US3624192A - Production of foamed resins - Google Patents
Production of foamed resins Download PDFInfo
- Publication number
- US3624192A US3624192A US726857A US3624192DA US3624192A US 3624192 A US3624192 A US 3624192A US 726857 A US726857 A US 726857A US 3624192D A US3624192D A US 3624192DA US 3624192 A US3624192 A US 3624192A
- Authority
- US
- United States
- Prior art keywords
- resin
- die
- zone
- foamed
- slits
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 72
- 239000011347 resin Substances 0.000 title claims abstract description 72
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000001125 extrusion Methods 0.000 claims abstract description 14
- 229920006216 polyvinyl aromatic Polymers 0.000 claims abstract description 10
- 238000005187 foaming Methods 0.000 claims abstract description 9
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 9
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 9
- 239000004793 Polystyrene Substances 0.000 claims description 10
- 229920002223 polystyrene Polymers 0.000 claims description 10
- 238000000429 assembly Methods 0.000 abstract description 5
- 230000000712 assembly Effects 0.000 abstract description 5
- 238000001816 cooling Methods 0.000 description 6
- 239000004604 Blowing Agent Substances 0.000 description 5
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 229920006248 expandable polystyrene Polymers 0.000 description 4
- 239000002667 nucleating agent Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000001273 butane Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical compound CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- NAMBGWYANBMQBJ-UHFFFAOYSA-N N(=O)NCCCCCNN=O Chemical compound N(=O)NCCCCCNN=O NAMBGWYANBMQBJ-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000002666 chemical blowing agent Substances 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- 229960001701 chloroform Drugs 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910001872 inorganic gas Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/36—Feeding the material to be shaped
- B29C44/46—Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
- B29C44/468—Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length in a plurality of parallel streams which unite during the foaming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/36—Feeding the material to be shaped
- B29C44/46—Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
- B29C44/50—Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
- B29C44/505—Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying extruding the compound through a flat die
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2007/00—Flat articles, e.g. films or sheets
Definitions
- This application relates to the extrusion of foamable thermoplastic polyvinylaromatic resins and more particularly relates to improve processes for extruding such resins to form foamed products, e.g., low-density boards. which are strong and have smooth surfaces.
- foamed thermoplastic resins such as foamed polystyrene are useful industrial products. These products are often made by molding processes, but extrusion processes are often considered to be more convenient. However, extrusion processes present difficulties in some instances, e.g., in the production of foamed board of good quality.
- board is used to describe flat sheet material of substantial thickness, usually at least 0.75 inch and often 1.54 inches thick, such as the sheet materials frequently used as insulating media.
- An object of the invention is to provide novel processes for extruding foamable thermoplastic polyvinylaromatic resins.
- Another object is to provide novel processes for preparing extruded foamed boards, particularly low-density boards, having a good surface finish.
- the die comprises a mild steel block 1 having 82 cylindrical channels 2 extending into it from one side.
- the channels are arranged to communicate with a rectangular network of three horizontal and I7 vertical intercommunicating slits 3.
- Each horizontal slit thus has 16 channels associated with it, and each vertical slit has two channels.
- the network of slits communicates with a zone defined by the profiled surfaces 6 and 7 of two mild steel plates 8 and 9.
- each of the plates is greater (usually about l.l-l .75 times greater) than the overall length of the slit network to ensure that the foamed resin surface is always in contact with the profiled surfaces during its initial expansion.
- the concave surfaces of the plates adjacent to the slit network are spaced apart at a distance corresponding approximately to the width of the slit network.
- the plates 8 and 9 are cut away as shown at 10 and Il so as to minimize the area of contact with the block I and thus minimize heat transfer from the die outlet to the plates, and they have adjustable clamp mountings (not shown) by means of which they can be set at various distances from each other as desired.
- a series of liquid-cooling channels (not shown) is drilled through each of the plates.
- the die also has means (not shown) for attaching it to the front end of an extruder so that, when the die is in use, a foamable resin such as foamable polystyrene is fed into the network of slits and thence through the zone into the atmosphere.
- a foamable resin such as foamable polystyrene is fed into the network of slits and thence through the zone into the atmosphere.
