US3625200A - Controlled curvable tip member - Google Patents

Controlled curvable tip member Download PDF

Info

Publication number
US3625200A
US3625200A US3625200DA US3625200A US 3625200 A US3625200 A US 3625200A US 3625200D A US3625200D A US 3625200DA US 3625200 A US3625200 A US 3625200A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
guide
spring
end
distal
link
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Wolf F Muller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States Catheter and Instrument Corp
Original Assignee
United States Catheter and Instrument Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/04Endoscopic instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0055Constructional details of insertion parts, e.g. vertebral elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M25/09016Guide wires with mandrils
    • A61M25/09033Guide wires with mandrils with fixed mandrils, e.g. mandrils fixed to tip; Tensionable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2905Details of shaft flexible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip

Abstract

A wire-controlled curvable tip for a spring guide comprising solid cylindrical links engaging each other with nonlocking balland-socket type of articulation and adjustable to varying degrees of curvature by means of wires, each wire passing through a series of matching tunnels lengthwise of the links, secured at one end in the most distally located link and manipulated by applying differential tension to the other ends of the respective wires at the proximal end of the spring guide.

Description

United States Patent [72] Inventor Wolf F. Muller Southampton, N.Y. [21] Appl. No. 853,147 [22] Filed Aug. 26, 1969 [45] Patented Dec. 7, 1971 [73] Assignee United States Catheter & Instrument Corporation Glen Falls, N.Y.

[ 54] CONTROLLED CURVABLE TIP MEMBER 9 Claims, 4 Drawing Figs.

[52] U.S. Cl l28/2.05 R, l28/D1G. 9, 128/303, l28/328, 128/348 [51] Int. Cl A6lb 10/00, A61m 25/00 [50] Field of Search 128/2.05 R, 2, 3-8, 328, 303, 349, 348, 356, D16. 9

[56] References Cited UNITED STATES PATENTS 1,733,239 10/1929 Roberts 128/398 2,975,785 3/1961 Sheldon. 128/6 3,060,972 10/1962 Sheldon 128/4 UX OTHER REFERENCES Smith, G. A. et al., Surgery, Vol.27, No. 6, June, 1950, ppv 8l7-82l,(copyin 128/348) Primary Examiner- Richard A. Gaudet Assistant Examiner Kyle L. Howell Attorney-W. Saxton Seward ABSTRACT: A wire-controlled curvable tip for a spring guide comprising solid cylindrical links engaging each other with nonlocking ball-and-socket type of articulation and adjustable to varying degrees of curvature by means of wires, each wire passing through a series of matching tunnels lengthwise of the links, secured at one end in the most distally located link and manipulated by applying differential tension to the other ends ofthe respective wires at the proximal end ofthe spring guide.

MWEIDIIEB mm:

U J F INVENTOR WOLF E MULLER 1 CONTROLLED CURVABLE TIP MEMBER THE INVENTION This invention relates to new and useful improvements in spring guides, elongated medical devices, e.g. used in vascular, intestinal, urological, etc. manipulations where the distal end within the body must be controlled from the proximal end outside the body and more particularly seeks to provide such a device that has a controlled curvable tip for easy deflection from straight line courses.

The marked advances in cardiac and vascular surgery in the past few years and other medical problems that require diagnostic study of the vascular beds and systems has led to the extensive use of cardiac or vascular catheters, particularly for retrograde aortography and angiocardiography, and less often to take blood samples, determine oxygen content, infuse medicaments, and various other uses that require the insertion of a relatively long catheter to an internal site that requires movement of the catheter into branch vessels at sharp angles relative to the feeding direction of the catheter.

The most common method for insertion of such catheters is the percutaneous technique described in 1953 by Sven Ivar Seldinger. In this procedure a local anesthesia is administered and a skin puncture made at a small angle to the vessel (e.g. femoral in the leg or brachial in the arm) with an obturator positioned within a cannula. Once the unit has been properly located in the vessel, the obturator is removed and the flexible spring guide then inserted through the cannula into the vessel for a short distance. Pressure is then applied to hold the spring guide in place while the cannula is withdrawn. The spring guide is then fed into the vessel, generally under observation by means of fluoroscope, until the desired point is reached which may require considerable manipulation if there are branched vessels or curves concerned. Thereafter the catheter is passed over the flexible spring guide and fed into the desired position and the spring guide then withdrawn from the catheter unless both are needed for cooperative manipulation purposes.

There has also been a frequent need to place elongated tubes through the nose into at least the duodenum and even further down the intestinal tract. It is fairly easy to reach the stomach but becomes difficult to pass through the pylorus because of the curvature into the duodenum. Once in the duodenum, decompression, introduction of contrast media, washing, sampling, biopsy, etc. becomes much simpler. Heretofore, flexible plastic or rubber tubes with a weighted distal end were utilized to reach the duodenum but the procedure sometimes takes several hours and sometimes cannot be accomplished at all.

There are presently available spring guides for vascular work made from stainless steel of H and 125 cm. lengths, each having outside diameter sizes of 0.025 (pediatric), 0.035 and 0.045 inch which are used with correspondingly shorter catheters. The guides consist of an outer case which is a closely wound stainless steel spring to form a continuous coil surrounding an inner bore which is then sealed at the distal end with a rounded tip or cap. A straight inner wire is placed within the coil bore and is either freely movable within the guide or fixed within the guide about 3 cm. short of the distal tip which is left flexible for manipulation purposes.

The spring guides are quite flexible but there is no lateral control over the distal end from the proximal end after insertion into a vessel. Thus to pass sharp curves or to go into branch vessels the surgeon must make all kinds of turning and push-pull manipulations, with the hope that by chance the distal end will finally lead into the branch vessel or around the curve as desired. Some catheters have soft curved ends which are maintained in a straight position as the catheter is fed through the vessel over the spring guide, when the catheter tip passes beyond the end of the spring guide it recovers its normal curved form and can be used to enter branch vessels, etc. This, however, has not been entirely satisfactory and presents several problems, one of which is that the surgeon must be manipulating both the spring guide and the catheter to secure desired results. Secondly, once the spring guide is removed from the catheter tip the tip has a set curve which cannot be changed nor straightened without insertion of the guide, and perhaps most importantly, the curve is in one direction only so that rotation of elongated catheters from the proximal end is necessary.

Therefore, it is an object of this invention to provide a spring guide, the straight distal end of which can be manipulated from the proximal end that is outside the patient to make it useful for intestinal studies and more useful for vascular studies.

It is a further object of this invention to have a spring guide which has a spinelike tip at the distal end which may be manipulated in are or curved condition by means of wires that lead through the bore of the spring guide to the distal end where the spinelike tip is positioned.

lt is also an object of this invention to provide a spring guide that can be curved in any direction from outside the patient while it is being fed through vessels or may be curved after the catheter is placed thereover and thus cause the catheter to curve.

I have found that a conventional spring guide may be used to carry a single or preferably a series of fine wires from the proximal end to the distal end, which wires then pass from the guide bore through the walls of a series of pivotal links that extend beyond the coil tip, to be anchored in the most distal link. With this arrangement, if one wire is pulled at the proximal end, it will cause curving of the pivotal links at the distal end.

With the above and other objects and features in view, the nature of which will be more apparent, the invention will be more fully understood by reference to the drawings, the accompanying detailed description and the appended claims.

In the drawings:

FIG. 1 is a longitudinal cross section taken through a spring guide constructed in accordance with this invention with the tip in straight position;

FIG. 2 is a perspective view of the tip when in a curved condition;

FIG. 3 is a transverse section taken along line 3-3 of FIG. 1; and

FIG. 4 is a transverse cross section taken along line 4-4 of FIG. 1.

This invention as illustrated shows a spring guide having a curvable tip controlled through a series of three double wires or six single wires, the number of which could obviously be anything from one single wire to as many as could be carried within the bore of the spring guide coils.

A conventional spring guide 5 is shown in FIG. 1 made up of continuous contiguous coils 6 which in this instance have the distal coils 7 machined slightly for close fitting of the tip shown generally at 8 that includes a proximal link 9, a distal link 10 and a plurality of intermediate links ll. Securely fixed to the distal link 10 is a rounded cap 12 which prevents entry of blood into the unit and also serves as a blunt leading edge that will not pierce or irritate the vessels when being fed into position.

