US3635061A - Forming apparatus for hydraulic press - Google Patents
Forming apparatus for hydraulic press Download PDFInfo
- Publication number
- US3635061A US3635061A US882652A US3635061DA US3635061A US 3635061 A US3635061 A US 3635061A US 882652 A US882652 A US 882652A US 3635061D A US3635061D A US 3635061DA US 3635061 A US3635061 A US 3635061A
- Authority
- US
- United States
- Prior art keywords
- jaw
- fluid
- press
- forming apparatus
- motion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/205—Hydro-mechanical deep-drawing
Definitions
- This invention concerns hydraulic forming tools used with presses for the forming of sheet metal blanks; and the invention is related more particularly to hydraulic forming tools of the type comprising a body which defines a pressure chamber that is closed at its bottom by a resilient diaphragm, a rigid blank holder beneath the body that cooperates with the diaphragm to clampingly confine marginal edge portions of a workpiece, and a central punch which is movable relative to the blank holder and which cooperates with the diaphragm in forming the central portion of the workpiece.
- Forming tools of the general type to which this invention relates are disclosed, for example, in US. Pat. No. 3,392,563, to H. Moller, and US. Pat. No. 3,115,858 to C. L. Mitchell.
- Such a forming tool can be built into a press as an integral part thereof or can comprise a separate attachment for use in conventional presses.
- the press should have as fast a motion as possible during formation of deep-drawn parts.
- the power required by a press depends not only upon the force that it must exert during the forming operation but also upon the speed at which drawing is effected, hence a press must have a certain size for formation of any particular part, or else its production rate must be reduced to an uneconomically slow speed.
- a general object of this invention to provide a forming tool of the character described which can be either an integral part of a press or an accessory for a press and which requires substantially less press jaw travel and jaw gap for a given draw depth than prior forming tools of this general kind, and which therefore enables the forming of deeply drawn workpieces with the use of a substantially smaller press then was heretofore needed for that purpose.
- FIG. 1 is a vertical sectional view of a hydraulic forming tool embodying the principles of this invention, shown in the lefthand half of the figure in its condition at the beginning of a forming stroke and in the right-hand half of the figure in its condition at the end of a forming stroke;
- FIG. 2 is a view generally similar to FIG. 1 but illustrating a modified embodiment of the invention
- FIG. 3 is another view generally similar to FIG. I but illustrating a further modified embodiment of the invention
- FIG. 4 is a horizontal sectional view of a still further modified embodiment of the invention.
- FIG. 5 is a sectional view taken on the plane of the line 55 in FIG. 4;
- FIG. 6 is a detailed horizontal sectional view on an enlarged scale of the area embraced by the line 6 in FIG. 4.
- the numerals 5 and 6 respectively designate the upper and lower jaws of a press that is equipped with a forming tool embodying the principles of this invention, which forming tool is designated generally by 7 and is shown for purposes of illustration as an accessory attachment for the press.
- the forming tool 7 comprises, in general, an upper element 8 that defines a pressure chamber which is enclosed by a resilient diaphragm 9 at its bottom, and a lower element 10 comprising a rigid central punch 11 and a rigid annular work holder 12 which concentrically surrounds the punch.
- the upper element 8 comprises an outer cylindrical body member 18 having a bore 19 therethrough and which is carried by the press head for limited motion up and down relative to it, a plunger or piston 20 which is sealingly slidable in the upper portion of the bore 19 and which is rigidly but removably secured to the press head, and the resilient diaphragm 9, which extends across the bore 19 in the body member 18 near the bottom thereof.
- the piston or plunger 20 is secured to a mounting plate 18 on the underside of the upper press jaw or press head 5.
- the mounting plate also has long studs 14 extending downwardly from it to mount the cylindrical body member 18 for up-anddown motion relative to the press head 5 and the plunger 20.
- These studs extend through guide holes in brackets 15 that project laterally from the upper portion of the cylindrical outer body member, and the latter is biased upwardly by means of compression springs 16, one surrounding each stud and reacting between the bracket 15 and a head 17 on the bottom of the stud.
- the diaphragm 9 is substantially cup shaped, having a cylindrical sidewall and a flat bottom wall, and it is securely held in the bore 19 in the body member 18 by means of a radially outwardly projecting circumferential rib or land 22 on its sidewall that is received in a closely fitting groove in the body member that opens inwardly to its bore.
