US3630861A - Electrolytic hydrodimerisation process - Google Patents
Electrolytic hydrodimerisation process Download PDFInfo
- Publication number
- US3630861A US3630861A US733306A US3630861DA US3630861A US 3630861 A US3630861 A US 3630861A US 733306 A US733306 A US 733306A US 3630861D A US3630861D A US 3630861DA US 3630861 A US3630861 A US 3630861A
- Authority
- US
- United States
- Prior art keywords
- acrylonitrile
- concentration
- electrolysis
- adiponitrile
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 17
- 238000005868 electrolysis reaction Methods 0.000 abstract description 36
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 abstract description 32
- 238000006243 chemical reaction Methods 0.000 abstract description 31
- 239000007864 aqueous solution Substances 0.000 abstract description 21
- 150000001875 compounds Chemical class 0.000 abstract description 21
- 239000002253 acid Substances 0.000 abstract description 15
- 230000015572 biosynthetic process Effects 0.000 abstract description 10
- 150000003242 quaternary ammonium salts Chemical class 0.000 abstract description 9
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 5
- 239000011707 mineral Substances 0.000 abstract description 5
- 239000006227 byproduct Substances 0.000 abstract description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 59
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 29
- 239000000243 solution Substances 0.000 description 28
- 239000000126 substance Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 230000005611 electricity Effects 0.000 description 9
- 239000013638 trimer Substances 0.000 description 9
- 150000001450 anions Chemical class 0.000 description 8
- 239000008151 electrolyte solution Substances 0.000 description 8
- -1 hydrocarbon radicals Chemical class 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 5
- 239000004327 boric acid Substances 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 4
- 239000001099 ammonium carbonate Substances 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 125000001453 quaternary ammonium group Chemical group 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910000978 Pb alloy Inorganic materials 0.000 description 2
- 229910001245 Sb alloy Inorganic materials 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 2
- 235000012501 ammonium carbonate Nutrition 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 239000002140 antimony alloy Substances 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- DGJUONISEWDPFO-UHFFFAOYSA-N dodecyl(triethyl)azanium Chemical compound CCCCCCCCCCCC[N+](CC)(CC)CC DGJUONISEWDPFO-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- VNAZOYZEQAYHEC-UHFFFAOYSA-N hexanedinitrile propanenitrile Chemical compound C(CC)#N.C(CCCCC#N)#N VNAZOYZEQAYHEC-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000012429 reaction media Substances 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- IXLWLNRYFMSSSK-UHFFFAOYSA-M triethyl(octyl)azanium;hydroxide Chemical compound [OH-].CCCCCCCC[N+](CC)(CC)CC IXLWLNRYFMSSSK-UHFFFAOYSA-M 0.000 description 2
- PQMFVUNERGGBPG-UHFFFAOYSA-N (6-bromopyridin-2-yl)hydrazine Chemical compound NNC1=CC=CC(Br)=N1 PQMFVUNERGGBPG-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- BCGCCTGNWPKXJL-UHFFFAOYSA-N 3-(2-cyanoethoxy)propanenitrile Chemical compound N#CCCOCCC#N BCGCCTGNWPKXJL-UHFFFAOYSA-N 0.000 description 1
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 150000008360 acrylonitriles Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- MPDDDPYHTMZBMG-UHFFFAOYSA-N butyl(triethyl)azanium Chemical compound CCCC[N+](CC)(CC)CC MPDDDPYHTMZBMG-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- OJQAVLJZQFBRLC-UHFFFAOYSA-M dodecyl(triethyl)azanium;hydroxide Chemical compound [OH-].CCCCCCCCCCCC[N+](CC)(CC)CC OJQAVLJZQFBRLC-UHFFFAOYSA-M 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- LNLFLMCWDHZINJ-UHFFFAOYSA-N hexane-1,3,6-tricarbonitrile Chemical compound N#CCCCC(C#N)CCC#N LNLFLMCWDHZINJ-UHFFFAOYSA-N 0.000 description 1
