US3636590A - Means for preventing the adhesion of mineral fibers to the walls thereof of a forming chamber - Google Patents

Means for preventing the adhesion of mineral fibers to the walls thereof of a forming chamber Download PDF

Info

Publication number
US3636590A
US3636590A US815686A US3636590DA US3636590A US 3636590 A US3636590 A US 3636590A US 815686 A US815686 A US 815686A US 3636590D A US3636590D A US 3636590DA US 3636590 A US3636590 A US 3636590A
Authority
US
United States
Prior art keywords
chamber
fibers
support
set forth
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US815686A
Other languages
English (en)
Inventor
Erwin Jaeger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie de Saint Gobain SA
Original Assignee
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie de Saint Gobain SA filed Critical Compagnie de Saint Gobain SA
Application granted granted Critical
Publication of US3636590A publication Critical patent/US3636590A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • D04H1/4226Glass fibres characterised by the apparatus for manufacturing the glass fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay

Definitions

  • ABSTRACT A forming chamber or hood overlying an air-permeable support with a source of vacuum therebelow, which creates a downwardly directed stream of gas in the chamber into which is dropped electrostatically charged mineral fibers having a tendency to adhere to the walls of the chamber as they are distributed on the support for the formation ofa felt or mat of the deposited fibers.
  • the adhesion of the fibers to the chamber walls is prevented by the provision of a plurality of openings in the chamber walls of predetermined diameter, disposition and spacing relative to a slight underpressure maintained in the interior of the chamber, through which openings are sucked in a plurality of slight air currents from the outside to the inside of the chamber walls, whereat they are deflected in a downward direction by the gas stream to form air cushions along the walls on which the fibers slide downwardly without touching the walls of the chamber and without the generation of vortices therein.
  • the invention is directed particularly to the prevention of the adhesion resulting from an electrostatic charge accumulated by the filaments, strands, or staple fibers.
  • the invention is also concerned with the development of a suitable forming chamber or hood for the execution of the above method.
  • the glass threads pulled off by the spinning or roving bobbins are cut into staple strands of desired length, by a cutting device mounted above the forming chamber.
  • the cutting device usually consists of two rollers revolving in opposite directions, one of which is equipped with cutting knives.
  • the staple fibers are introduced into the chamber through an input funnel provided at the top thereof below the cutting device, and are spread by a distributor revolving below the funnel, across the width of the support. It has been found that the threads or fibers are charged electrostatically more or less strongly by virtue of the deflections experienced by the threads during the cutting and their striking against the distributor, and particularly in the case of certain types of the sizing which may be applied to the threads.
  • a method and apparatus are known, as disclosed in US. Pat. No. 2,697,056, Dec. 14, 1954, according to which glass fibers produced by combustion gases and air currents from glass rovings are blown into the forming hood through an opening provided in the sidewall thereof and are deposited on a conveyor belt therein equipped with a suction device therebelow.
  • a liquid binder of an organic type is sprayed, by means of nozzles, onto the fibers within the hood.
  • additional nozzles are provided in the hood, through which water is sprayed onto the fibers. Thereby the electrostatic charge of the fibers is lowered, which prevents the adhesion of the fibers to the walls of the hood and an agglomeration of the fibers.
  • the invention is based upon the principle of employing small streams of air which are sucked into the forming chamber through holes in the walls of the chamber by means of an underpressure prevailing in said chamber and which are deflected downwardly by the flow of gas in the chamber in a downward direction, to form air cushions along the walls of the chamber, on which the fibers, strands or staple yarns will slide downwardly without touching the chamber walls.
  • a suitable mode of practicing the inventive process is realized by so selecting the cross section of the air currents and the density and position of their places of entry that, in the case of a given underpressure, a uniform air cushion is formed along the walls of the chamber without any vortex developing therein.
  • the underpressure customarily present in the chamber, which is produced through the suction device below the support, is selected with consideration given to the desired deposition of the fibers in as uniform a layer as possible.
  • this underpressure is suitable to allow the uniform air cushion to develop along the walls of the chamber, if the cross section of the air currents and the density and position of their places of entry are selected in such a manner, that altogether these air currents are not so strong as to develop undesirable vortices, which would cause the fibers or staple yarns to be blown away too far from the walls of the chamber, or that the underpressure in the chamber will drop too much, which would disturb the distribution of the fibers.
  • these air currents should not be so weak to the extend that their uneven and weak distribution would prove insufficient for the formation of a uniform air cushion.
  • Favorable conditions can always be determined through experimentation.