- a clamping ring (not shown) engages the inner surface of the diaphragm sidewall to maintain the land 22 engaged in the groove.
- the pressure chamber 21 that is conjointly defined by the body member 18, the plunger 20 and the diaphragm 9 can be filled with hydraulic fluid through a normally closed filler passage 23.
- a normally closed vent passage 24 permits air to bleed out of the chamber as it is filled.
- the outer cylindrical body member 18, in being able to move axially relative to the plunger 20, can accommodate changes in volume of the pressure chamber 21 due to upward flexing displacement of the central portion of the diaphragm into it. It will also be noted that the force which the pressure fluid in the chamber 21 exerts upon the diaphragm in reaction to such flexing displacement is to some extent determined by the biasing force exerted by the springs 16.
- the plunger 20 can be formed, as shown, with a cavity in its underside that provides adequate space for such diaphragm flexing.
- the press table or lower jaw 6 of the press supports the lower element 10 of the forming tool, which comprises a bottom wall member 25, concentric inner and outer annular upright wall members 26 and 27, respectively, and a top wall member 28.
- the several wall members just mentioned cooperate to define an inner cylinder 29, in which a plungerlike inner piston 30 is slidable, and an annular outer cylinder 31, concentrically surrounding the inner cylinder and in which an annular outer piston 32 is slidable.
- the inner piston 30 has a reduced diameter coaxial stern portion 33 which can be integral with its body portion 33 which can be integral with its body portion and which projects with a slidable sealing fit through a hole in the top wall member 28.
- the punch 11 is rigidly secured to the top of this stern.
- Compression rods or struts 34 project upwardly from the annular outer piston 32 at circumferentially spaced intervals around it and extend with a slidable sealing fit through holes in the top wall member 28.
- an annular tool holder 35 on which the work holder 12 is readily removably carried.
- the inner cylinder 29 is communicated with the outer annular cylinder 31 by means of passages 38 in the bottom wall member 25 through which hydraulic fluid can flow relatively freely.
- FIG. 1 there is illustrated what can be regarded as a press-closed condition, in which the diaphragm 9 has just flatwise engaged the blank, and the punch 11 and work holder 12 still remain in their initial conditions.
- the work holder With continued descent of the press head, the work holder now moves downwardly, but with sufficient resistance to downward motion so that it cooperates with the diaphragm in clampingly confining the marginal edge portions of the blank.
- the punch moves upwardly, cooperating with the central portion of the diaphragm in forming the blank.
- the effective area of the outer annular piston is twice that of the inner piston, and therefore the punch moves upwardly relative to the press table 6 through twice the distance that the work holder 12 moves downwardly. This is to say that the working stroke of the formin g tool is triple the working stroke of the press.
- reaction force which fluid in the upper pressure chamber 21 exerts upon the diaphragm 9 is influenced by the biasing force of the springs 16.
- the pressure in that chamber is also materially influenced by the rate of upward motion of the punch (or, what is really the same thing, of downward motion of the work holder) since this determines the extent to which the springs 16 will be compressed at any instant during the working stroke.
- the pressure in the chamber 21 is controlled by regulating the rate at which the punch is permitted to move upwardly, and this, in turn, is accomplished by metering the displacement of hydraulic fluid out of a pressure chamber 41 in the top of the inner cylinder 29, above the punch-actuating piston 30.
- Such metering also serves to regulate the clamping force that the diaphragm and the blank holder exert upon the marginal edge portion of the blank, inasmuch as it determines the resistance of the work holder to downward motion.
- Fluid outflow from the chamber 41 is controlled automatically, partially in response to the rate of upward motion of the punch, as detected by a rate-responsive motion transducer or sensor 43, and partially in response to the fluid pressure prevailing in the chamber 41, as detected by a pressure transducer 44 that is mounted in said chamber, on a wall thereof.
- the motion sensor 43 can be actuated by a rod 42 or the like that is attached to the punch 11 or its piston 30 to be moved lengthwise in unison with the punch.
- the respective electrical outputs of the motion and pressure sensors are fed, by way of conductors 45 and 46, to an electroresponsive pilot valve 47 which in turn governs a pressure control valve 48.