- YSARBTHSZMNCIB-UHFFFAOYSA-N hexane-1,3,6-tricarboxylic acid Chemical compound OC(=O)CCCC(C(O)=O)CCC(O)=O YSARBTHSZMNCIB-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical class CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 125000004334 oxygen containing inorganic group Chemical group 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 230000000063 preceeding effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- VWDWKYIASSYTQR-YTBWXGASSA-N sodium;dioxido(oxo)azanium Chemical compound [Na+].[O-][15N+]([O-])=O VWDWKYIASSYTQR-YTBWXGASSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- ZDRSDHOGUZATFC-UHFFFAOYSA-M tributyl(dodecyl)azanium;hydroxide Chemical compound [OH-].CCCCCCCCCCCC[N+](CCCC)(CCCC)CCCC ZDRSDHOGUZATFC-UHFFFAOYSA-M 0.000 description 1
- RJCRTLRQDQHJCN-UHFFFAOYSA-N triethyl(2-ethylhexyl)azanium Chemical compound CCCCC(CC)C[N+](CC)(CC)CC RJCRTLRQDQHJCN-UHFFFAOYSA-N 0.000 description 1
- GCRCSLNXFKCFHB-UHFFFAOYSA-N triethyl(hexyl)azanium Chemical compound CCCCCC[N+](CC)(CC)CC GCRCSLNXFKCFHB-UHFFFAOYSA-N 0.000 description 1
- SEACXNRNJAXIBM-UHFFFAOYSA-N triethyl(methyl)azanium Chemical compound CC[N+](C)(CC)CC SEACXNRNJAXIBM-UHFFFAOYSA-N 0.000 description 1
- JHNACYHGMDXEMK-UHFFFAOYSA-N triethyl(octyl)azanium Chemical compound CCCCCCCC[N+](CC)(CC)CC JHNACYHGMDXEMK-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/29—Coupling reactions
- C25B3/295—Coupling reactions hydrodimerisation
Definitions
- the present invention relates to the electrolytic hydrodimerisation of O B-ethylenic monomers, more particularly acrylonitrile.
- a diaphragm a porous body or ion exchange membrane
- diaphragms are not without disadvantages.
- their presence in the electrolysis medium increases the resistance of the cell and leads to an additional consumption of energy.
- the present invention provides a process for the hydrodimerisation of a,5-ethylenic compounds by electrolysis in a cell without a diaphragm, by which it is possible to obtain simultaneously excellent chemical and electrical efiiciencies, in relation to the hydrodimerisation product.
- This process consists in subjecting to electrolysis, in a single compartment cell, a homogeneous aqueous solution of an a,,B-ethylenic compound and an electrolyte consisting of a quaternary ammonium salt of an oxidised mineral acid, which cannot be oxidised or reduced under the electrolysis conditions into a product capable of harming the reaction, the concentration of the a,fi-ethylenic compound in the reaction medium being below 10.5% by weight, and preferably below 5% by weight.
- the electrolyte employed in the new process is a quaternary ammonium salt of the formula:
- A represents the anion of an oxidised mineral acid as hereinafter defined and R R R and R represent identical or different hydrocarbon radicals each comprising 1 to 20 carbon atoms in their chain.
- the anion A is chosen from thos which are not oxidised at the anode or reduced at the cathode under the reaction conditions, or which do not give harmful products when anodically oxidized.
- the non-oxidisable or reducible anions derived from oxidised mineral acids it is preferred to use the sulphate, borate, phosphate and carbonate anions. It is also possible to use anions oxidisable at the anode without the formation of corrosive products; thus, the bisulphite anion, oxidised at the anode into the sulphate ion, can be used, although there is not particular advantage in so doing.
- R R R and R can be linear or branched alkyl radicals, such as methyl, ethyl, propyl, butyl, isopropyl, pentyl, hexyl, heptyl, octyl, dodecyl, and 2-ethylhexyl; cycloalkyl or alkyl-cycloalkyl radicals, such as cyclohexyl; or aryl radicals such as phenyl.
- cations are tetrabutyl-ammonium, triethyl- (n-octyl) ammonium, triethyl (n-dodecyl)-ammonium, tetra-(n-pentyl)-ammonium, tetraethyl-arnmonium, tetra- (n-propyl)-ammonium, methyl-triethyl-ammonium, triethylbutyl-ammonium, triethylhexyl-ammonium, and triethyl- (2-ethylhexyl)-ammonium.
- Suitable quaternary ammonium salts which are particularly well suited for carrying out the process of the invention, are the sulphates, borates, phosphates and carbonates of tetra- (n-butyl -amrnonium, tetran-pentyl -ammoniurn, triethyl-(n-dodecyl) ammonium, triethyl-(n-octyD- ammonium, triethylhexyl-ammoniurn and triethyl-(Z- ethylhexyl)-ammonium.
- the concentration of the electrolyte in the electrolysis bath should be at least and preferably should be between 10 and by weight, related to the total mixture.
