 1946-03-06 1951-03-06 Hale Fire Pump Co Proportioning device
US3354084A (en) * 1964-06-24 1967-11-21 Dow Chemical Co Aqueous gel of water-swellable acrylic polymer and non-ionic filler
US3570508A (en) * 1966-01-03 1971-03-16 Boggs Farmers Supply Inc Fertilizer injectors
US3433171A (en) * 1966-11-23 1969-03-18 Ernest R Corneil Peristaltic fluid pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fire Technology, Vol. 1, No. 3, National Fire Protection Association, Boston, Mass. August 1965. Gelgard A New Fire Retardant For Air and Ground Attack pp. 216 224. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739794A (en) * 1971-09-10 1973-06-19 Gelco Project Lindgren & Co Method and apparatus for continuously preparing a gel
US3853179A (en) * 1972-09-06 1974-12-10 Incentive Res & Dev Ab Apparatus for forming water gel
US4164960A (en) * 1978-02-13 1979-08-21 Early California Industries Inc. Apparatus for mixing fluids
US20160006714A1 (en) * 2005-04-22 2016-01-07 Microsoft Technology Licensing, Llc Protected media pipeline
US10160908B2 (en) * 2013-08-02 2018-12-25 S.P.C.M. Sa Method of soil conditioning by application of water-soluble or water-swelling polymer

Also Published As

Publication number Publication date
DE2048904B2 (en) 1974-10-03
JPS5142879B1 (en) 1976-11-18
CH556669A (en) 1974-12-13
DE2065596A1 (en) 1974-12-19
CA968563A (en) 1975-06-03
FR2065172A5 (en) 1971-07-23
DE2048904A1 (en) 1971-05-06
DE2048904C3 (en) 1975-05-22
GB1328846A (en) 1973-09-05
GB1328845A (en) 1973-09-05

Similar Documents

Publication Publication Date Title
EP0675745B1 (en) Compressed air foam pump apparatus
US3642072A (en) Fixed tire extinguishing system with additive injection apparatus
US4842198A (en) Device for damage protection against local flooding caused by sprinkler failure
US4899825A (en) Continuous mixing device, particulary suitable for preparing aqueous solutions of foam extinguisher for fire-fighting systems
CA2177809A1 (en) Cellulose injection system and method
GB1330895A (en) Flame spraying apparatus for forming refractories
US3831617A (en) Additive injection system
WO2010056996A2 (en) Method and apparatus for improving fire prevention and extinguishment
US20230302315A1 (en) Apparatus for diluting and applying firefighting chemical
AU1150601A (en) Installation for fighting fire
US3903968A (en) Mixing apparatus
FI111522B (en) Fire fighting equipment and source of fire fighting equipment
US3714988A (en) Additive injection system
KR102529982B1 (en) Supply system of firefighting water
KR101050827B1 (en) Sprinkler equipment
JP3335469B2 (en) Operating method of fire extinguishing sprinkler equipment and apparatus for performing the operating method
US3702158A (en) Fixed fire extinguishing system using delayed additive injection
WO2006118777A2 (en) Automatic start additive injection system for fire fighting vehicles
US20220362595A1 (en) Admixing system for fire extinguishing systems and method for operating such an admixing system
US3148622A (en) Water system
CN205832442U (en) Low-expansion foam big gun in a kind of fire power control
CN214912925U (en) Fire-fighting equipment and fracturing system
US2852032A (en) Chemical injector
KR100756924B1 (en) The portable high pressure water spray apparatus
RU2286189C2 (en) Quick-response sprinkler

Legal Events

Date Code Title Description
AS Assignment

Owner name: EBIOSCIENCE, INC., CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST IN TRADEMARKS;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION, AS ADMINISTRATIVE AGENT;REEL/FRAME:028443/0465

Effective date: 20120625