- the pressure control valve is connected in a metered flow duct 49 that is communicated, through a fourport two-position valve 50, with a passage 51 in the top wall member 28, which passage in turn communicates with the chamber 41.
- the rate at which fluid is permitted to flow out of the chamber 41 during upward movement of the inner piston 30 is determined by the pressure control valve 48 in accordance with rate and pressure values detected by the sensors 43 and 44.
- a pump 54 or other fluid pressure source that has its inlet communicated with the reservoir 53 and its outlet connected with an electrically actuated two-position valve 55. Except during the time that the tool is actually in its return stroke, the two-position valve 55 is in a normal unenergized condition in which it communicates the pump outlet with a bypass duct 56 that leads into the return fluid duct 52, for return of the pump output to the reservoir 53.
- the press head When the press head reaches the top of its stroke at the end of its operating cycle, it closes a switch 58 that is connected with the actuator of the two-position valve 55 by means ofa conductor 59 in which there is a then-closed switch 60.
- Such closure of the switch 58 energizes the actuator of the two-position valve 55, and said valve shifts to a position in which the pump outlet is communicated with the duct 49 by way of a duct 61 and a check valve 62, and thence, by way of the four-port two-position valve 50 and the passage 51, with the chamber 41.
- valve 55 remains in its normal position all through the subsequent forming stroke because at least one of the switches 58 or 60 always remains open from the time the press head begins to descend until it returns to its fully raised position.
- the fourport two-position valve 50 For filling hydraulic fluid into the chambers 39 and 40 at the bottoms of the inner and outer cylinders 29 and 31, the fourport two-position valve 50 is manually rotated through from its illustrated position, so that it communicates the duct 49 with a duct 64 that leads to a filler passage 65 in the outer annular wall member 27.
- the actuator of the two-position valve 55 is then energized (as by manual actuation of a separate switch, not shown) to shift that valve to its position in which the output of the pump 54 is directed to flow successively through duct 61, check valve 62 the four-port valve 50, and duct 64 to the tiller passage 65.
- a closable vent for bleeding air out of the chambers 39 and 40 is of course provided and can comprise a passage 66 extending up through the stem portion 33 of the inner piston.
- a duct 67 which communicates thefour-port two-position valve 50 with a manually controllable normally closed shutoff valve 68.
- a duct 69 leads to the return fluid duct 52.
- the chambers 39 and 40 can be drained by leaving the four-port valve 50 in its normal (illustrated) position and opening the shutoff valve 68.
- the chamber 41 in the upper portion of the inner cylinder can be drained by rotating the four-port valve 50 through 90 from its illustrated position, to communicate the passage 51 with the duct 67, then opening the shutoff valve 68 and forcing the tool holder 35 down to raise the inner piston 30.
- FIG. 2 illustrates essentially the same tool apparatus as FIG. 1, but adapted for so-called die forming, with an appropriately different punch 11' and work holder 12' installed thereon.
- the punch 11' does not participate actively in the formation of the workpiece, but instead serves to define the bottom surface of the cavity of a die, the remainder of which is defined by the work holder 12; and instead of being flexed upwardly into the upper pressure chamber 21 by the rigid tool parts, the diaphragm 9 is forced downwardly into the die cavity thus defined, to serve, in effect, as the male member of the forming tool.
- the tool holder 35 is in a lowered posi- 7 tion at the beginning of each forming cycle (see the left half of FIG. 2), and it can rest on the top wall member 28, while the punch, which is axially short, again has its top surface flush with that of the work holder 12' but has its bottom surface spaced a substantial distance above the top of the top wall member 28.
- Die forming is usually employed for the shaping of relatively wide, shallow workpieces, and therefore the punch 11 has a top surface area which is large relative to the top surface area of the work holder 12. For this reason the work holder can be forced to rise in consequence of downward movement of the punch.
- a passage 71 leads through the top wall member 28 from the upper annular chamber '70, and a four-port two-position valve 72 provides for selectively communicating either said passage 71, or the passage 51 that leads to the chamber 41, with the metered outflow duct 49 that leads to the pressure control valve 48.