- inert solvents such as dimethylformamide, dimethylacetamide, dimethylsulphoxide, dioxane, diethylene glycol, ethanol, hexamethylphosphotriamide and acetonitrile.
- the pH of the electrolysis medium is between 5 and 10.
- the anion of the quaternary ammonium salt used as electrolyte is derived from a weak acid, and particularly when using acid salts of which the pK is between 5 and 11, the pH of the aqueous solution is generally higher than 10. It is appropriate in this case for the solution to have added thereto an acid in a quantity sufficient to bring the pH of the solution within the preferred limits.
- an acid of which the anion cannot be oxidised at the anode it is preferred to use an acid of which the anion cannot be oxidised at the anode.
- the use of acids corresponding to the anions of the quaternary ammonium salts being used is particularly suitable.
- a buffer system is then formed in the aqueous electrolysis solution, e.g. the system quaternary ammonium borate/boric acid, quaternary ammonium carbonate/bicarbonate, and quaternary ammonium monobasic phosphate/dibasic phosphate, which enables the pH to be maintained between the preferred values throughout the entire reaction.
- the buffering effect is at its maximum when the basic form and the acid form are in equal concentrations.
- One convenient method for obtaining the aqueous buffer systems consists in adding to an aqueous solution of a quaternary ammonium hydroxide of selected concentration an acid such as boric, phosphoric or carbonic acid, until the pH of the solution is close to the pK of the buffer pair.
- the temperature of the reaction medium can vary between 0 and the reflux temperature of the medium. Generally, a temperature between 20 and 45 C. is used.
- the electrodes can be made of any metal or alloy generally employed in connection with electrolysis and suitable in view of the chemical nature of the compound subjected to the electrolysis.
- the cathode should be formed of a material which does not permit water to be reduced at the voltage used for the reduction of the 04,3- ethylene compound.
- Mercury, graphite, lead, lead/mercury and lead/ antimony alloys, Darcet alloy, tin and zinc are among the materials which fulfil this condition.
- Mercury, lead and graphite are particularly suitable.
- the anode should be made of a metal or metal alloy which provides a slight oxygen over-voltage in the electrolysis of water, such as, for example, lead, which may or may not be covered with oxide, nickel, which may or may not be surface-oxidised, platinum, gold, and stainless steel, which is preferably passivated. It is preferred to use insoluble anodes which have an oxygen over-voltage smaller than that of gold.
- the voltage applied to the terminals of the electrolysis cell can vary within wide limits. It is generally unnecessary to make use of high voltages and voltages between 3 and 8 volts are generally quite suitable. To minimise the ohmic voltage drop and correlatively the energy loss due to the Joule effect in the electrolyte, it is possible to reduce the distance of the electrodes. This distance or spacing is not critical, but in order to ensure a good circulation of the liquid between the electrodes, it can with advantage be between 1 and 15 millimetres and preferably between 1 and 3 millimetres.
- the current density is not critical and can consequently vary within very wide limits. In general, the productivity of the installation is higher as the current density is higher. It is possible to work at current densities which are from 1 to 50 amperes/dmF, and preferably 1 to 10 amperes/ dm. Although the speed of circulation of the electrolysis bath can assume extremely different values, it is preferable to have high circulation speeds. Speeds which are between 5 cm./sec. and 2 m./sec., and preferably between 10 and cm./sec., are very suitable.
- the process according to the invention can be applied to any a,fi-ethylenic compound, such as nitriles (e. g. acrylonitrile and methacrylonitrile), aldehydes (e.g. acrolein and methacrolein), acrylates and methacrylates, and acrylamides and methacrylamides.
- nitriles e. g. acrylonitrile and methacrylonitrile
- aldehydes e.g. acrolein and methacrolein
- acrylates and methacrylates acrylamides and methacrylamides.
- the product of the electrolysis is a homogeneous aqueous solution.
- the products formed during the reaction can be isolated, e.g., by distillation and solvent extraction.
- One particularly convenient separation method consists in lowering the temperature of the reaction mass to a smallest possible value at which it remains liquid in order to cause a lowering of the solubility of the organic compounds in the saline aqueous phase.
- An organic phase then generally forms comprising the major part of the reaction products.
- the aqueous phase containing the major part of the untransformed monomer can be used again as electrolysis bath after addition of monomer until the desired concentration is obtained.
- the process which forms the subject of the present invention is very suitable for being carried out continuously.