  • the diameter of the air currents upon their entry into the chamber be at least about 2 mm., and in the case of an underpressure in the plenum chamber of the order of magnitude of about 25 mm. to 35 mm. WS. (Water column), and at a maximum of about 6 mm., and preferably about 4 mm., with the displacement between the edges of the air currents at least about 7 mm., and at most, approximately equal to the length of the fibers, strands, or staple yarns.
  • the experiments have established that satisfactory results can be achieved with the above values.
  • the invention also contemplates a forming chamber or hood adapted to execute the method described above.
  • a forming chamber or hood adapted to execute the method described above.
  • Such a chamber is equipped in a known manner with an inlet opening at the top for the introduction of the fibers, threads or staple yarns, possibly with a distributor therebeyond, and with a support at the bottom which may be formed of an air-permeable endless belt, perforated screen or the like, which is fitted with a suction device below the support,
  • the chamber according to the invention is characterized by the fact that the walls thereof are provided with holes therein for the entry of air, which are distributed uniformly over a substantial part of their height.
  • the walls of the chamber may be provided with holes over their entire height, in order to prevent with certainty the adhesion of the fibers or strands to any part of the chamber.
  • a suitable design of the forming chamber according to the invention is characterized by such a ratio of the diameter of the holes to the distance between them, that at a predetermined underpressure in the chamber, a uniform air cushion is formed along the walls of the chamber without any vortex arising therein. Suitable values for these factors may be determined by experimentation.
  • the chamber developed on the basis of these experiments is characterized by holes having a diameter of at least 2 mm., and, in the case of an underpressure in the chamber in the order of magnitude of about 25 mm. to 35 mm., (water column), of a maximum of about 6 mm., and preferably about 4 mm., with a displacement between the edges of the holes, which in a horizontal direction is preferably about as large as it is in a vertical direction, of at least about 7 mm., and at the most approximately equal to the length of the fibers, strands, or staple yarns.
  • the diameter of the holes is smaller than 2 mm., the quantity of air required for the formation of the air cushion can no longer be sucked in. Besides that, the holes would become clogged very quickly with fiber-binder-dust mixtures, and would no longer be able to fulfill their function. If the diameter of the holes is larger than 6 mm., at an underpressure of about 25 mm. to 35 mm. (water column), then too much air will flow into the chamber.
  • An effective further development of the forming chamber is characterized by a displaced or staggered arrangement of the holes in relation to one another.
  • Another further improved development of the forming chamber according to the invention is attained by arranging the holes in rows, preferably running horizontally, with the diameters thereof decreasing from the upper rows in the direction of the lower rows. This arrangement prevents air currents from developing in the neighborhood of the edge of the mats, which could lead to the formation of mats with edges which are too thin.
  • This type of forming chamber according to the invention may also be modified by arranging each two rows to form a group with holes of equal diameters, with the diameters of the holes from top to bottom decreasing from group to group.
  • This type of chamber according to the invention is simpler from a point of view of construction, since several rows with holes of equal diameters may be fabricated easily. At the same time, the effect is essentially the same as is achieved with the diameters of the holes decreasing from the top to the bottom, from row to row.
  • a further suitable improvement of the forming chamber or hood according to the invention is attained by arranging that the holes have a conically enlarged part adjacent to the out side of the walls of the chamber.
  • the conical enlargement By virtue of the conical enlargement, less resistance is offered to the inflowing air as a result of the more favorable aerodynamic conditions. Also, it is easier to keep such holes clean from the outside.
  • this construction presents a convenient control factor by modifying the design of the angle and depth of the conical part, since the effective length of the path of flow will control exactly the aspirated air at a given underpressure in the chamber, so that the desired air cushion will develop along the walls of the chamber.
  • the conic angle is relatively pointed or acute, the resistance to the flow of air in the hole is relatively large.
  • the quantity of air entering through the hole is relatively small. Also, such holes are inclined to be plugged up quickly. Even then, a small depth of the conic part is effective. If, on the other hand, the conic angle is relatively large, under certain circumstances obtuse, and if the conic part has a great depth, then the flow resistance during passage of the air through the appurtenant hole is relatively small, and much air will enter into the chamber, and the resulting air currents may possibly continue into the interior of the chamber before they are deflected in a vertical direction.
  • FIG. 1 is a schematic sectional view of an apparatus for the production of a glass fiber mat with a forming chamber according to the invention
  • FIG. 2 is a vertical sectional view, on an enlarged scale, of a part of the wall of the forming chamber provided with holes;
  • FIG. 3 is a front elevation, on the same scale as FIG. 2, of a part of the wall of the forming chamber which has been provided with staggered holes;