- the concave surfaces of the plates are so shaped that they conform to the corresponding surfaces of the freely expanding resin without exerting a substantial compressive force thereon.
- EXAMPLE Part A Using the die assembly described above in which the overall length of the slit network is 1.535 inches, the width of the network is 0.785 inch, the width of the individual slits is 0.025 inch, the plates are clamped so that they are 0.79 inch apart at the lips of the die orifice and 1.375 inches apart at the end of the expansion zone, and the radius of curvature of the profiled surfaces of each of the plates is 0.5 inch, extrude foamable polystyrene containing 0.25 percent by weight of silica and 10 percent by weight of butane at a pressure of 700 psi. and a temperature of C. through the die at a flow rate of 15 pounds per hour, while maintaining the temperature of the plates at 15 C. by circulating cold water through the cooling channels.
- the product is a foamed polystyrene board having a width of 2.75 inches, a thickness of 1.625 inches, an overall average density of 1.25 pounds per cubic foot, good strength in both the transverse and longitudinal directions, and smooth top and bottom surfaces with an excellent finish.
- Part B Repeat Part A except for extruding the foamable polystyrene through the die directly into the atmosphere instead of using the plates to define a zone.
- the product is a foamed polystyrene board, the density of which is similar to that of the board of Part A, but the surface finish of which is inferior in that it is slightly ribbed.
- the die used in the practice of the invention is one having an orifice from which an extruded freely expanding and foaming resin issues with a rectangular or substantially rectangular cross section.
- the die is one which incorporates features designed to increase its resistance to resin flow, e.g., the dies described in British Pat. Nos. 1,034,120, 1,084,000, and 1,098,408 and in copending US. application Ser. No. 726,06 l, filed May 2, 1968 in the names of William R. Foster and Stanley J. Skinner and assigned to the assignee of the present application.
- British Pat. No. 1,034,120 describes a die having extending into it at its inlet end a plurality of separate channels communicating with a number of slits arranged in the form of a network at the outlet end of the die, each slit having a row of channels associated with it.
- British Pat. No; 1,084,000 describes a die having a plurality of obstructions transversely distributed therein so that, when a foamable resin is extruded through the die, the obstructions together offer a substantial resistance to the flow of resin.
- British Pat. No. 1,034,120 describes a die having extending into it at its inlet end a plurality of separate channels communicating with a number of slits arranged in the form of a network at the outlet end of the die, each slit having a row of channels associated with it.
- British Pat. No; 1,084,000 describes a die having a plurality of obstructions transversely distributed therein so that, when a foamable resin is extruded through the die, the obstructions
- 1,098,408 describes a particularly useful type of die which comprises a plurality of channels extending into it at its inlet end and communicating with a number of slits arranged to form the meshes of a network at the outlet end of the die, each of at least the majority of the meshes having a substantially central passage leading back from the front face of the die to a point nearer the inlet end of the die (preferably to the inlet end of the die) and not communicating directly with the slits.
- the zone-defining surfaces have a concave curved cross section that preferably conforms exactly to the corresponding surfaces of the freely expanding and foaming resin.
- One manner in which it is possible to machine the surfaces so that they conform exactly is by using a working drawing produced from a photograph of the foaming resin extruding freely from the die orifice. Exact conformity is not essential, however, and a cross section corresponding to an arc of a circle usually provides a sufficiently good approximation. Other simple geometric shapes such as part of a parabola can also be used if desired.
- the zone-defining surfaces are normally spaced apart by a distance equal to or slightly greater than the width of the die orifice, and from this point they diverge as the distance from the die increases, reaching their greatest distance apart where the foamed resin is completely expanded. Preferably they thereafter extend parallel to each other for a short distance. Their greatest distance apart depends of course on the overall width of the die orifice, the degree to which the foamable resin expands, and to some extent on the type of die which is used, but it is generally about 1.2-6 times the width of the die orifice. When the die incorporates features designed to increase the resistance to resin flow, the greatest distance apart of the zone-defining surfaces is usually l.24 times, particularly 1.5-3 times, the overall width of the die orifice. For example,.when the die is of the type described above and in British Pat. No. 1,098,408 particularly good results are obtained using zone-defining surfaces having a greatest distance apart corresponding to twice the overall width of the die orifice.