- the apparatus employed is formed by an electrolysis cell connected by a glass pipe, on the one hand, to an expansion chamber and, on the other hand, to a circulating pump which is itself connected to the expansion chamber.
- the electrolysis cell is formed by two square metal plates, each with an area of 1 dm. and a thickness of 1 mm., separated on their periphery by a silicone resin joint with a thickness of 3.5 mm. Each metal plate is covered externally by a plate of plastic material. The tightness of the assembly is ensured by clamping with bolts.
- One of the metal plates consists of hard lead (lead/antimony alloy with of antimony).
- the other plate consists of pure lead.
- the two electrodes are connected to a direct current source.
- the hard lead plate serves as anode and the pure lead plate as cathode.
- Each plate contains an orifice, one of which serves for the entry of the electrolytic solution into the space between the electrodes and the other for the discharge of the said solution.
- the outlet orifice of the electrolysis bath is connected to the expansion chamber formed by a container comprising a double jacket, in which cold water is circulating.
- This container has arranged above it a cold water condenser, above which is a condenser with a mixture of acetone/ solid carbon dioxide.
- a graduated burette opens into the expansion chamber. The solution leaving the expansion chamber is returned by the pump into the cell.
- the hard lead anode Prior to the electrolysis, the hard lead anode is formed by filling the cell with 5 N-sulphuric acid and causing a current of amperes to flow for 15 minutes. The cell is then emptied and rinsed with distilled water.
- the quantity of electricity used during the reaction is 113,500 coulombs (i.e. 31.5 ampere-hours).
- the extract thus treated, is dried over anhydrous sodium sulphate, filtered, and distilled in vacuo. 1.4 g. of a fraction distilling between and C./ 0 .1 mm. Hg are collected in this way. The distillation residue is 0.3 .g.
- EXAMPLE 2 The experiment is carried out in the apparatus used in Example 1 and with an electrolytic solution obtained in the same manner, but in which the concentration by weight of acrylonitrile is 4.3%. This concentration is kept substantially constant throughout the operation.
- the current density is 7.8 amperes and the applied voltage is 9.5 volts.
- the operation is continued until 31.5 ampere-hours have passed through the cell.
- the rate of circulation is 600 litres/hour.
- the quantity of acrylonitrile used is 79.9 g.
- the reaction mass is treated as in Example 1.
- the balance of the reaction is as follows:
- Ratio by weight of adiponitrile to propionitrile 40.7 :1.
- EXAMPLE 3 An electrolytic solution is prepared by causing a stream of carbon dioxide gas to pass into 400 g. of a 15% by weight aqueous solution of triethyl-(n-octyl)-ammonium hydroxide until a pH of 9 is obtained. Using the apparatus described in Example 1, electrolysis is carried out under the following conditions:
- EXAMPLE 4 The experiment is carried out in the apparatus described in Example 1, but with an electrolyte solution obtained by passing carbon dioxide gas into 400 g. of a 15% by weight aqueous solution of tetra-(n-butyl)- ammonium hydroxide until a pH equal to 9 is obtained.
- the electrolysis is carried out under the following conditions:
- ADN PN HT adiponitrile
- PN propiouitrile
- HT hydrotrimer
- Example 4 the same electrolytic solution as in Example 4 (350 g.) of an aqueous solution of the tetra-(n-butyl)- ammonium carbonate/bicarbonate system at pH 9 was used, but of which the concentration of acrylonitrile was brought to 17.1% by addition of 72.3 g. of acrylonitrile. This concentration is maintained throughout the operation by addition of 2 cc. of acrylonitrile every 2910 coulombs. The current density is 5 .6 amperes at 5 .6 volts. The reaction is continued until 31.5 ampere-hours have passed through the cell. The total quantity of acrylonitrile used is 133.3 g.
- the chemical yields are respectively 69.7%, 0% and 12.1% and the electrical yields are 89%, 0% and 10%.
- EXAMPLE 9 As electrolyte, 417 g. of an aqueous solution of triethyl- (n-octyl)-arnmonium monobasic phosphate/dibasic phosphate at pH 7, obtained by adding phosphoric acid to 400 g. of a 15% solution of triethyl-(n-octyl)-ammonium hydroxide, are used.
- 16 cc. of acrylonitrile (a concentration of 3%) are introduced into this solution.
- the electrolysis is carried out as in Example 1, with a current density of 5.65 amps/dm. at 5.4 volts.
- the rate of flow of liquid circulating in the bath is 450 litres/hour.