- Whichever of the two upper chambers 41 or 70 is not thus communicated with the pressure control valve 43 is connected through the four-port two-position valve 72 with a duct 67' that leads to a normally closed manually positionable shutoff valve 68'.
- the shutoff valve 68' is in turn connected with a duct 69 that leads to the return fluid line 52; hence opening of said shutoff valve provides for draining either of the chambers 41 or 70, depending upon the position of the four-port valve 72.
- the passage 65 in the annular sidewall member 27, through which the communicated bottom chambers 39 and 40 can be filled and drained, is controlled by a three-position valve 73 that is normally closed. In one of its open positions the threeposition valve communicates the passage 65 with a duct 74 that leads to the return fluid duct 52, for draining the bottom chambers; and in its other open position it communicates the passage 65 with a duct 75 through which pressure fluid from the pump outlet can be filled into the bottom chambers by way of the electroresponsive two-position valve 55, a duct 61, the check valve 62, and a portion of the duct 49 that communicates the check valve with the duct 75.
- FIG. 3 which is illustrated in its adaptation for die forming, is especially desirable where it is important to have compactness in directions transverse to press head travel but where there is a reasonably large gap between the press jaws, or where the press table can have a substantially deep well.
- the inner cylinder 29 is located below the annular outer cylinder 31. If there is a recess or well in the press table 6, the portion of the lower element 10' that defines the inner cylinder 29' can have a reduced diameter to be receivable in the well.
- the stem portion 33' of the inner piston 30, upon which the punch 11' is secured, is necessarily rather long, extending with a slidable sealing fit up through a tubular upright wall 26 that defines the inner circumferential surface of the annular cylinder 31'.
- the tool holder 35 is again secured on upright struts 34 that project up from the annular piston 32 at circumferentially spaced intervals, through the top wall member 28.
- the passage 38 that communicates the lower portions of cylinders 29' and 31' with one another is naturally a vertical one along most of its length, and is mainly formed in the sidewall of the inner cylinder 29.
- the em bodiment of the invention illustrated in FIG. 3 is like that shown in FIG. 2.
- FIGS. 46 illustrate an embodiment of the invention having a plurality of conventional cylinders 31 instead of a single annular outer cylinder, the cylinders 31" being located in a ring around the inner cylinder 29, as best seen in FIG. 4.
- Each of said cylinders 31" is provided with a piston 32" that has an upwardly projecting stern portion 34 which can be regarded as the counterpart of one of the struts 34 in the previously described embodiments of the invention.
- the several stem portions 34 are rigidly secured to the tool holder 35, the several pistons 32" are constrained to move up and down in unison.
- shutoff valves 78 having manual actuators 80, such as handwheels, that are accessible at the exterior of the too].
- the stroke of the tool holder can be varied in relation to that of the punch, to adjust the apparatus in accordance with the type of work to be performed and the depth intended for the finished workpiece.
- this invention provides a forming tool for hydraulic presses that is both very efficient and very versatile, and whereby the effective stroke of a forming press can be very substantially increased.
- Forming apparatus for a press having a pair of jaws, one of which is arranged for closing and opening motion toward and from the other, said forming apparatus being of the type comprising a pair of rigid tool parts carried by one jaw of the press and cooperable with a resilient forming element carried by the other jaw, one of said rigid tool parts being substantially annular and in surrounding relation to the other, and said rigid tool parts being movable relative to one another in the directions of closing and opening motion of said jaw, said forming apparatus being characterized by:
- E. means providing for throttled flow of fluid from said chamber to yieldingly resist movement of said second piston means toward the resilient forming element and concomitantly resist motion of said one rigid tool part in the direction away from the resilient forming element, thereby maintaining the resilient forming element engaged under substantial force with a blank overlying both of said rigid tool parts.
- the piston means for said one cylinder means comprising a plurality of pistons, one for each of said plurality of cylinders.
- said means providing for substantially free flow of fluid between the first and second cylinder means comprises means defining a plurality of passages, one connecting each of said plurality of cylinders with said other cylinder means, further characterized by:
- a flow-directing valve communicated with said chamber and alternatively communicable with 1. said flow-restricting device and 2. said pressurized fluid source means to provide for refilling the upper portion of the second cylinder means after a cycle of closing and opening motion of the press jaws by which a workpiece is formed, thus effecting return movement of the second piston means and concomitant return movement of the first piston means.