A series of fine wires 13 (preferably 0.002 inch diameter with a range of 0.001 to 0.004 inch) pass through the inner bore 14 of the spring guide coil portion extending freely out the proximal end for manipulation manually or by handles developed for that purpose.

At the distal end of the coils it will be noted that proximal link 9 is provided with a recess 15 which fits over the distal coil 7 and is secured thereto by welding or other means. Each link proximal to distal link 10 is provided with a spherical extension 16 on the distal end thereof which serves as a pivot bearing for the link distal thereto and rests within the cavity 17 provided in the proximal end of each link distal to proximal link 9. Each intermediate link 11 is provided with a series of radially spaced tunnels 18 that extend longitudinally through the body thereof parallel to the longitudinal axis. The proximal link 9 is provided with a corresponding set of tunnels l9,

except that these are at an angle in order to extend from recess to the distal end where they must meet tunnel 18 of the first intermediate link. Distal link 10 has also been provided with a recess at its distal end and associated tunnels 21 which are parallel to the outer surface and extend from the proximal end into the recess 20. Each wire strand l3 emerges from distal coils 7 and passes into an associated tunnel 19 within the proximal link 9 and then into a series of tunnels 18 in the intermediate links 11 and then into an associated tunnel 21 in the distal link 10. On emerging from tunnel 21 the wire is immediately reversed as shown best in FIG. 3 and goes into another of the tunnels 18, then back through proximal tunnels 19 and finally back into the bore of the coil portions and then extends to and beyond the proximal end of the coil portion.

It will be appreciated that there is no attachment or securing of the various links to one another, except through the wires 13 which thus permits each one to pivot relative to the contiguous links. However, it is necessary that the cap be secured to the distal link 10 and preferable that the proximal link 9 be secured to the distal coil 7.

With this construction, by applying tension to one of the strands 13 at the proximal end of the spring guide or to several of the wires as long as they are on the same side of the tip, one may bend the tip through as much as l80 with little difficulty, depending somewhat of course on how many intermediate links 11 are provided. For example, with 16 intermediate links covering about three-fourths inch, one can easily curve the tip through 180 with a radius of three-sixteenths inch.

Although more sensitive controls are possible with the six wires as shown (i.e. three wires each reversed as shown in FIG. 3 which also secures the distal link 10 and other links to the coils, it is possible, of course, to have any number of wires which may run only to the distal tip without being brought back, but which then would have to be secured to the distal link. If there are two or more wires, when increased tension is applied to one or more, the opposed wire or wires (as seen in a cross section such as FIG. 4) must be released since the 0pposed wires must become longer (see bottom wire 13 of FIG. 2) while the pulled wires become shorter (see top wire 13 of FIG. 2). Thus two wires radially spaced 180 would provide curvature in opposite directions but only one plane, whereas three or more wires increase the third-dimensional aspect of the curvature.

The sizes, of course, must all be in relation to that conventionally used for spring guides which are restricted, particularly when being used in blood vessels. Stainless steel has conventionally been the choice for spring guide coils and the wires that run through the bores thereof and l have respected those choices as my preference in this instance. It has been found, however, that the links are easier formed from brass, but in any event, materials do not constitute a particular feature of this invention as long as the particular material can be machined into the shape shown and is compatible with the human tissues.

It will be obvious, of course, that there are various ways of utilizing this item in practice. The spring guide per se may be manipulated to run the end into branch arteries or around curves in the various vessels. In addition, the spring guide may be put in straight and then covered by the catheter and then the tip curved with the catheter thereon, which will of course also curve the catheter, so that the manipulation is done with the combined spring guide and catheter. If it is desired to pass two curves or branches with one operation, the spring guide alone can, of course, be passed around a first branch or curve and the tip straightened, as the curve will now be held by the blood vessel itself and the tip will then be ready for further manipulation through the control wires to move into a second branch. Once again, this may be done with the spring guide alone or in conjunction with the catheter covering same.

Various changes, modifications and ramifications will of course be obvious to those skilled in the art and are considered to be within the scope of the appended claims hereto.

lclaim:

1. A tubular spring guide having a curvable tip comprising a plurality of solid cylindrical links positioned along the longitudinal axis of said tip, successive links being adjacent and centrally pivotally engaging each other, a plurality of tunnels extending longitudinally and off center through each said link, a continuous wire extending freely through each said tunnel and secured to the most distally located of said links, the most proximally located of said links being adjacent the distal end of said spring guide, and each said wire extending through and to the proximal end of said spring guide whereby said tip can be controllably curved by selective tensioning of said wires.

2. The spring guide of claim 1 wherein said most proximally located link is provided with a recess that fits over and is secured to said distal end of said guide.

3. A spring guide according to claim 1 in which the tunnels through the most proximally located link lie at acute angles from the axis of said link, the distal end of each said angled tunnel being disposed opposite the proximal end of a tunnel through an adjacent link, and the proximal end of each said angled tunnel being closer to the axis and communicating with the bore of the tubular spring guide.

4. A spring guide according to claim I in which an individual control wire extending freely distally through an aligned set of tunnels is turned in the most distally located link to return proximally through another aligned set of tunnels.

5. The spring guide of claim 4 wherein said links are each provided with six tunnels and there are three continuous control wires having six free ends available at said proximal spring guide end.

6. The spring guide of claim 4 wherein said distal link is provided with a blunt rounded cap secured beyond said tunnels and wires.

7. The spring guide of claim 4 wherein said distal link has a recess at its distal end within which said distal link tunnels terminate and said wires turn laterally to reverse their directions.

8. In a spring guide formed from a continuously coiled wire, the improvement including a curvable tip positioned adjacent and longitudinally beyond the distal end of said guide, and a plurality of control wires extending from said tip through the bore and beyond the proximal end of said spring guide, said tip comprising a plurality of longitudinally positioned solid cylindrical links, successive links being adjacent and centrally pivotally engaging each other, a plurality of tunnels extending longitudinally and off center through each said link, the tunnels in each link being in alignment with the tunnels in each adjacent link, said control wires extending freely through each said tunnel and each being secured to the most distal of said links whereby said tip can be controllably curved from said proximal end of said spring guide by selective tensioning of said wires.

9. The spring guide of claim 8 wherein said pivotal engagement means are ball-and-socket elements at the joining surfaces of said adjacent link pairs.

Claims (9)

1. A tubular spring guide having a curvable tip comprising a plurality of solid cylindrical links positioned along the longitudinal axis of said tip, successive links being adjacent and centrally pivotally engaging each other, a plurality of tunnels extending longitudinally and off center through each said link, a continuous wire extending freely through each said tunnel and secured to the most distally located of said links, the most proximally located of said links being adjacent the distal end of said spring guide, and each said wire extending through and to the proximal end of said spring guide whereby said tip can be controllably curved by selective tensioning of said wires.
2. The spring guide of claim 1 wherein said most proximally located link is provided with a recess that fits over and is secured to said distal end of said guide.
3. A spring guide according to claim 1 in which the tunnels through the most proximally located link lie at acute angles from the axis of said link, the distal end of each said angled tunnel being disposed opposite the proximal end of a tunnel through an adjacent link, and the proximal end of each said angled tunnel being closer to the axis and communicating with the bore of the tubular spring guide.
4. A spring guide according to claim 1 in which an individual control wire extending freely distally through an aligned set of tunnels is turned 180* in the most distally located link to return proximally through another aligned set of tunnels.
5. The spring guide of claim 4 wherein said links are each provided with six tunnels and there are three continuous control wires having six free ends available at said proximal spring guide end.
6. The spring guide of claim 4 wherein said distal link is provided with a blunt rounded cap secured beyond said tunnels and wires.
7. The spring guide of claim 4 wherein said disTal link has a recess at its distal end within which said distal link tunnels terminate and said wires turn laterally to reverse their directions.
8. In a spring guide formed from a continuously coiled wire, the improvement including a curvable tip positioned adjacent and longitudinally beyond the distal end of said guide, and a plurality of control wires extending from said tip through the bore and beyond the proximal end of said spring guide, said tip comprising a plurality of longitudinally positioned solid cylindrical links, successive links being adjacent and centrally pivotally engaging each other, a plurality of tunnels extending longitudinally and off center through each said link, the tunnels in each link being in alignment with the tunnels in each adjacent link, said control wires extending freely through each said tunnel and each being secured to the most distal of said links whereby said tip can be controllably curved from said proximal end of said spring guide by selective tensioning of said wires.
9. The spring guide of claim 8 wherein said pivotal engagement means are ball-and-socket elements at the joining surfaces of said adjacent link pairs.
US3625200A 1969-08-26 1969-08-26 Controlled curvable tip member Expired - Lifetime US3625200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US85314769 true 1969-08-26 1969-08-26