  • FIGS. 3a and 3b show different arrangements of the orifices in the walls of the forming chamber which decrease in cross section from the top downwardly.
  • FIG. 1 shows a device for the production of a glass fiber mat.
  • This device comprises the forming chamber or hood 1 according to the invention, its lateral walls 2 being provided with holes 3. Funnels 8, 8' are provided at the top of the chamber and the bottom thereof may be constituted by a conveying belt 13.
  • Two chambers 14, I4 are provided below the conveyor belt, which are connected with air suction devices, (not shown), in order to create an underpressure in the forming chamber 1.
  • By virtue of the underpressure prevailing in the chamber 1, slight currents of air 16 are sucked or aspirated into the chamber through holes 3 in the walls thereof, which immediately after their entry into the chamber are directed downwardly because of the effect of the suction devices at the bottom of the chamber 1, and which thus form an air cushion along the walls 2 thereof.
  • Cutting devices may be provided above the funnels 8, 8'. These may consist of two cooperating rollers 5, 6, and 5', 6', respectively, with cutting knives provided in rollers 5, 5'.
  • the strands of glass fibers or rovings 4 or 4', which are fed to the cutting devices, are cut into pieces 7, 7' of the desired length, which, generally speaking, does not exceed 52 mm.
  • the staple yarns 7, 7' drop through funnels 8, 8' onto distributor elements 9, 9' which rotate around a vertical axis, by means of drive shafts 10, 10' and members 11, l 1' which are actuated by the motors 12, 12', respectively.
  • the yarns which are thrown by the distributors 9, 9' against the walls 2 of the chamber will not adhere to the walls thereof, but will slide down on the air cushion formed by the currents of air 16, to the support 13 without touching at all the walls 2 of the chamber to form the mat 15.
  • FIGS. 2 and 3 is shown an arrangement of holes in the wall of the forming chamber where the holes have a conically enlarged part adjacent the outside of the chamber wall.
  • the conic angle amounts to about 90, and the depth of the conical part takes up about half the thickness of the wall.
  • a subatmospheric pressure of about mm. to 35 mm.
  • the arrangement of holes in the wall of the chamber shown in FIG. 3 is of the same number as those shown in FIG. 2. However, these holes have been arranged in staggered relation, so that the air currents which move downwardly are closer together and form a uniform cushion without necessitating that the holes be disposed at a lesser distance from each other for this purpose.
  • FIGS. 3a and 3b show arrangements of the holes in the wall of the chamber in staggered relation as shown in FIG. 3, but with the holes decreasing in diameter from the upper rows downwardly.
  • FIG. 3a shows an upper group of five rows of holes having a diameter of 6 mm., an intermediategroup of rows of holes having a diameter of 4 mm., and a bottom group of rows of holes having a diameter of 2 mm.
  • the diameters of the holes in successive rows decrease in substantially uniform decrements of 0.3 mm., from the top row having a diameter of 6.0 mm., for example, to 2.0 mm. in the bottom row.
  • a forming chamber for producing a mat of fibers on an air-permeable support at the bottom thereof with suction means below said support comprising a. peripheral wall portions above said support to define said chamber adapted to be maintained at subatmospheric pressure,
  • said wall portions having a plurality of small orifices around the complete periphery thereof, said orifices being of circular cross section and disposed in a multiplicity of levels above said support in excess of ten, which extend through a substantial height thereof, through which a plurality of small air currents are aspirated into said chamber and thereafter deflected in a downward direction by said downwardly moving gas stream to form air cushions closely adjacent to said wall portions on the interior of said chamber, along which the fibers slide downwardly without contacting and consequently adhering to the walls of said chamber, said openings being so closely spaced from each other that the small current aspirated therethrough forms a continuous cushioning layer for the fibers.
  • a forming chamber for producing a mat of fibers on an air-permeable support at the bottom thereof with suction means below said support comprising a. wall portions above said support to define said chamber adapted to be maintained at subatmospheric pressure,
  • said wall portions having a plurality of openings along a substantial height thereof, through which a plurality of small air currents are aspirated into said chamber and thereafter deflected in a downward direction by said downwardly moving gas stream to form air cushions adjacent to said wall portions on the interior of said chamber, along which the fibers slide downwardly without contacting and consequently adhering to the walls of said chamber,
  • said openings in said wall portion being of circular cross section of diameters ranging between 2 mm. and 6 mm. with an underpressure in the chamber amounting to approximately 25 mm. to 35 mm. of water column, and correlated in their distribution and spacing so that uniform air cushions are formed on the interior of said chamber without the generation of vortices therein.
  • diameters of the openings decrease in each successive row.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonwoven Fabrics (AREA)
US815686A 1968-04-25 1969-04-14 Means for preventing the adhesion of mineral fibers to the walls thereof of a forming chamber Expired - Lifetime US3636590A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1760261A DE1760261C3 (de) 1968-04-25 1968-04-25 Schachtartige Formkammer für die Herstellung von Mineralfaservliesen oder -matten, insbesondere aus geschnittenen Glasfadensträngen