- B second control means connected with the flow-directing valve and operatively associated with a part that moves in unison with one ofsaid piston means for causing the flowdirecting valve to be communicated with said flowrestricting device when the first piston means attains a predetermined position in its return motion.
- D. means yieldingly biasing the pressure chamber member in the direction toward said other jaw to maintain fluid in said fluid chamber under pressure.
- Forming apparatus for a press having a pair ofjaws arranged for relative closing and opening movement, said forming apparatus being of the type comprising a resilient diaphragm carried by one jaw of the press and a pair of relatively movable rigid tool parts carried by the other jaw for cooperation with the diaphragm, one of said rigid tool parts being substantially annular and in surrounding relation to the other, said forming apparatus being characterized by:
- C. means yieldingly biasing the pressure chamber member in the direction toward said one jaw to maintain fluid in said bore under pressure
- D. means providing a motion-transmitting connection between said rigid tool parts whereby the force which the diaphragm exerts upon them through a blank to be formed, upon closing motion of the jaws, effects motion of one of said rigid tool parts in the direction toward said other jaw and motion of the other one .in the opposite direction;
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Press Drives And Press Lines (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE16777/68A SE333127B (sv) | 1968-12-09 | 1968-12-09 | Anordning vid pressar foer formning av plataemnen medelst fluidumtryck |
Publications (1)
Publication Number | Publication Date |
---|---|
US3635061A true US3635061A (en) | 1972-01-18 |
Family
ID=20302731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US882652A Expired - Lifetime US3635061A (en) | 1968-12-09 | 1969-12-05 | Forming apparatus for hydraulic press |
Country Status (5)
Country | Link |
---|---|
US (1) | US3635061A (de) |
DE (1) | DE1961643C3 (de) |
FR (1) | FR2025661A1 (de) |
GB (1) | GB1280196A (de) |
SE (1) | SE333127B (de) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3910087A (en) * | 1974-12-18 | 1975-10-07 | Boeing Co | Hydraulic-forming machine |
US3962895A (en) * | 1973-12-05 | 1976-06-15 | Saab-Scania Aktiebolag | Fluid forming apparatus having controllably variable forming pressure |
US4183124A (en) * | 1977-11-21 | 1980-01-15 | Kisco Company | Method of and apparatus for fabricating spiral wrapped cartridge cases |
US4392368A (en) * | 1980-12-17 | 1983-07-12 | Saab-Scania Aktiebolag | Arrangement for presses |
US4689979A (en) * | 1983-12-21 | 1987-09-01 | Honda Giken Kogyo Kabushiki Kaisha | Pressing method and punch and die press for the same |
US5887475A (en) * | 1994-03-09 | 1999-03-30 | Muldner; James Scott | Material for protecting sheet metal during the sheet metal forming process |
US20060211912A1 (en) * | 2005-02-24 | 2006-09-21 | Dlugos Daniel F | External pressure-based gastric band adjustment system and method |
US20080015406A1 (en) * | 2005-02-24 | 2008-01-17 | Dlugos Daniel F | External Mechanical Pressure Sensor for Gastric Band Pressure Measurements |
US20080250341A1 (en) * | 2006-04-06 | 2008-10-09 | Ethicon Endo-Surgery, Inc. | Gui With Trend Analysis for an Implantable Restriction Device and a Data Logger |
US20080249806A1 (en) * | 2006-04-06 | 2008-10-09 | Ethicon Endo-Surgery, Inc | Data Analysis for an Implantable Restriction Device and a Data Logger |
US20080250340A1 (en) * | 2006-04-06 | 2008-10-09 | Ethicon Endo-Surgery, Inc. | GUI for an Implantable Restriction Device and a Data Logger |
US20090149874A1 (en) * | 2007-12-10 | 2009-06-11 | Ethicon Endo-Surgery. Inc. | Methods for implanting a gastric restriction device |
US20090171375A1 (en) * | 2007-12-27 | 2009-07-02 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US20090171379A1 (en) * | 2007-12-27 | 2009-07-02 | Ethicon Endo-Surgery, Inc. | Fluid logic for regulating restriction devices |
US20090192534A1 (en) * | 2008-01-29 | 2009-07-30 | Ethicon Endo-Surgery, Inc. | Sensor trigger |