Publications (1)

Publication Number Publication Date
US3625200A true US3625200A (en) 1971-12-07

Family

ID=25315198

Family Applications (1)

Application Number Title Priority Date Filing Date
US3625200A Expired - Lifetime US3625200A (en) 1969-08-26 1969-08-26 Controlled curvable tip member

Country Status (1)

Country Link
US (1) US3625200A (en)

Cited By (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134405A (en) * 1977-01-10 1979-01-16 Smit Julie A Catheter and intestine tube and method of using the same
US4215703A (en) * 1978-08-29 1980-08-05 Willson James K V Variable stiffness guide wire
US4454888A (en) * 1981-10-07 1984-06-19 Cordis Corporation Cardiac pacing lead with curve retainer
US4545081A (en) * 1981-06-29 1985-10-08 Jack Nestor Semi-rigid penile prosthesis with separable members and posture control
EP0165718A2 (en) * 1984-05-22 1985-12-27 Pilkington Medical Systems Limited (formely Minvade Limited) Endoscopes
US4615472A (en) * 1985-06-19 1986-10-07 Intravascular Surgical Instruments, Inc. Catheter placement device
US4643194A (en) * 1980-01-24 1987-02-17 Thomas J. Fogarty Flexible calibrator
EP0254701A1 (en) 1986-07-22 1988-01-27 Medtronic Versaflex, Inc. Steerable catheter
US4757827A (en) * 1987-02-17 1988-07-19 Versaflex Delivery Systems Inc. Steerable guidewire with deflectable tip
US4813434A (en) * 1987-02-17 1989-03-21 Medtronic Versaflex, Inc. Steerable guidewire with deflectable tip
US4815478A (en) * 1987-02-17 1989-03-28 Medtronic Versaflex, Inc. Steerable guidewire with deflectable tip
US4841976A (en) * 1987-12-17 1989-06-27 Schneider-Shiley (Usa) Inc. Steerable catheter guide
US4886067A (en) * 1989-01-03 1989-12-12 C. R. Bard, Inc. Steerable guidewire with soft adjustable tip
US4944740A (en) * 1984-09-18 1990-07-31 Medtronic Versaflex, Inc. Outer exchange catheter system
US4955384A (en) * 1989-05-11 1990-09-11 Advanced Cardiovascular Systems, Inc. Guiding member for vascular catheters with a flexible link distal section
US4984581A (en) * 1988-10-12 1991-01-15 Flexmedics Corporation Flexible guide having two-way shape memory alloy
WO1991011213A1 (en) * 1990-02-02 1991-08-08 Ep Technologies, Inc. Catheter steering mechanism
US5042475A (en) * 1988-09-30 1991-08-27 Portex, Inc. Hinged tracheostomy tube obturator
US5059176A (en) * 1989-12-21 1991-10-22 Winters R Edward Vascular system steerable guidewire with inflatable balloon
US5065703A (en) * 1987-03-18 1991-11-19 Electric Power Research Institute, Inc. Flexible lance for steam generator secondary side sludge removal
US5067489A (en) * 1988-08-16 1991-11-26 Flexmedics Corporation Flexible guide with safety tip
WO1992004933A1 (en) * 1990-09-17 1992-04-02 Pilot Cardiovascular Systems, Inc. Steerable medical device
US5125895A (en) * 1986-07-22 1992-06-30 Medtronic Versaflex, Inc. Steerable catheter
US5190050A (en) * 1991-11-08 1993-03-02 Electro-Catheter Corporation Tip deflectable steerable catheter
US5195968A (en) * 1990-02-02 1993-03-23 Ingemar Lundquist Catheter steering mechanism
US5203772A (en) * 1989-01-09 1993-04-20 Pilot Cardiovascular Systems, Inc. Steerable medical device
US5207229A (en) * 1989-12-21 1993-05-04 Advanced Biomedical Devices, Inc. Flexibility steerable guidewire with inflatable balloon
US5254088A (en) * 1990-02-02 1993-10-19 Ep Technologies, Inc. Catheter steering mechanism
WO1994009843A1 (en) * 1992-11-02 1994-05-11 Catheter Imaging Systems Catheter having a multiple durometer
US5318525A (en) * 1992-04-10 1994-06-07 Medtronic Cardiorhythm Steerable electrode catheter
EP0628323A1 (en) * 1993-06-11 1994-12-14 Cordis Europa N.V. Controllably bendable catheter
US5383852A (en) * 1992-12-04 1995-01-24 C. R. Bard, Inc. Catheter with independent proximal and distal control
US5386828A (en) * 1991-12-23 1995-02-07 Sims Deltec, Inc. Guide wire apparatus with location sensing member
US5397304A (en) * 1992-04-10 1995-03-14 Medtronic Cardiorhythm Shapable handle for steerable electrode catheter
US5465716A (en) * 1993-11-22 1995-11-14 Avitall; Boaz Catheter control handle
US5562619A (en) * 1993-08-19 1996-10-08 Boston Scientific Corporation Deflectable catheter
US5571085A (en) * 1995-03-24 1996-11-05 Electro-Catheter Corporation Steerable open lumen catheter
EP0741546A1 (en) * 1994-01-24 1996-11-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US5645065A (en) * 1991-09-04 1997-07-08 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5673707A (en) * 1994-09-23 1997-10-07 Boston Scientific Corporation Enhanced performance guidewire
US5771902A (en) * 1995-09-25 1998-06-30 Regents Of The University Of California Micromachined actuators/sensors for intratubular positioning/steering
US5810790A (en) * 1996-11-19 1998-09-22 Ebling; Wendell V. Catheter with viewing system and port connector
USD398986S (en) 1996-01-16 1998-09-29 Catheter Imaging Systems, Inc. Handle interface for steerable catheter
US5827278A (en) * 1997-05-20 1998-10-27 Cordis Webster, Inc. Deflectable tip electrode catheter with nylon stiffener and compression coil
US5846221A (en) * 1996-02-09 1998-12-08 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
US5857996A (en) * 1992-07-06 1999-01-12 Catheter Imaging Systems Method of epidermal surgery
US6007531A (en) * 1995-11-21 1999-12-28 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
US6033378A (en) * 1990-02-02 2000-03-07 Ep Technologies, Inc. Catheter steering mechanism
US6066125A (en) * 1997-09-05 2000-05-23 Cordis Webster, Inc. Omni-directional steerable catheter
US6165139A (en) * 1993-03-01 2000-12-26 Fonar Corporation Remotely steerable guide wire with external control wires
US6171277B1 (en) 1997-12-01 2001-01-09 Cordis Webster, Inc. Bi-directional control handle for steerable catheter
WO2001003766A1 (en) * 1999-07-08 2001-01-18 C.R. Bard, Inc. Steerable catheter
US6183463B1 (en) 1997-12-01 2001-02-06 Cordis Webster, Inc. Bidirectional steerable cathether with bidirectional control handle
US6198974B1 (en) 1998-08-14 2001-03-06 Cordis Webster, Inc. Bi-directional steerable catheter
US6210407B1 (en) 1998-12-03 2001-04-03 Cordis Webster, Inc. Bi-directional electrode catheter
US6327492B1 (en) * 1996-11-05 2001-12-04 Jerome Lemelson System and method for treating select tissue in a living being
US20020010426A1 (en) * 1999-04-30 2002-01-24 Applied Medical Resources Corporation Guidewire
US6394976B1 (en) * 2000-01-31 2002-05-28 Intraluminal Therapeutics, Inc. Catheter for controlling the advancement of a guide wire
US6428489B1 (en) 1995-12-07 2002-08-06 Precision Vascular Systems, Inc. Guidewire system
US20030069522A1 (en) * 1995-12-07 2003-04-10 Jacobsen Stephen J. Slotted medical device
US6571131B1 (en) 2000-11-10 2003-05-27 Biosense Webster, Inc. Deflectable catheter with modifiable handle
US6579246B2 (en) 1999-12-22 2003-06-17 Sarcos, Lc Coronary guidewire system
US6585717B1 (en) 1999-06-15 2003-07-01 Cryocath Technologies Inc. Deflection structure
US6743239B1 (en) 2000-05-25 2004-06-01 St. Jude Medical, Inc. Devices with a bendable tip for medical procedures
US20040106897A1 (en) * 1990-02-02 2004-06-03 Thompson Russell B. Assemblies for creating compound curves in distal catheter regions
WO2004075965A1 (en) * 2003-02-26 2004-09-10 Boston Scientific Limited Intracorporal medical device having an articulating section
US20050137501A1 (en) * 2003-12-22 2005-06-23 Euteneuer Charles L. Medical device with push force limiter
EP1588670A1 (en) * 2002-11-08 2005-10-26 Olympus Corporation Medical appliance through endoscope
US7001369B2 (en) 2003-03-27 2006-02-21 Scimed Life Systems, Inc. Medical device
US20060200171A1 (en) * 2005-03-04 2006-09-07 Boston Scientific Scimed, Inc. Medical retrieval device and related methods of use
US7169118B2 (en) 2003-02-26 2007-01-30 Scimed Life Systems, Inc. Elongate medical device with distal cap
US20070049846A1 (en) * 2005-08-24 2007-03-01 C.R.Bard, Inc. Stylet Apparatuses and Methods of Manufacture
US20080243064A1 (en) * 2007-02-15 2008-10-02 Hansen Medical, Inc. Support structure for robotic medical instrument
US20090131948A1 (en) * 2007-11-16 2009-05-21 Osseon Therapeutics, Inc. Steerable vertebroplasty system
US20090216245A1 (en) * 2008-02-26 2009-08-27 Tyco Healthcare Group Lp Flexible Hollow Spine With Locking Feature And Manipulation Structure
US7632242B2 (en) 2004-12-09 2009-12-15 Boston Scientific Scimed, Inc. Catheter including a compliant balloon
US20100094116A1 (en) * 2008-10-07 2010-04-15 Lucent Medical Systems, Inc. Percutaneous magnetic gastrostomy
US20100204569A1 (en) * 2007-11-26 2010-08-12 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US7841994B2 (en) 2007-11-02 2010-11-30 Boston Scientific Scimed, Inc. Medical device for crossing an occlusion in a vessel
US7850623B2 (en) 2005-10-27 2010-12-14 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
US20100317981A1 (en) * 2009-06-12 2010-12-16 Romedex International Srl Catheter Tip Positioning Method
US20100318026A1 (en) * 2009-06-12 2010-12-16 Romedex International Srl Devices and Methods for Endovascular Electrography
US20110015533A1 (en) * 2007-11-26 2011-01-20 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US7878984B2 (en) 2002-07-25 2011-02-01 Boston Scientific Scimed, Inc. Medical device for navigation through anatomy and method of making same
US7914467B2 (en) 2002-07-25 2011-03-29 Boston Scientific Scimed, Inc. Tubular member having tapered transition for use in a medical device
US7976518B2 (en) 2005-01-13 2011-07-12 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
US20110196248A1 (en) * 2009-06-12 2011-08-11 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US8105246B2 (en) 2007-08-03 2012-01-31 Boston Scientific Scimed, Inc. Elongate medical device having enhanced torque and methods thereof
US8137293B2 (en) 2009-11-17 2012-03-20 Boston Scientific Scimed, Inc. Guidewires including a porous nickel-titanium alloy
US8197494B2 (en) 2006-09-08 2012-06-12 Corpak Medsystems, Inc. Medical device position guidance system with wireless connectivity between a noninvasive device and an invasive device
US8353898B2 (en) 2009-05-29 2013-01-15 Aesculap Ag Surgical instrument
US8376961B2 (en) 2008-04-07 2013-02-19 Boston Scientific Scimed, Inc. Micromachined composite guidewire structure with anisotropic bending properties
US8377035B2 (en) 2003-01-17 2013-02-19 Boston Scientific Scimed, Inc. Unbalanced reinforcement members for medical device
US8382742B2 (en) 2009-05-29 2013-02-26 Aesculap Ag Surgical instrument
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8388541B2 (en) 2007-11-26 2013-03-05 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US8409114B2 (en) 2007-08-02 2013-04-02 Boston Scientific Scimed, Inc. Composite elongate medical device including distal tubular member
US8449526B2 (en) 2001-07-05 2013-05-28 Boston Scientific Scimed, Inc. Torqueable soft tip medical device and method of usage
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US8535243B2 (en) 2008-09-10 2013-09-17 Boston Scientific Scimed, Inc. Medical devices and tapered tubular members for use in medical devices
US8551020B2 (en) 2006-09-13 2013-10-08 Boston Scientific Scimed, Inc. Crossing guidewire
US8551021B2 (en) 2010-03-31 2013-10-08 Boston Scientific Scimed, Inc. Guidewire with an improved flexural rigidity profile
US8556914B2 (en) 2006-12-15 2013-10-15 Boston Scientific Scimed, Inc. Medical device including structure for crossing an occlusion in a vessel
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
US8753360B2 (en) 2010-11-08 2014-06-17 Covidien Lp Expandable mesh system and method of use therefor
US8795254B2 (en) 2008-12-10 2014-08-05 Boston Scientific Scimed, Inc. Medical devices with a slotted tubular member having improved stress distribution
US8795202B2 (en) 2011-02-04 2014-08-05 Boston Scientific Scimed, Inc. Guidewires and methods for making and using the same
US8801693B2 (en) 2010-10-29 2014-08-12 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
US8821477B2 (en) 2007-08-06 2014-09-02 Boston Scientific Scimed, Inc. Alternative micromachined structures
US8827981B2 (en) 2007-11-16 2014-09-09 Osseon Llc Steerable vertebroplasty system with cavity creation element
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US20140371764A1 (en) * 2011-09-13 2014-12-18 Medrobotics Corporation Highly articulated probes with anti-twist link arrangement, methods of formation thereof, and methods of performing medical procedures
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
US8986225B2 (en) 2012-08-02 2015-03-24 Covidien Lp Guidewire
US8992421B2 (en) 2010-10-22 2015-03-31 Medrobotics Corporation Highly articulated robotic probes and methods of production and use of such probes
US9028441B2 (en) 2011-09-08 2015-05-12 Corpak Medsystems, Inc. Apparatus and method used with guidance system for feeding and suctioning
US9072874B2 (en) 2011-05-13 2015-07-07 Boston Scientific Scimed, Inc. Medical devices with a heat transfer region and a heat sink region and methods for manufacturing medical devices
US20150209215A1 (en) * 2014-01-24 2015-07-30 Samsung Electronics Co., Ltd. Holder and walking assistant robot having the same
US9211107B2 (en) 2011-11-07 2015-12-15 C. R. Bard, Inc. Ruggedized ultrasound hydrogel insert
US20160074630A1 (en) * 2014-09-16 2016-03-17 Asahi Intecc Co., Ltd. Guidewire
US9314593B2 (en) 2012-09-24 2016-04-19 Cook Medical Technologies Llc Medical devices for the identification and treatment of bodily passages
US9364955B2 (en) 2011-12-21 2016-06-14 Medrobotics Corporation Stabilizing apparatus for highly articulated probes with link arrangement, methods of formation thereof, and methods of use thereof
US9375138B2 (en) 2011-11-25 2016-06-28 Cook Medical Technologies Llc Steerable guide member and catheter
US9445784B2 (en) 2005-09-22 2016-09-20 Boston Scientific Scimed, Inc Intravascular ultrasound catheter
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US9468359B2 (en) 2011-04-12 2016-10-18 Aesculap Ag Control apparatus
US9492097B2 (en) 2007-11-26 2016-11-15 C. R. Bard, Inc. Needle length determination and calibration for insertion guidance system
US9510885B2 (en) 2007-11-16 2016-12-06 Osseon Llc Steerable and curvable cavity creation system
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US9549748B2 (en) 2013-08-01 2017-01-24 Cook Medical Technologies Llc Methods of locating and treating tissue in a wall defining a bodily passage
US9554716B2 (en) 2007-11-26 2017-01-31 C. R. Bard, Inc. Insertion guidance system for needles and medical components
US9649163B2 (en) 2010-11-11 2017-05-16 Medrobotics Corporation Introduction devices for highly articulated robotic probes and methods of production and use of such probes
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9675380B2 (en) 2012-08-09 2017-06-13 Medrobotics Corporation Surgical tool positioning system
GB2546314A (en) * 2016-01-15 2017-07-19 Cook Medical Technologies Llc Locking medical guide wire
US9808595B2 (en) 2007-08-07 2017-11-07 Boston Scientific Scimed, Inc Microfabricated catheter with improved bonding structure
US9833130B2 (en) 2011-07-22 2017-12-05 Cook Medical Technologies Llc Irrigation devices adapted to be used with a light source for the identification and treatment of bodily passages
US9839372B2 (en) 2014-02-06 2017-12-12 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
US9895055B2 (en) 2013-02-28 2018-02-20 Cook Medical Technologies Llc Medical devices, systems, and methods for the visualization and treatment of bodily passages
US9901410B2 (en) 2010-07-28 2018-02-27 Medrobotics Corporation Surgical positioning and support system
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US9901706B2 (en) 2014-04-11 2018-02-27 Boston Scientific Scimed, Inc. Catheters and catheter shafts
US9913695B2 (en) 2013-05-02 2018-03-13 Medrobotics Corporation Robotic system including a cable interface assembly
US9937323B2 (en) 2014-02-28 2018-04-10 Cook Medical Technologies Llc Deflectable catheters, systems, and methods for the visualization and treatment of bodily passages