- the curvature of the zone-defining surfaces is dependent on the thickness of the foamed board which it is desired to extrude, thicker boards normally requiring a larger radius of curvature for optimum results.
- thicker boards normally requiring a larger radius of curvature for optimum results.
- excellent results are obtained when each of the zone-defining surfaces has a section corresponding to a segment of a circle having a radius of 0.5 inch.
- each of the second pair of surfaces can be part of an endless belt carried on rollers.
- the belt can be driven so that the part in contact with the resin moves along with it, or it can be free to move so that it is driven by the fractional force between it and the moving resin.
- each endless belt is attached to one of the contoured surfaces so that the belt and the-contoured surface move together when the position of the latter is adjusted.
- each of this pair of surfaces can be constituted by a roller of relatively large diameter, or there can be a series of rollers traversed in succession by the extruding resin.
- the polyvinylaromatic resin which is extruded in accordance with the invention is a polymer of one or more vinyl or vinylidene aromatic monomers such as styrene, a chlorostyrene, alpha-methylstyrene, m-, or p-methylstyrene, other aralkylstyrenes, etc., including interpolymers of such monomers with one or more copolymerizable ethylenicallyunsaturated monomers such as acrylonitrile, methacrylonitrile, vinyl chloride, vinyl acetate, methyl and other alkyl acrylates and methacrylates, etc.
- vinyl or vinylidene aromatic monomers such as styrene, a chlorostyrene, alpha-methylstyrene, m-, or p-methylstyrene, other aralkylstyrenes, etc.
- the invention is particularly applicable to polystyrene resins, such as polystyrene itself or a toughened polystyrene, i.e., a polystyrene having physically or chemically combined therewith a minor proportion, e.g., l-l5 percent by weight, of a natural or synthetic rubber, e.g., substantially linear or branched polymers of conjugated dienes, such as butadiene, isoprene,. etc., including copolymers thereof with lesser amounts of comonomers such as styrene, acrylonitrile, methyl methacrylate, etc.
- a natural or synthetic rubber e.g., substantially linear or branched polymers of conjugated dienes, such as butadiene, isoprene,. etc., including copolymers thereof with lesser amounts of comonomers such as styrene, acrylonitrile, methyl methacrylate, etc.
- the resin is in admixture with a blowing agent, which is preferably a normally gaseous substance but which can be a volatile liquid.
- a blowing agent which is preferably a normally gaseous substance but which can be a volatile liquid.
- the blowing agent is one that is normally gaseous but which, while percent, pressure before extrusion, is present in the liquid state.
- volatile substances that can be used are lower aliphatic hydrocarbons such as ethane, propane, a butane or butene, a pentane or pentene, etc., lower alkyl halides such as methyl chloride, trichloromethane, l,2-dichlorotetrafluoroethane etc.; and inorganic gases such as carbon dioxide and nitrogen.
- the blowing agent can also be a chemical blowing agent, e.g., a bicarbonate'such as sodium bicarbonate, ammonium bicarbonate, etc., or an organic compound that yields nitrogen on heating such as dinitrosopentamethylenediamine, barium azodicarboxylate, etc.
- a chemical blowing agent e.g., a bicarbonate'such as sodium bicarbonate, ammonium bicarbonate, etc.
- an organic compound that yields nitrogen on heating such as dinitrosopentamethylenediamine, barium azodicarboxylate, etc.
- the amount of blowing agent employed is often in the range of 3-30 percent, especially 7-20 percent, based on the weight of the resin. For example, excellent results are achieved by the use of 7'l5 percent by weight of butane in conjunction with polystyrene.
- the foamable resin preferably also contains a nucleating agent, which assists in the formation of a large number of small cells.
- the conventional nucleating agents can be employed, e.g., finely divided inert solids such as silica or alumina, preferably in conjunction with zinc stearate, or small quantities of a substance that decomposes at the extrusion temperature to give a gas.
- Exemplary of the latter class of nucleating agents is sodium bicarbonate, optionally used in conjunction with a weak acid such as tartaric or citric acid.