- the concentration of acrylonitrile is kept in the region of its initial value, as in the preceding examples.
- the reaction is stopped when the quantity of electricity which has passed through the cell is 31.5 ampere-hours.
- the quantity of acrylonitrile employed is 73.8 g.
- EXAMPLES 10 TO 12 The electrolyte used is obtained by adding boric acid to a 15% by weight aqueous solution of tetra-(n-butyl)-ammonium hydroxide until a pH of 9 is obtained.
- ADN PN HT ADN PN HT ADN adiponitrile; PN propiom'trile; HT hydrotimer.
- EXAMPLE 13 An electrolyte solution is prepared by causing a current of carbon dioxide to pass into a 15 aqueous solution of triethyl-(n-dodecyl)-ammonium hydroxide until the pH is 9. Electrolysis is carried out in the apparatus of Example 1, under the following conditions:
- EXAMPLE 14 An electrolyte, a solution obtained by passing carbon dioxide into a 15% aqueous solution of tributyl-(n-dodecyl)-ammonium hydroxide until a pH equal to 9 is obtained, is used.
- the electrolysis conditions are those of Example 13 except as follows:
- the concentration of acrylonitrile is 2.3%.
- the current density is 4.35 amps/dmP.
- the voltage is 6.6 volts.
- the circulation rate is 450 litres/hour.
- the quantity of acrylonitrile employed is 50.3 g.
- the quantity of electricity is 21.8 ampere-hours.
- EXAMPLE 15 The electrolyte solution is obtained by adding boric acid to a 15% aqueous solution of tetra-(n-pentyl)-ammonium hydroxide until a pH equal to 9 is obtained.
- the electrolysis is carried out as in Example 14, but at a current density of 5.3 arnps/dm. (voltage of 7.8 volts).
- the quantity of electricity used is 31.5 amperehours and the quantity of acrylonitrile employed is 70.1 g., for a concentration kept between 2.9 and 2.4%.
- Example 418 g. of the solution prepared in Example 1 and to which has been added 16 cc. of acrylonitrile (a concentration of 3%) are used. This concentration is maintained during the reaction by addition of acryonitrile.
- the reaction conditions are those of Example 1. Altogether, 90.2 g. of acrylonitrile and 40 ampere-hours of electricity are employed.
- composition of the different phases is given in the following table:
- Process for the electrolytic hydrodimerisation of an alpha,beta-ethylenic compound which comprises subjecting to electrolysis in a single compartment cell a homogeneous aqueous solution of a pH 5 to 10 of said com- 12 pound and a quaternary ammonium salt of an oxygen containing inorganic acid having a pK in water of 5 to 11, the concentration of said quaternary ammonium salt being from 5 to 30% and the concentration of said alpha, beta-ethylenic compound :being 2.3 to 4.6% both by weight of solution.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR108793 | 1967-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3630861A true US3630861A (en) | 1971-12-28 |
Family
ID=8632138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US733306A Expired - Lifetime US3630861A (en) | 1967-06-01 | 1968-05-31 | Electrolytic hydrodimerisation process |
Country Status (12)
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3855269A (en) * | 1972-07-27 | 1974-12-17 | Phillips Petroleum Co | Apparatus and method for separating tetraalkylammonium salt |
US4414079A (en) * | 1981-09-30 | 1983-11-08 | Asahi Kasei Kogyo Kabushiki Kaisha | Process for the preparation of a 4-butanolide compound |
US4931155A (en) * | 1989-05-19 | 1990-06-05 | Southwestern Analytical Chemicals, Inc. | Electrolytic reductive coupling of quaternary ammonium compounds |
US20050010021A1 (en) * | 2001-12-27 | 2005-01-13 | Hideki Date | Polycarboxylic acid mixture |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2019108A1 (enrdf_load_stackoverflow) * | 1968-09-28 | 1970-06-26 | Ucb Union Chimique | |
CA978497A (en) * | 1970-06-01 | 1975-11-25 | Forrest N. Ruehlen | Electrochemical reductive coupling |
-
1967
- 1967-06-01 FR FR108793A patent/FR1548304A/fr not_active Expired