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1733239A (en) * 1929-01-31 1929-10-29 Donald E Roberts Applicator for conducting ultra-violet rays
US2975785A (en) * 1957-09-26 1961-03-21 Bausch & Lomb Optical viewing instrument
US3060972A (en) * 1957-08-22 1962-10-30 Bausch & Lomb Flexible tube structures
US3071161A (en) * 1960-05-16 1963-01-01 Bausch & Lomb Bidirectionally flexible segmented tube
US3190286A (en) * 1961-10-31 1965-06-22 Bausch & Lomb Flexible viewing probe for endoscopic use
US3266059A (en) * 1963-06-19 1966-08-16 North American Aviation Inc Prestressed flexible joint for mechanical arms and the like
US3270641A (en) * 1963-07-01 1966-09-06 Iota Cam Corp Remote inspection device and threaded member used therein
US3452742A (en) * 1966-05-31 1969-07-01 Us Catheter & Instr Corp Controlled vascular curvable spring guide
US3470876A (en) * 1966-09-28 1969-10-07 John Barchilon Dirigible catheter
US3521620A (en) * 1967-10-30 1970-07-28 William A Cook Vascular coil spring guide with bendable tip

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1733239A (en) * 1929-01-31 1929-10-29 Donald E Roberts Applicator for conducting ultra-violet rays
US3060972A (en) * 1957-08-22 1962-10-30 Bausch & Lomb Flexible tube structures
US2975785A (en) * 1957-09-26 1961-03-21 Bausch & Lomb Optical viewing instrument
US3071161A (en) * 1960-05-16 1963-01-01 Bausch & Lomb Bidirectionally flexible segmented tube
US3190286A (en) * 1961-10-31 1965-06-22 Bausch & Lomb Flexible viewing probe for endoscopic use
US3266059A (en) * 1963-06-19 1966-08-16 North American Aviation Inc Prestressed flexible joint for mechanical arms and the like
US3270641A (en) * 1963-07-01 1966-09-06 Iota Cam Corp Remote inspection device and threaded member used therein
US3452742A (en) * 1966-05-31 1969-07-01 Us Catheter & Instr Corp Controlled vascular curvable spring guide
US3452740A (en) * 1966-05-31 1969-07-01 Us Catheter & Instr Corp Spring guide manipulator
US3470876A (en) * 1966-09-28 1969-10-07 John Barchilon Dirigible catheter
US3521620A (en) * 1967-10-30 1970-07-28 William A Cook Vascular coil spring guide with bendable tip

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Smith, G. A. et al., Surgery, Vol. 27, No. 6, June, 1950, pp. 817 821, (copy in 128/348) *