- a small proportion of the nucleating agent e.g., up to 5 percent by weight of the resin, is usually effective.
- the dimensions of the orifice are less than the cross section of the desired product. Expansion takes place along both dimensions of the die, but generally greater expansion takes place across the width of the die than along its length. In this way a board is produced.
- a suitable die size an extruded product of the desired cross section can be obtained.
- a foamed board having a width of 4 feet or more and a thickness of up to perhaps 2 inches can be produced. Generally, the thickness is at least 0.75 inch, e.g., 1.5-4 inches.
- an increase in the dimensions of the board can be obtained by heating it, preferably by exposing it to steam or hot Water in a suitable container for a few moments. Such treatment is usually more effectively conducted after the board has been exposed to the atmosphere for a day or two.
- the surfaces defining the zone of lower pressure are maintained at a temperature lower than the extrusion temperature.
- Oilor water-cooling can be employed if desired, and it can be applied, e.g., through channels within the surfaces.
- air cooling is sufficient, although the backs of the surfaces can be provided with fins in order to increase the cooling rate.
- the surfaces of the zone lead off directly from the die orifice. It is desirable to prevent as far as possible the conduction of heat from the extruder to the cooled surfaces. This can be achieved, e.g., by the use of a thermally insulating material or by arranging for the area of contact between the surfaces and the extruder to be as small as possible.
- Cooling of the surfaces causes a certain amount of drag" as the resin is extruded so that the viscosity of the resin in contact with the surfaces is much higher than that of the resin within the extruder, and in fact the resin flow through the zone is normally of a "plug character.
- the temperature of the zone-defining surfaces i.e., the average temperature of the mass of metal
- the temperature of the zone-defining surfaces depends partly on the nature of the resin and any plasticizing effect of the blowing agent, but it is usually l0l20 C. lower, preferably 60-l05 C. lower, than the extrusion temperature.
- the zone-defining surfaces it is usually suitable for the zone-defining surfaces to be cooled to a temperature of l040 C.
- the extrusion temperature depends to some extent on the softening point of the resin being extruded, but in general temperatures of 95-140 C., are suitable. For example, when foamable polystyrene is being extruded, the temperature is frequently 1 130 C., particularly about 120 C.
- the pressure within the extruder is sufficient to prevent any substantial foaming of the resin until it leaves the die orifice and enters the zone of lower pressure.
- pressures greater than 250 p.s.i., especially 250-5,000 p.s.i., can be employed.
- the pressure is 300-1 ,000 psi.
- the processes and die assemblies of the invention are of particular value in the production of extruded foamed material, e.g., board having a low density, e.g., 0.9-1.5 pounds per cubic foot, and a substantial thickness, i.e., at least 1 inch and, e.g., up to about 2.5 inches.
- a broader range of density can be produced, although there is often little advantage to be gained by increasing it above 2 or 3 pounds per cubic foot.
- the extruded resin e.g., a board has substantially flat upper and lower surfaces and slightly curved edges. These edges can be trimmed if required, but they are often sufficiently true for may purposes.
- a process for the production of foamed thermoplastic polyvinylaromatic resins having an improved surface finish which comprises extruding a foamable thermoplastic polyvinylaromatic resin through a rectangular die orifice into a zone of lower pressure such that foaming of the resin occurs as it moves through the zone, said zone being defined by a pair of opposing concave surfaces maintained at a temperature lower than the extrusion temperature and curved so that they substantially conform to the corresponding surfaces of the freely expanding resin whereby substantially no compressive force is exerted by said opposing concave surfaces upon said freely expanding resin.
- each of at least the majority of the meshes of the slit network has a substantially central passage leading back from the front face of the die to the inlet end of the die and not communicating directly with the slits.
- grooves extending from the outlet end of each of a least the majorityof the passages toward the outlet of its surrounding mesh of slits are provided in the front face of the die to assist in ensuring that a strand of foamed resin extruded from each passage substantially fills the space formed by the enveloping foamed resin issuing from the surrounding mesh of slits.
- zone-defining surfaces have a concave curved cross section that conforms exactly to the corresponding surfaces of the freely expanding resin.