US20090204131A1 (en) * | 2008-02-12 | 2009-08-13 | Ethicon Endo-Surgery, Inc. | Automatically adjusting band system with mems pump |
US20090204179A1 (en) * | 2008-02-07 | 2009-08-13 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using temperature |
US20090204141A1 (en) * | 2008-02-07 | 2009-08-13 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using kinetic motion |
US20090202387A1 (en) * | 2008-02-08 | 2009-08-13 | Ethicon Endo-Surgery, Inc. | System and method of sterilizing an implantable medical device |
US20090216255A1 (en) * | 2008-02-26 | 2009-08-27 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US20090222065A1 (en) * | 2006-04-06 | 2009-09-03 | Ethicon Endo-Surgery, Inc. | Physiological Parameter Analysis for an Implantable Restriction Device and a Data Logger |
US20090228063A1 (en) * | 2008-03-06 | 2009-09-10 | Ethicon Endo-Surgery, Inc. | System and method of communicating with an implantable antenna |
US20090228028A1 (en) * | 2008-03-06 | 2009-09-10 | Ethicon Endo-Surgery, Inc. | Reorientation port |
US7658196B2 (en) | 2005-02-24 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device orientation |
US7775966B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Non-invasive pressure measurement in a fluid adjustable restrictive device |
US7775215B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device positioning and obtaining pressure data |
US7844342B2 (en) | 2008-02-07 | 2010-11-30 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using light |
US8016745B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | Monitoring of a food intake restriction device |
US8066629B2 (en) | 2005-02-24 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Apparatus for adjustment and sensing of gastric band pressure |
US8100870B2 (en) | 2007-12-14 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Adjustable height gastric restriction devices and methods |
US8192350B2 (en) | 2008-01-28 | 2012-06-05 | Ethicon Endo-Surgery, Inc. | Methods and devices for measuring impedance in a gastric restriction system |
US8233995B2 (en) | 2008-03-06 | 2012-07-31 | Ethicon Endo-Surgery, Inc. | System and method of aligning an implantable antenna |
US8337389B2 (en) | 2008-01-28 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Methods and devices for diagnosing performance of a gastric restriction system |
US8377079B2 (en) | 2007-12-27 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Constant force mechanisms for regulating restriction devices |
US8591532B2 (en) | 2008-02-12 | 2013-11-26 | Ethicon Endo-Sugery, Inc. | Automatically adjusting band system |
US8591395B2 (en) | 2008-01-28 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Gastric restriction device data handling devices and methods |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10129223A1 (de) * | 2001-06-19 | 2003-01-23 | Daimler Chrysler Ag | Formwerkzeug zur Herstellung eines Bauteils |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2783728A (en) * | 1951-09-12 | 1957-03-05 | Lake Erie Engineering Corp | Apparatus for pressing sheet metal shapes |
US3208255A (en) * | 1961-07-07 | 1965-09-28 | Siemens Elektrogeraete Gmbh | Method and apparatus for hydraulic deep-drawing of sheet material |
US3236088A (en) * | 1962-01-05 | 1966-02-22 | Reynolds Metals Co | Method and apparatus for making cupshaped articles and the like |
US3357218A (en) * | 1965-02-24 | 1967-12-12 | Cincinnati Milling Machine Co | Hydraulic press |
US3396561A (en) * | 1965-05-19 | 1968-08-13 | Houdaille Industries Inc | Hydraulic die assembly for the forming of sheet material |
-
1968
- 1968-12-09 SE SE16777/68A patent/SE333127B/xx unknown
-
1969
- 1969-12-05 FR FR6942181A patent/FR2025661A1/fr not_active Withdrawn
- 1969-12-05 US US882652A patent/US3635061A/en not_active Expired - Lifetime
- 1969-12-09 DE DE1961643A patent/DE1961643C3/de not_active Expired
- 1969-12-09 GB GB60052/69A patent/GB1280196A/en not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2783728A (en) * | 1951-09-12 | 1957-03-05 | Lake Erie Engineering Corp | Apparatus for pressing sheet metal shapes |
US3208255A (en) * | 1961-07-07 | 1965-09-28 | Siemens Elektrogeraete Gmbh | Method and apparatus for hydraulic deep-drawing of sheet material |