Cited By (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134405A (en) * 1977-01-10 1979-01-16 Smit Julie A Catheter and intestine tube and method of using the same
US4215703A (en) * 1978-08-29 1980-08-05 Willson James K V Variable stiffness guide wire
US4643194A (en) * 1980-01-24 1987-02-17 Thomas J. Fogarty Flexible calibrator
US4545081A (en) * 1981-06-29 1985-10-08 Jack Nestor Semi-rigid penile prosthesis with separable members and posture control
US4454888A (en) * 1981-10-07 1984-06-19 Cordis Corporation Cardiac pacing lead with curve retainer
EP0165718A2 (en) * 1984-05-22 1985-12-27 Pilkington Medical Systems Limited (formely Minvade Limited) Endoscopes
EP0165718A3 (en) * 1984-05-22 1986-09-03 Pilkington Medical Systems Limited (formely Minvade Limited) Endoscopes
US4944740A (en) * 1984-09-18 1990-07-31 Medtronic Versaflex, Inc. Outer exchange catheter system
US4615472A (en) * 1985-06-19 1986-10-07 Intravascular Surgical Instruments, Inc. Catheter placement device
EP0254701A1 (en) 1986-07-22 1988-01-27 Medtronic Versaflex, Inc. Steerable catheter
US4723936A (en) * 1986-07-22 1988-02-09 Versaflex Delivery Systems Inc. Steerable catheter
US5125895A (en) * 1986-07-22 1992-06-30 Medtronic Versaflex, Inc. Steerable catheter
US4757827A (en) * 1987-02-17 1988-07-19 Versaflex Delivery Systems Inc. Steerable guidewire with deflectable tip
US4813434A (en) * 1987-02-17 1989-03-21 Medtronic Versaflex, Inc. Steerable guidewire with deflectable tip
US4815478A (en) * 1987-02-17 1989-03-28 Medtronic Versaflex, Inc. Steerable guidewire with deflectable tip
US5065703A (en) * 1987-03-18 1991-11-19 Electric Power Research Institute, Inc. Flexible lance for steam generator secondary side sludge removal
US4841976A (en) * 1987-12-17 1989-06-27 Schneider-Shiley (Usa) Inc. Steerable catheter guide
US5067489A (en) * 1988-08-16 1991-11-26 Flexmedics Corporation Flexible guide with safety tip
US5042475A (en) * 1988-09-30 1991-08-27 Portex, Inc. Hinged tracheostomy tube obturator
US4984581A (en) * 1988-10-12 1991-01-15 Flexmedics Corporation Flexible guide having two-way shape memory alloy
US4886067A (en) * 1989-01-03 1989-12-12 C. R. Bard, Inc. Steerable guidewire with soft adjustable tip
US5203772A (en) * 1989-01-09 1993-04-20 Pilot Cardiovascular Systems, Inc. Steerable medical device
US4955384A (en) * 1989-05-11 1990-09-11 Advanced Cardiovascular Systems, Inc. Guiding member for vascular catheters with a flexible link distal section
EP0397054A2 (en) * 1989-05-11 1990-11-14 Advanced Cardiovascular Systems, Inc. Guiding member for vascular catheters with a flexible link distal section
EP0397054A3 (en) * 1989-05-11 1991-11-27 Advanced Cardiovascular Systems, Inc. Guiding member for vascular catheters with a flexible link distal section
US5207229A (en) * 1989-12-21 1993-05-04 Advanced Biomedical Devices, Inc. Flexibility steerable guidewire with inflatable balloon
US5059176A (en) * 1989-12-21 1991-10-22 Winters R Edward Vascular system steerable guidewire with inflatable balloon
US5108368A (en) * 1990-01-04 1992-04-28 Pilot Cardiovascular System, Inc. Steerable medical device
US5336182A (en) * 1990-02-02 1994-08-09 Ep Technologies, Inc. Catheter steering mechanism
US20040106897A1 (en) * 1990-02-02 2004-06-03 Thompson Russell B. Assemblies for creating compound curves in distal catheter regions
WO1991011213A1 (en) * 1990-02-02 1991-08-08 Ep Technologies, Inc. Catheter steering mechanism
US6033378A (en) * 1990-02-02 2000-03-07 Ep Technologies, Inc. Catheter steering mechanism
US5254088A (en) * 1990-02-02 1993-10-19 Ep Technologies, Inc. Catheter steering mechanism
US5195968A (en) * 1990-02-02 1993-03-23 Ingemar Lundquist Catheter steering mechanism
US5531686A (en) * 1990-02-02 1996-07-02 Ep Technologies, Inc. Catheter steering mechanism
US5395327A (en) * 1990-02-02 1995-03-07 Ep Technologies, Inc. Catheter steering mechanism
WO1992004933A1 (en) * 1990-09-17 1992-04-02 Pilot Cardiovascular Systems, Inc. Steerable medical device
US5645065A (en) * 1991-09-04 1997-07-08 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5190050A (en) * 1991-11-08 1993-03-02 Electro-Catheter Corporation Tip deflectable steerable catheter
US5386828A (en) * 1991-12-23 1995-02-07 Sims Deltec, Inc. Guide wire apparatus with location sensing member
US5318525A (en) * 1992-04-10 1994-06-07 Medtronic Cardiorhythm Steerable electrode catheter
US5397304A (en) * 1992-04-10 1995-03-14 Medtronic Cardiorhythm Shapable handle for steerable electrode catheter
US6925323B2 (en) 1992-07-06 2005-08-02 Phillip Jack Snoke System for enhancing visibility in the epidural space
US6010493A (en) * 1992-07-06 2000-01-04 Catheter Imaging Systems Method of epidural surgery
US5857996A (en) * 1992-07-06 1999-01-12 Catheter Imaging Systems Method of epidermal surgery
US6464682B1 (en) 1992-07-06 2002-10-15 Catheter Imaging Systems, Inc. Method of epidural surgery
US6470209B2 (en) 1992-07-06 2002-10-22 Catheter Imaging Systems, Inc. System for enhancing visibility in the epidural space
WO1994009843A1 (en) * 1992-11-02 1994-05-11 Catheter Imaging Systems Catheter having a multiple durometer
US5624397A (en) * 1992-11-02 1997-04-29 Snoke; Phillip J. Catheter having a multiple durometer
US5383852A (en) * 1992-12-04 1995-01-24 C. R. Bard, Inc. Catheter with independent proximal and distal control
US6165139A (en) * 1993-03-01 2000-12-26 Fonar Corporation Remotely steerable guide wire with external control wires
NL9301018A (en) * 1993-06-11 1995-01-02 Cordis Europ Controlled deflectable catheter.
US5489270A (en) * 1993-06-11 1996-02-06 Cordis Corporation Controlled flexible catheter
EP0628323A1 (en) * 1993-06-11 1994-12-14 Cordis Europa N.V. Controllably bendable catheter
US5562619A (en) * 1993-08-19 1996-10-08 Boston Scientific Corporation Deflectable catheter
US5865800A (en) * 1993-08-19 1999-02-02 Boston Scientific Corporation Deflectable catheter
US5465716A (en) * 1993-11-22 1995-11-14 Avitall; Boaz Catheter control handle
EP0741546A4 (en) * 1994-01-24 1999-07-07 Implemed Inc Cryogenic mapping and ablation catheter
EP0741546A1 (en) * 1994-01-24 1996-11-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US5673707A (en) * 1994-09-23 1997-10-07 Boston Scientific Corporation Enhanced performance guidewire
US5571085A (en) * 1995-03-24 1996-11-05 Electro-Catheter Corporation Steerable open lumen catheter
US5771902A (en) * 1995-09-25 1998-06-30 Regents Of The University Of California Micromachined actuators/sensors for intratubular positioning/steering
US5860953A (en) * 1995-11-21 1999-01-19 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
US6007531A (en) * 1995-11-21 1999-12-28 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
US6017322A (en) * 1995-11-21 2000-01-25 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
US20030069522A1 (en) * 1995-12-07 2003-04-10 Jacobsen Stephen J. Slotted medical device
US7914466B2 (en) 1995-12-07 2011-03-29 Precision Vascular Systems, Inc. Medical device with collapse-resistant liner and method of making same
US6428489B1 (en) 1995-12-07 2002-08-06 Precision Vascular Systems, Inc. Guidewire system
USD398986S (en) 1996-01-16 1998-09-29 Catheter Imaging Systems, Inc. Handle interface for steerable catheter
USD405881S (en) 1996-01-16 1999-02-16 Catheter Imaging Systems, Inc. Handle for steerable catheter
US5846221A (en) * 1996-02-09 1998-12-08 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
US6327492B1 (en) * 1996-11-05 2001-12-04 Jerome Lemelson System and method for treating select tissue in a living being
US5810790A (en) * 1996-11-19 1998-09-22 Ebling; Wendell V. Catheter with viewing system and port connector
US5827278A (en) * 1997-05-20 1998-10-27 Cordis Webster, Inc. Deflectable tip electrode catheter with nylon stiffener and compression coil
US6066125A (en) * 1997-09-05 2000-05-23 Cordis Webster, Inc. Omni-directional steerable catheter
US6123699A (en) * 1997-09-05 2000-09-26 Cordis Webster, Inc. Omni-directional steerable catheter
US6500167B1 (en) 1997-09-05 2002-12-31 Biosense Webster, Inc. Omni-directional steerable catheter
US6171277B1 (en) 1997-12-01 2001-01-09 Cordis Webster, Inc. Bi-directional control handle for steerable catheter
US6183463B1 (en) 1997-12-01 2001-02-06 Cordis Webster, Inc. Bidirectional steerable cathether with bidirectional control handle