- zone-defining surfaces have a concave cross section corresponding to an arc of a circle.
- zone-defining surfaces reach their greatest distance apart where the foamed resin is completely expanded and thereafter extend parallel to each other.
Landscapes
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB23303/67A GB1166937A (en) | 1967-05-19 | 1967-05-19 | Improvements in or relating to The Production Of Foamed Resins |
Publications (1)
Publication Number | Publication Date |
---|---|
US3624192A true US3624192A (en) | 1971-11-30 |
Family
ID=10193438
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US726857A Expired - Lifetime US3624192A (en) | 1967-05-19 | 1968-05-06 | Production of foamed resins |
US64554A Expired - Lifetime US3694116A (en) | 1967-05-19 | 1970-08-17 | Apparatus for the production of foamed resins |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US64554A Expired - Lifetime US3694116A (en) | 1967-05-19 | 1970-08-17 | Apparatus for the production of foamed resins |
Country Status (5)
Country | Link |
---|---|
US (2) | US3624192A (en:Method) |
BE (1) | BE715259A (en:Method) |
DE (1) | DE1778541A1 (en:Method) |
FR (1) | FR1566936A (en:Method) |
GB (1) | GB1166937A (en:Method) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3713762A (en) * | 1970-06-26 | 1973-01-30 | Kasei C Co Ltd | Apparatus for the extrusion molding of foamable plastics |
US3888614A (en) * | 1970-11-03 | 1975-06-10 | Monsanto Chemicals | Apparatus for producing a foamed resin sheet in a curved diverging expansion zone |
US3897528A (en) * | 1973-11-21 | 1975-07-29 | Dow Chemical Co | Method for the extrusion of thermoplastic foam |
EP0083177A1 (en) * | 1981-12-25 | 1983-07-06 | Japan Styrene Paper Corporation | Method for producing polystyrene resin foam |
US4536357A (en) * | 1983-01-28 | 1985-08-20 | Sekisui Kaseihin Kogyo Kabushiki Kaisha | Method and apparatus for preparing multi-cellular foamed board of thermoplastic resin |
EP0279668A3 (en) * | 1987-02-18 | 1989-10-11 | The Dow Chemical Company | Faom structure of coalesced foam strands of profiles |
US6005013A (en) * | 1995-08-14 | 1999-12-21 | Massachusetts Institute Of Technology | Gear throttle as a nucleation device in a continuous microcellular extrusion system |
US6284810B1 (en) | 1996-08-27 | 2001-09-04 | Trexel, Inc. | Method and apparatus for microcellular polymer extrusion |
US6884377B1 (en) | 1996-08-27 | 2005-04-26 | Trexel, Inc. | Method and apparatus for microcellular polymer extrusion |
US20170100870A1 (en) * | 2014-12-17 | 2017-04-13 | Poly-Wood, Llc | Extruded board with realistic appearance |
EP3209478A4 (en) * | 2014-10-23 | 2018-07-04 | 3M Innovative Properties Company | Foaming die and method of use |
US10449702B2 (en) | 2014-10-23 | 2019-10-22 | 3M Innovative Properties Company | Laterally-coalesced foam slab |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE757054R (fr) * | 1969-10-06 | 1971-04-05 | Monsanto Chemicals | Perfectionnements aux mousses de |
JPS5546858B2 (en:Method) * | 1972-08-15 | 1980-11-26 | ||
US4480983A (en) * | 1982-05-13 | 1984-11-06 | Motorola, Inc. | Collet and method for dispensing viscous materials |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA451864A (en) * | 1948-10-12 | Edward Maier Robert | Extrusion process and apparatus | |
US2537977A (en) * | 1948-07-15 | 1951-01-16 | Dow Chemical Co | Method of making a shaped thermoplastic cellular product |
US2644983A (en) * | 1950-06-29 | 1953-07-14 | Us Rubber Co | Tube extrusion |
US2687997A (en) * | 1949-12-10 | 1954-08-31 | Marchand John Felix | Dialyzers |
US2893877A (en) * | 1958-07-02 | 1959-07-07 | Monsanto Chemicals | Method for packaging meat |