US3236088A (en) * | 1962-01-05 | 1966-02-22 | Reynolds Metals Co | Method and apparatus for making cupshaped articles and the like |
US3357218A (en) * | 1965-02-24 | 1967-12-12 | Cincinnati Milling Machine Co | Hydraulic press |
US3396561A (en) * | 1965-05-19 | 1968-08-13 | Houdaille Industries Inc | Hydraulic die assembly for the forming of sheet material |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3962895A (en) * | 1973-12-05 | 1976-06-15 | Saab-Scania Aktiebolag | Fluid forming apparatus having controllably variable forming pressure |
US3910087A (en) * | 1974-12-18 | 1975-10-07 | Boeing Co | Hydraulic-forming machine |
US4183124A (en) * | 1977-11-21 | 1980-01-15 | Kisco Company | Method of and apparatus for fabricating spiral wrapped cartridge cases |
US4392368A (en) * | 1980-12-17 | 1983-07-12 | Saab-Scania Aktiebolag | Arrangement for presses |
US4689979A (en) * | 1983-12-21 | 1987-09-01 | Honda Giken Kogyo Kabushiki Kaisha | Pressing method and punch and die press for the same |
US5887475A (en) * | 1994-03-09 | 1999-03-30 | Muldner; James Scott | Material for protecting sheet metal during the sheet metal forming process |
US7658196B2 (en) | 2005-02-24 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device orientation |
US20080015406A1 (en) * | 2005-02-24 | 2008-01-17 | Dlugos Daniel F | External Mechanical Pressure Sensor for Gastric Band Pressure Measurements |
US7775966B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Non-invasive pressure measurement in a fluid adjustable restrictive device |
US7775215B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device positioning and obtaining pressure data |
US20060211912A1 (en) * | 2005-02-24 | 2006-09-21 | Dlugos Daniel F | External pressure-based gastric band adjustment system and method |
US7927270B2 (en) | 2005-02-24 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | External mechanical pressure sensor for gastric band pressure measurements |
US8016744B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | External pressure-based gastric band adjustment system and method |
US8016745B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | Monitoring of a food intake restriction device |
US8066629B2 (en) | 2005-02-24 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Apparatus for adjustment and sensing of gastric band pressure |
US20080250340A1 (en) * | 2006-04-06 | 2008-10-09 | Ethicon Endo-Surgery, Inc. | GUI for an Implantable Restriction Device and a Data Logger |
US8152710B2 (en) | 2006-04-06 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Physiological parameter analysis for an implantable restriction device and a data logger |
US8870742B2 (en) | 2006-04-06 | 2014-10-28 | Ethicon Endo-Surgery, Inc. | GUI for an implantable restriction device and a data logger |
US20090222065A1 (en) * | 2006-04-06 | 2009-09-03 | Ethicon Endo-Surgery, Inc. | Physiological Parameter Analysis for an Implantable Restriction Device and a Data Logger |
US20080249806A1 (en) * | 2006-04-06 | 2008-10-09 | Ethicon Endo-Surgery, Inc | Data Analysis for an Implantable Restriction Device and a Data Logger |
US20080250341A1 (en) * | 2006-04-06 | 2008-10-09 | Ethicon Endo-Surgery, Inc. | Gui With Trend Analysis for an Implantable Restriction Device and a Data Logger |
US8187163B2 (en) | 2007-12-10 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Methods for implanting a gastric restriction device |
US20090149874A1 (en) * | 2007-12-10 | 2009-06-11 | Ethicon Endo-Surgery. Inc. | Methods for implanting a gastric restriction device |
US8100870B2 (en) | 2007-12-14 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Adjustable height gastric restriction devices and methods |
US8142452B2 (en) | 2007-12-27 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US20090171375A1 (en) * | 2007-12-27 | 2009-07-02 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8377079B2 (en) | 2007-12-27 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Constant force mechanisms for regulating restriction devices |
US20090171379A1 (en) * | 2007-12-27 | 2009-07-02 | Ethicon Endo-Surgery, Inc. | Fluid logic for regulating restriction devices |