-
1968
- 1968-05-24 NL NL686807382A patent/NL139520B/xx unknown
- 1968-05-30 BE BE715915D patent/BE715915A/xx unknown
- 1968-05-31 US US733306A patent/US3630861A/en not_active Expired - Lifetime
- 1968-05-31 DE DE19681768584 patent/DE1768584A1/de active Pending
- 1968-05-31 AT AT524568A patent/AT280983B/de not_active IP Right Cessation
- 1968-05-31 LU LU56179D patent/LU56179A1/xx unknown
- 1968-05-31 CH CH806368A patent/CH491063A/fr not_active IP Right Cessation
- 1968-05-31 SU SU1260395A patent/SU461490A3/ru active
- 1968-05-31 GB GB26278/68A patent/GB1184754A/en not_active Expired
- 1968-06-01 ES ES354605A patent/ES354605A1/es not_active Expired
- 1968-06-01 CS CS4065A patent/CS174762B2/cs unknown
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3855269A (en) * | 1972-07-27 | 1974-12-17 | Phillips Petroleum Co | Apparatus and method for separating tetraalkylammonium salt |
US4414079A (en) * | 1981-09-30 | 1983-11-08 | Asahi Kasei Kogyo Kabushiki Kaisha | Process for the preparation of a 4-butanolide compound |
US4931155A (en) * | 1989-05-19 | 1990-06-05 | Southwestern Analytical Chemicals, Inc. | Electrolytic reductive coupling of quaternary ammonium compounds |
US20050010021A1 (en) * | 2001-12-27 | 2005-01-13 | Hideki Date | Polycarboxylic acid mixture |
US7262256B2 (en) * | 2001-12-27 | 2007-08-28 | Asahi Kasei Chemicals Corporation | Polycarboxylic acid mixture |
Also Published As
Publication number | Publication date |
---|---|
CS174762B2 (enrdf_load_stackoverflow) | 1977-04-29 |
DE1768584A1 (de) | 1971-11-18 |
LU56179A1 (enrdf_load_stackoverflow) | 1969-03-20 |
FR1548304A (enrdf_load_stackoverflow) | 1968-12-06 |
NL6807382A (enrdf_load_stackoverflow) | 1968-12-02 |
ES354605A1 (es) | 1969-11-16 |
SU461490A3 (ru) | 1975-02-25 |
AT280983B (de) | 1970-05-11 |
GB1184754A (en) | 1970-03-18 |
CH491063A (fr) | 1970-05-31 |
NL139520B (nl) | 1973-08-15 |
BE715915A (enrdf_load_stackoverflow) | 1968-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3899401A (en) | Electrochemical production of pinacols | |
US3492209A (en) | Hydrodimerization in a wicking type cell | |
US4938854A (en) | Method for purifying quaternary ammonium hydroxides | |
EP0270390B1 (en) | A method for producing adiponitrile | |
US3630861A (en) | Electrolytic hydrodimerisation process | |
US3193479A (en) | Electrolytic coupling of an olefinic compound with a ketone | |
US3193477A (en) | Electrolytic hydrodimerization process and extraction procedure | |
US3779876A (en) | Process for the preparation of glyoxylic acid | |
Wagenknecht et al. | Electrochemical Reduction of Cyanoalkyldimethylsulfonium Ions | |
US3616320A (en) | Production of adiponitrile | |
Ross et al. | Mechanism of the electroreduction of benzyltriethylammonium nitrate in dimethylformamide at aluminum and platinum cathodes | |
US4298438A (en) | Preparation of 4-tert.-butylbenzaldehyde | |
US2770588A (en) | Method of recovering fatty acid and alkali by the electrolysis of an aqueous solution of an alkali metal salt of a fatty acid | |
US3756928A (en) | Ls process for the manufacture of sebacic acid diesters of higher alcoho | |
US3193483A (en) | Electrolysis of acrylamides | |
US3755101A (en) | Process for the preparation of saligenol | |
US3556961A (en) | Electrolytic hydrodimerisation | |
US3413202A (en) | Electrolysis of di-olefinic compounds | |
US3871976A (en) | Electrochemical adiponitrile process | |
US3475298A (en) | Electrochemical dimerization of beta-halopropionitriles in aqueous media | |
US3497429A (en) | Electrolytic method of manufacturing hydrodimer of acrylonitrile | |
US3390066A (en) | Electrolytic hydrodimerization of certain allyl compounds | |
US3945896A (en) | Electrolytic carboxylation of acetonitrile and alpha-substituted acetonitriles | |
US3410769A (en) | Electrolytic reductive coupling of azomethines | |
US3411997A (en) | Electrolytic process for preparing nlower acyloxymethyl-n-hydrocabyl lower acylamides and certain derivatives thereof |