Publications (1)

Publication Number Publication Date
US3636590A true US3636590A (en) 1972-01-25

Family

ID=5696015

Family Applications (1)

Application Number Title Priority Date Filing Date
US815686A Expired - Lifetime US3636590A (en) 1968-04-25 1969-04-14 Means for preventing the adhesion of mineral fibers to the walls thereof of a forming chamber

Country Status (6)

Country Link
US (1) US3636590A (enrdf_load_stackoverflow)
BE (1) BE731973A (enrdf_load_stackoverflow)
DE (1) DE1760261C3 (enrdf_load_stackoverflow)
FR (1) FR2007512B1 (enrdf_load_stackoverflow)
GB (1) GB1232511A (enrdf_load_stackoverflow)
NL (1) NL158233B (enrdf_load_stackoverflow)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2288305C2 (ru) * 2005-02-28 2006-11-27 Государственное научное учреждение "Всероссийский научно-исследовательский институт по переработке лубяных культур" Российской академии сельскохозяйственных наук Устройство для штапелирования льняного волокна в ленте
CN113847001A (zh) * 2020-06-28 2021-12-28 中国石油化工股份有限公司 一种适于水平井分段压裂的变穿深簇射孔枪及其应用方法
JP2023509348A (ja) * 2019-12-20 2023-03-08 サン-ゴバン イゾベール ウール、特にミネラルウールから製造された遮断製品を調製するための装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2337219A1 (fr) * 1975-12-30 1977-07-29 Tsnii Bumagi Installation de formation aerodynamique de materiaux fibreux en feuilles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2319666A (en) * 1941-02-14 1943-05-18 American Rock Wool Corp Means for and method of manufacturing mineral wool felted materials
US2619151A (en) * 1951-02-12 1952-11-25 Gustin Bacon Mfg Co Method and apparatus for manufacturing fibrous mats
US3086252A (en) * 1961-08-22 1963-04-23 American Viscose Corp Method of producing staple fibers
US3170197A (en) * 1961-01-12 1965-02-23 Ivan G Brenner Apparatus for producing a fibrous glass preform
US3177275A (en) * 1960-11-10 1965-04-06 Ivan G Brenner Method and means for producing fibrous articles
US3226773A (en) * 1960-09-26 1966-01-04 Celanese Corp Method and apparatus for opening and applying finishes to multifilament tows