US8591395B2 (en) | 2008-01-28 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Gastric restriction device data handling devices and methods |
US8337389B2 (en) | 2008-01-28 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Methods and devices for diagnosing performance of a gastric restriction system |
US8192350B2 (en) | 2008-01-28 | 2012-06-05 | Ethicon Endo-Surgery, Inc. | Methods and devices for measuring impedance in a gastric restriction system |
US20090192534A1 (en) * | 2008-01-29 | 2009-07-30 | Ethicon Endo-Surgery, Inc. | Sensor trigger |
US20090204141A1 (en) * | 2008-02-07 | 2009-08-13 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using kinetic motion |
US8221439B2 (en) | 2008-02-07 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using kinetic motion |
US20090204179A1 (en) * | 2008-02-07 | 2009-08-13 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using temperature |
US7844342B2 (en) | 2008-02-07 | 2010-11-30 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using light |
US8114345B2 (en) | 2008-02-08 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | System and method of sterilizing an implantable medical device |
US20090202387A1 (en) * | 2008-02-08 | 2009-08-13 | Ethicon Endo-Surgery, Inc. | System and method of sterilizing an implantable medical device |
US8057492B2 (en) | 2008-02-12 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Automatically adjusting band system with MEMS pump |
US8591532B2 (en) | 2008-02-12 | 2013-11-26 | Ethicon Endo-Sugery, Inc. | Automatically adjusting band system |
US20090204131A1 (en) * | 2008-02-12 | 2009-08-13 | Ethicon Endo-Surgery, Inc. | Automatically adjusting band system with mems pump |
US8034065B2 (en) | 2008-02-26 | 2011-10-11 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US20090216255A1 (en) * | 2008-02-26 | 2009-08-27 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US20090228028A1 (en) * | 2008-03-06 | 2009-09-10 | Ethicon Endo-Surgery, Inc. | Reorientation port |
US8233995B2 (en) | 2008-03-06 | 2012-07-31 | Ethicon Endo-Surgery, Inc. | System and method of aligning an implantable antenna |
US8187162B2 (en) | 2008-03-06 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Reorientation port |
US20090228063A1 (en) * | 2008-03-06 | 2009-09-10 | Ethicon Endo-Surgery, Inc. | System and method of communicating with an implantable antenna |
Also Published As
Publication number | Publication date |
---|---|
GB1280196A (en) | 1972-07-05 |
DE1961643A1 (de) | 1970-10-29 |
SE333127B (sv) | 1971-03-08 |
DE1961643C3 (de) | 1978-06-29 |
FR2025661A1 (de) | 1970-09-11 |
DE1961643B2 (de) | 1977-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3635061A (en) | Forming apparatus for hydraulic press | |
US3962895A (en) | Fluid forming apparatus having controllably variable forming pressure | |
US2318819A (en) | Multiple action punch press die and cushion | |
US4896594A (en) | Drawing installation for a press | |
US2810929A (en) | Apparatus for compacting and ejecting flanged articles | |
US4362037A (en) | Hollow article internal pressure forming apparatus and method | |
KR900006116A (ko) | 공압식 다이쿠션장치 | |
CA1235020A (en) | Press | |
US4909061A (en) | Drawing tool | |
US4233872A (en) | Hydraulic shock absorption in punch or cutting presses | |
JPS5917453Y2 (ja) | プレス機械のスライドノツクアウト装置用空・油圧式駆動装置 | |
US5040967A (en) | Means for vertically moving a ram in a compression molding machine | |
US2644472A (en) | Flushing device | |
GB1007090A (en) | A method and apparatus for cutting or stamping blanks from sheet material | |
US3534679A (en) | Control means for pressure relief in hydraulic machines | |
US1849669A (en) | Machine for forming brake drums | |
US3084580A (en) | Hydraulically controlled punching machine | |
US2994301A (en) | Reciprocable hydro-pneumatic motor | |
US2924446A (en) | Hydraulic cushion for a press | |
US1424671A (en) | Metal-working machine | |
US2979771A (en) | Plastic draw press | |
US2152837A (en) | Prefill valve for hydraulic presses | |
US2694567A (en) | Metalworking press | |
US2581434A (en) | Press for metal stamping | |
US1904864A (en) | Material working apparatus |