US6198974B1 (en) 1998-08-14 2001-03-06 Cordis Webster, Inc. Bi-directional steerable catheter
US6210407B1 (en) 1998-12-03 2001-04-03 Cordis Webster, Inc. Bi-directional electrode catheter
US6716183B2 (en) * 1999-04-30 2004-04-06 Applied Medical Resources Corporation Guidewire
US20020010426A1 (en) * 1999-04-30 2002-01-24 Applied Medical Resources Corporation Guidewire
US6585717B1 (en) 1999-06-15 2003-07-01 Cryocath Technologies Inc. Deflection structure
WO2001003766A1 (en) * 1999-07-08 2001-01-18 C.R. Bard, Inc. Steerable catheter
US6579246B2 (en) 1999-12-22 2003-06-17 Sarcos, Lc Coronary guidewire system
US6394976B1 (en) * 2000-01-31 2002-05-28 Intraluminal Therapeutics, Inc. Catheter for controlling the advancement of a guide wire
US6743239B1 (en) 2000-05-25 2004-06-01 St. Jude Medical, Inc. Devices with a bendable tip for medical procedures
US6571131B1 (en) 2000-11-10 2003-05-27 Biosense Webster, Inc. Deflectable catheter with modifiable handle
US8449526B2 (en) 2001-07-05 2013-05-28 Boston Scientific Scimed, Inc. Torqueable soft tip medical device and method of usage
US8915865B2 (en) 2002-07-25 2014-12-23 Precision Vascular Systems, Inc. Medical device for navigation through anatomy and method of making same
US8257279B2 (en) 2002-07-25 2012-09-04 Boston Scientific Scimed, Inc. Medical device for navigation through anatomy and method of making same
US8048004B2 (en) 2002-07-25 2011-11-01 Precision Vascular Systems, Inc. Medical device for navigation through anatomy and method of making same
US8870790B2 (en) 2002-07-25 2014-10-28 Boston Scientific Scimed, Inc. Medical device for navigation through anatomy and method of making same
US8900163B2 (en) 2002-07-25 2014-12-02 Precision Vascular Systems, Inc. Medical device for navigation through anatomy and method of making same
US8939916B2 (en) 2002-07-25 2015-01-27 Precision Vascular Systems, Inc. Medical device for navigation through anatomy and method of making same
US7878984B2 (en) 2002-07-25 2011-02-01 Boston Scientific Scimed, Inc. Medical device for navigation through anatomy and method of making same
US8932235B2 (en) 2002-07-25 2015-01-13 Precision Vascular Systems, Inc. Medical device for navigation through anatomy and method of making same
US8936558B2 (en) 2002-07-25 2015-01-20 Precision Vascular Systems, Inc. Medical device for navigation through anatomy and method of making same
US7914467B2 (en) 2002-07-25 2011-03-29 Boston Scientific Scimed, Inc. Tubular member having tapered transition for use in a medical device
US8496630B2 (en) 2002-11-08 2013-07-30 Olympus Corporation Transendoscopic medical instrument
EP1588670A1 (en) * 2002-11-08 2005-10-26 Olympus Corporation Medical appliance through endoscope
US20050251111A1 (en) * 2002-11-08 2005-11-10 Olympus Corporation Transendoscopic medical instrument
EP1588670A4 (en) * 2002-11-08 2010-06-16 Olympus Corp Medical appliance through endoscope
US8377035B2 (en) 2003-01-17 2013-02-19 Boston Scientific Scimed, Inc. Unbalanced reinforcement members for medical device
US8022331B2 (en) 2003-02-26 2011-09-20 Boston Scientific Scimed, Inc. Method of making elongated medical devices
WO2004075965A1 (en) * 2003-02-26 2004-09-10 Boston Scientific Limited Intracorporal medical device having an articulating section
US7169118B2 (en) 2003-02-26 2007-01-30 Scimed Life Systems, Inc. Elongate medical device with distal cap
US8636716B2 (en) 2003-03-27 2014-01-28 Boston Scientific Scimed, Inc. Medical device
US7001369B2 (en) 2003-03-27 2006-02-21 Scimed Life Systems, Inc. Medical device
US8182465B2 (en) 2003-03-27 2012-05-22 Boston Scientific Scimed, Inc. Medical device
US7540865B2 (en) 2003-03-27 2009-06-02 Boston Scientific Scimed, Inc. Medical device
US8048060B2 (en) 2003-03-27 2011-11-01 Boston Scientific Scimed, Inc. Medical device
US20090227983A1 (en) * 2003-03-27 2009-09-10 Boston Scientific Scimed, Inc. Medical device
US9592363B2 (en) 2003-03-27 2017-03-14 Boston Scientific Scimed, Inc. Medical device
US7824345B2 (en) 2003-12-22 2010-11-02 Boston Scientific Scimed, Inc. Medical device with push force limiter
US20050137501A1 (en) * 2003-12-22 2005-06-23 Euteneuer Charles L. Medical device with push force limiter
US9433762B2 (en) 2004-12-09 2016-09-06 Boston Scientific Scimed, Inc. Catheter including a compliant balloon
US8540668B2 (en) 2004-12-09 2013-09-24 Boston Scientific Scimed, Inc. Catheter including a compliant balloon
US8021329B2 (en) 2004-12-09 2011-09-20 Boston Scientific Scimed, Inc., Catheter including a compliant balloon
US7632242B2 (en) 2004-12-09 2009-12-15 Boston Scientific Scimed, Inc. Catheter including a compliant balloon
US9131956B2 (en) 2005-01-13 2015-09-15 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
US7976518B2 (en) 2005-01-13 2011-07-12 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
US9889277B2 (en) 2005-01-13 2018-02-13 Avent, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
US9579488B2 (en) 2005-01-13 2017-02-28 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
US20060200171A1 (en) * 2005-03-04 2006-09-07 Boston Scientific Scimed, Inc. Medical retrieval device and related methods of use
US20070049846A1 (en) * 2005-08-24 2007-03-01 C.R.Bard, Inc. Stylet Apparatuses and Methods of Manufacture
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US9445784B2 (en) 2005-09-22 2016-09-20 Boston Scientific Scimed, Inc Intravascular ultrasound catheter
US7850623B2 (en) 2005-10-27 2010-12-14 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
US8231551B2 (en) 2005-10-27 2012-07-31 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
US9687174B2 (en) 2006-09-08 2017-06-27 Corpak Medsystems, Inc. Medical device position guidance system with wireless connectivity between a noninvasive and an invasive device
US8197494B2 (en) 2006-09-08 2012-06-12 Corpak Medsystems, Inc. Medical device position guidance system with wireless connectivity between a noninvasive device and an invasive device
US8551020B2 (en) 2006-09-13 2013-10-08 Boston Scientific Scimed, Inc. Crossing guidewire
US8858455B2 (en) 2006-10-23 2014-10-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US9833169B2 (en) 2006-10-23 2017-12-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US9345422B2 (en) 2006-10-23 2016-05-24 Bard Acess Systems, Inc. Method of locating the tip of a central venous catheter
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US9265443B2 (en) 2006-10-23 2016-02-23 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US20100331712A1 (en) * 2006-10-23 2010-12-30 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8512256B2 (en) 2006-10-23 2013-08-20 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8774907B2 (en) 2006-10-23 2014-07-08 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8556914B2 (en) 2006-12-15 2013-10-15 Boston Scientific Scimed, Inc. Medical device including structure for crossing an occlusion in a vessel
US9375234B2 (en) 2006-12-15 2016-06-28 Boston Scientific Scimed, Inc. Medical device including structure for crossing an occlusion in a vessel
US20080262480A1 (en) * 2007-02-15 2008-10-23 Stahler Gregory J Instrument assembly for robotic instrument system
US20080243064A1 (en) * 2007-02-15 2008-10-02 Hansen Medical, Inc. Support structure for robotic medical instrument
US8409114B2 (en) 2007-08-02 2013-04-02 Boston Scientific Scimed, Inc. Composite elongate medical device including distal tubular member
US8105246B2 (en) 2007-08-03 2012-01-31 Boston Scientific Scimed, Inc. Elongate medical device having enhanced torque and methods thereof
US8821477B2 (en) 2007-08-06 2014-09-02 Boston Scientific Scimed, Inc. Alternative micromachined structures
US9808595B2 (en) 2007-08-07 2017-11-07 Boston Scientific Scimed, Inc Microfabricated catheter with improved bonding structure
US7841994B2 (en) 2007-11-02 2010-11-30 Boston Scientific Scimed, Inc. Medical device for crossing an occlusion in a vessel
US20090131948A1 (en) * 2007-11-16 2009-05-21 Osseon Therapeutics, Inc. Steerable vertebroplasty system
US20090131945A1 (en) * 2007-11-16 2009-05-21 Osseon Therapeutics, Inc. Closed vertebroplasty bone cement injection system
US8827981B2 (en) 2007-11-16 2014-09-09 Osseon Llc Steerable vertebroplasty system with cavity creation element
US7842041B2 (en) 2007-11-16 2010-11-30 Osseon Therapeutics, Inc. Steerable vertebroplasty system