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2319666A (en) * 1941-02-14 1943-05-18 American Rock Wool Corp Means for and method of manufacturing mineral wool felted materials
US2619151A (en) * 1951-02-12 1952-11-25 Gustin Bacon Mfg Co Method and apparatus for manufacturing fibrous mats
US3226773A (en) * 1960-09-26 1966-01-04 Celanese Corp Method and apparatus for opening and applying finishes to multifilament tows
US3177275A (en) * 1960-11-10 1965-04-06 Ivan G Brenner Method and means for producing fibrous articles
US3170197A (en) * 1961-01-12 1965-02-23 Ivan G Brenner Apparatus for producing a fibrous glass preform
US3086252A (en) * 1961-08-22 1963-04-23 American Viscose Corp Method of producing staple fibers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2288305C2 (ru) * 2005-02-28 2006-11-27 Государственное научное учреждение "Всероссийский научно-исследовательский институт по переработке лубяных культур" Российской академии сельскохозяйственных наук Устройство для штапелирования льняного волокна в ленте
JP2023509348A (ja) * 2019-12-20 2023-03-08 サン-ゴバン イゾベール ウール、特にミネラルウールから製造された遮断製品を調製するための装置
CN113847001A (zh) * 2020-06-28 2021-12-28 中国石油化工股份有限公司 一种适于水平井分段压裂的变穿深簇射孔枪及其应用方法
CN113847001B (zh) * 2020-06-28 2023-06-23 中国石油化工股份有限公司 一种适于水平井分段压裂的变穿深簇射孔枪及其应用方法

Also Published As

Publication number Publication date
GB1232511A (enrdf_load_stackoverflow) 1971-05-19
DE1760261B2 (de) 1973-12-20
BE731973A (enrdf_load_stackoverflow) 1969-10-23
FR2007512A1 (enrdf_load_stackoverflow) 1970-01-09
DE1760261A1 (de) 1972-03-23
DE1760261C3 (de) 1974-07-18
FR2007512B1 (enrdf_load_stackoverflow) 1973-05-25
NL6906237A (enrdf_load_stackoverflow) 1969-10-28
NL158233B (nl) 1978-10-16

Similar Documents

Publication Publication Date Title
US3177275A (en) Method and means for producing fibrous articles
US2639759A (en) Method of forming glass fiber mats
EP0472208B1 (en) Gas management system for closely-spaced laydown jets
US4064605A (en) Method for producing non-woven webs
US3314122A (en) Apparatus for forming non-woven web structures
US2732885A (en) Method and apparatus for producing
DK161343B (da) Fremgangsmaade til fremstilling af en materialebane og anlaeg til udoevelse af fremgangsmaaden
US2996102A (en) Manufacture of a web or mat made from glass fibre or a substance having similar characteristics
US3844751A (en) Method and apparatus for the continuous production of a web or mat of staple fibres
US3636590A (en) Means for preventing the adhesion of mineral fibers to the walls thereof of a forming chamber
US3961397A (en) Clump removal devices
US2389024A (en) Means for forming fiber felts
GB964312A (en) Improvements in or relating to the manufacture of mats of thermoplastic fibres
JPS6149421B2 (enrdf_load_stackoverflow)
US3981047A (en) Apparatus for forming a batt from staple fibers
US3900302A (en) Method for producing glass fiber bulk product
US2909827A (en) Method and apparatus for handling continuous multifilament strands
US1864317A (en) Continuous predetermined characteristic strip apparatus
US4824456A (en) Process and mechanism for the production of glass fiber products for example fleece, mats, yarns and rovings
US2949646A (en) Method for forming fibrous structures
US4594086A (en) Method and apparatus for distribution of fibres in a felt
US3681169A (en) Apparatus for the continuous manufacture of wicks,threads and screens from thermoplastic materials
US4955999A (en) Stationary strand deflector for continuous strand manufacture
NO814393L (no) Metode og apparat for oppsamling av fibermateriale
US3962753A (en) Method of making glass fiber mats and controlling pressure drop across web by varying perforated plate beneath web