US9510885B2 (en) 2007-11-16 2016-12-06 Osseon Llc Steerable and curvable cavity creation system
US7811291B2 (en) 2007-11-16 2010-10-12 Osseon Therapeutics, Inc. Closed vertebroplasty bone cement injection system
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US9492097B2 (en) 2007-11-26 2016-11-15 C. R. Bard, Inc. Needle length determination and calibration for insertion guidance system
US9681823B2 (en) 2007-11-26 2017-06-20 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US20110015533A1 (en) * 2007-11-26 2011-01-20 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US9999371B2 (en) 2007-11-26 2018-06-19 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US9526440B2 (en) 2007-11-26 2016-12-27 C.R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9549685B2 (en) 2007-11-26 2017-01-24 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US8388541B2 (en) 2007-11-26 2013-03-05 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US20100204569A1 (en) * 2007-11-26 2010-08-12 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US9554716B2 (en) 2007-11-26 2017-01-31 C. R. Bard, Inc. Insertion guidance system for needles and medical components
US8971994B2 (en) 2008-02-11 2015-03-03 C. R. Bard, Inc. Systems and methods for positioning a catheter
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US20090216245A1 (en) * 2008-02-26 2009-08-27 Tyco Healthcare Group Lp Flexible Hollow Spine With Locking Feature And Manipulation Structure
US8246575B2 (en) 2008-02-26 2012-08-21 Tyco Healthcare Group Lp Flexible hollow spine with locking feature and manipulation structure
US8376961B2 (en) 2008-04-07 2013-02-19 Boston Scientific Scimed, Inc. Micromachined composite guidewire structure with anisotropic bending properties
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US8535243B2 (en) 2008-09-10 2013-09-17 Boston Scientific Scimed, Inc. Medical devices and tapered tubular members for use in medical devices
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US9907513B2 (en) 2008-10-07 2018-03-06 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US20100094116A1 (en) * 2008-10-07 2010-04-15 Lucent Medical Systems, Inc. Percutaneous magnetic gastrostomy
US8795254B2 (en) 2008-12-10 2014-08-05 Boston Scientific Scimed, Inc. Medical devices with a slotted tubular member having improved stress distribution
US8353898B2 (en) 2009-05-29 2013-01-15 Aesculap Ag Surgical instrument
US8382742B2 (en) 2009-05-29 2013-02-26 Aesculap Ag Surgical instrument
US20110196248A1 (en) * 2009-06-12 2011-08-11 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US9339206B2 (en) 2009-06-12 2016-05-17 Bard Access Systems, Inc. Adaptor for endovascular electrocardiography
US20100318026A1 (en) * 2009-06-12 2010-12-16 Romedex International Srl Devices and Methods for Endovascular Electrography
US9125578B2 (en) 2009-06-12 2015-09-08 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US20100317981A1 (en) * 2009-06-12 2010-12-16 Romedex International Srl Catheter Tip Positioning Method
US9445734B2 (en) 2009-06-12 2016-09-20 Bard Access Systems, Inc. Devices and methods for endovascular electrography
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US8137293B2 (en) 2009-11-17 2012-03-20 Boston Scientific Scimed, Inc. Guidewires including a porous nickel-titanium alloy
US8551021B2 (en) 2010-03-31 2013-10-08 Boston Scientific Scimed, Inc. Guidewire with an improved flexural rigidity profile
US8784337B2 (en) 2010-03-31 2014-07-22 Boston Scientific Scimed, Inc. Catheter with an improved flexural rigidity profile
US9901410B2 (en) 2010-07-28 2018-02-27 Medrobotics Corporation Surgical positioning and support system
US8992421B2 (en) 2010-10-22 2015-03-31 Medrobotics Corporation Highly articulated robotic probes and methods of production and use of such probes
US9415188B2 (en) 2010-10-29 2016-08-16 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
US8801693B2 (en) 2010-10-29 2014-08-12 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
US8753360B2 (en) 2010-11-08 2014-06-17 Covidien Lp Expandable mesh system and method of use therefor
US9649163B2 (en) 2010-11-11 2017-05-16 Medrobotics Corporation Introduction devices for highly articulated robotic probes and methods of production and use of such probes
US8795202B2 (en) 2011-02-04 2014-08-05 Boston Scientific Scimed, Inc. Guidewires and methods for making and using the same
US9468359B2 (en) 2011-04-12 2016-10-18 Aesculap Ag Control apparatus
US9072874B2 (en) 2011-05-13 2015-07-07 Boston Scientific Scimed, Inc. Medical devices with a heat transfer region and a heat sink region and methods for manufacturing medical devices
US9833130B2 (en) 2011-07-22 2017-12-05 Cook Medical Technologies Llc Irrigation devices adapted to be used with a light source for the identification and treatment of bodily passages
US9980631B2 (en) 2011-07-22 2018-05-29 Cook Medical Technologies Llc Irrigation devices adapted to be used with a light source for the identification and treatment of bodily passages
USD754357S1 (en) 2011-08-09 2016-04-19 C. R. Bard, Inc. Ultrasound probe head
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
US9918907B2 (en) 2011-09-08 2018-03-20 Avent, Inc. Method for electromagnetic guidance of feeding and suctioning tube assembly
US9028441B2 (en) 2011-09-08 2015-05-12 Corpak Medsystems, Inc. Apparatus and method used with guidance system for feeding and suctioning
US20140371764A1 (en) * 2011-09-13 2014-12-18 Medrobotics Corporation Highly articulated probes with anti-twist link arrangement, methods of formation thereof, and methods of performing medical procedures
US9572628B2 (en) 2011-09-13 2017-02-21 Medrobotics Corporation Highly articulated probes with anti-twist link arrangement, methods of formation thereof, and methods of performing medical procedures
US9757856B2 (en) * 2011-09-13 2017-09-12 Medrobotics Corporation Highly articulated probes with anti-twist link arrangement, methods of formation thereof, and methods of performing medical procedures
US9211107B2 (en) 2011-11-07 2015-12-15 C. R. Bard, Inc. Ruggedized ultrasound hydrogel insert
US9375138B2 (en) 2011-11-25 2016-06-28 Cook Medical Technologies Llc Steerable guide member and catheter
US9364955B2 (en) 2011-12-21 2016-06-14 Medrobotics Corporation Stabilizing apparatus for highly articulated probes with link arrangement, methods of formation thereof, and methods of use thereof
US9821477B2 (en) 2011-12-21 2017-11-21 Medrobotics Corporation Stabilizing apparatus for highly articulated probes with link arrangement, methods of formation thereof, and methods of use thereof
US8986225B2 (en) 2012-08-02 2015-03-24 Covidien Lp Guidewire
US9675380B2 (en) 2012-08-09 2017-06-13 Medrobotics Corporation Surgical tool positioning system
US9314593B2 (en) 2012-09-24 2016-04-19 Cook Medical Technologies Llc Medical devices for the identification and treatment of bodily passages
US9895055B2 (en) 2013-02-28 2018-02-20 Cook Medical Technologies Llc Medical devices, systems, and methods for the visualization and treatment of bodily passages
US9913695B2 (en) 2013-05-02 2018-03-13 Medrobotics Corporation Robotic system including a cable interface assembly
US9549748B2 (en) 2013-08-01 2017-01-24 Cook Medical Technologies Llc Methods of locating and treating tissue in a wall defining a bodily passage
US20150209215A1 (en) * 2014-01-24 2015-07-30 Samsung Electronics Co., Ltd. Holder and walking assistant robot having the same
US9839372B2 (en) 2014-02-06 2017-12-12 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
US9937323B2 (en) 2014-02-28 2018-04-10 Cook Medical Technologies Llc Deflectable catheters, systems, and methods for the visualization and treatment of bodily passages
US9901706B2 (en) 2014-04-11 2018-02-27 Boston Scientific Scimed, Inc. Catheters and catheter shafts
US10004875B2 (en) 2014-06-27 2018-06-26 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US20160074630A1 (en) * 2014-09-16 2016-03-17 Asahi Intecc Co., Ltd. Guidewire
US10004568B2 (en) 2014-12-19 2018-06-26 Medrobotics Corporation Articulating robotic probes
EP3192552A1 (en) 2016-01-15 2017-07-19 Cook Medical Technologies LLC Locking medical guide wire
GB2546314A (en) * 2016-01-15 2017-07-19 Cook Medical Technologies Llc Locking medical guide wire

Similar Documents

Publication Publication Date Title
US3631848A (en) Extensible catheter
US3459184A (en) Intravenous catheter placement unit
US3452740A (en) Spring guide manipulator
Huntington et al. Techniques for Measuring Blood Flow in Splanchnic Tissues of Cattle1
US5308323A (en) Multiple compartment balloon catheter
US4960134A (en) Steerable catheter
US6988987B2 (en) Guide tube
US5860997A (en) Method of dissecting tissue layers
US5030227A (en) Balloon dilation catheter
US6620181B1 (en) Method of dissecting tissue layers
US5882347A (en) Catheter with internal stiffening ridges
US5439457A (en) Multifunctional devices for use in endoscopic surgical procedures and methods therefor
US4906230A (en) Steerable catheter tip
US5571114A (en) Mechanism to advance or withdraw objects in lumens or cavities of mammals
US5665064A (en) Gastroenteric feeding tube for endoscopic placement and method of use
US5395329A (en) Control handle for steerable catheter
US4813934A (en) Valved catheter device and method
US5396880A (en) Endoscope for direct visualization of the spine and epidural space
US6623474B1 (en) Injection catheter with needle stop
US5306247A (en) Balloon catheter
US6321749B1 (en) Endotracheal tube with tip directional control and position preserving mechanism
US5431662A (en) Manipulator apparatus
US5769865A (en) Instrument and method for transection of a ligament
US4739768A (en) Catheter for guide-wire tracking
US5348541A (en) Suprapubic catheter placement apparatus (lyell sound)