US3406230A (en) * | 1963-06-24 | 1968-10-15 | Monsanto Chemicals | Extrusion of resins |
US3427371A (en) * | 1964-12-29 | 1969-02-11 | Monsanto Chemicals | Process and apparatus for extruding foamed articles free from warping |
US3431163A (en) * | 1964-07-09 | 1969-03-04 | Monsanto Chemicals | Foamed aliphatic resin products having elongated cells at right angles to a surface skin and their manufacture |
US3431164A (en) * | 1964-06-02 | 1969-03-04 | Monsanto Chemicals | Foamed polyvinylaromatic resin products having elongated cells at right angles to a surface skin and their manufacture |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3349434A (en) * | 1961-12-18 | 1967-10-31 | Alimentaire G A S A Soc Gen | Extrusion of articles with ribbed full walls |
DE1230551B (de) * | 1963-07-09 | 1966-12-15 | Reifenhaeuser Kg | Vorrichtung zum kontinuierlichen Strangpressen von Formkoerpern |
US3466705A (en) * | 1966-03-07 | 1969-09-16 | Owens Illinois Inc | Apparatus for extruding foamable plastic materials in tubular form |
-
1967
- 1967-05-19 GB GB23303/67A patent/GB1166937A/en not_active Expired
-
1968
- 1968-05-06 US US726857A patent/US3624192A/en not_active Expired - Lifetime
- 1968-05-09 DE DE19681778541 patent/DE1778541A1/de active Pending
- 1968-05-16 BE BE715259D patent/BE715259A/xx unknown
- 1968-05-16 FR FR1566936D patent/FR1566936A/fr not_active Expired
-
1970
- 1970-08-17 US US64554A patent/US3694116A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA451864A (en) * | 1948-10-12 | Edward Maier Robert | Extrusion process and apparatus | |
US2537977A (en) * | 1948-07-15 | 1951-01-16 | Dow Chemical Co | Method of making a shaped thermoplastic cellular product |
US2687997A (en) * | 1949-12-10 | 1954-08-31 | Marchand John Felix | Dialyzers |
US2644983A (en) * | 1950-06-29 | 1953-07-14 | Us Rubber Co | Tube extrusion |
US2893877A (en) * | 1958-07-02 | 1959-07-07 | Monsanto Chemicals | Method for packaging meat |
US3406230A (en) * | 1963-06-24 | 1968-10-15 | Monsanto Chemicals | Extrusion of resins |
US3431164A (en) * | 1964-06-02 | 1969-03-04 | Monsanto Chemicals | Foamed polyvinylaromatic resin products having elongated cells at right angles to a surface skin and their manufacture |
US3431163A (en) * | 1964-07-09 | 1969-03-04 | Monsanto Chemicals | Foamed aliphatic resin products having elongated cells at right angles to a surface skin and their manufacture |
US3427371A (en) * | 1964-12-29 | 1969-02-11 | Monsanto Chemicals | Process and apparatus for extruding foamed articles free from warping |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3713762A (en) * | 1970-06-26 | 1973-01-30 | Kasei C Co Ltd | Apparatus for the extrusion molding of foamable plastics |
US3888614A (en) * | 1970-11-03 | 1975-06-10 | Monsanto Chemicals | Apparatus for producing a foamed resin sheet in a curved diverging expansion zone |
US3897528A (en) * | 1973-11-21 | 1975-07-29 | Dow Chemical Co | Method for the extrusion of thermoplastic foam |
EP0083177A1 (en) * | 1981-12-25 | 1983-07-06 | Japan Styrene Paper Corporation | Method for producing polystyrene resin foam |
US4536357A (en) * | 1983-01-28 | 1985-08-20 | Sekisui Kaseihin Kogyo Kabushiki Kaisha | Method and apparatus for preparing multi-cellular foamed board of thermoplastic resin |
EP0279668A3 (en) * | 1987-02-18 | 1989-10-11 | The Dow Chemical Company | Faom structure of coalesced foam strands of profiles |
US6005013A (en) * | 1995-08-14 | 1999-12-21 | Massachusetts Institute Of Technology | Gear throttle as a nucleation device in a continuous microcellular extrusion system |
US6284810B1 (en) | 1996-08-27 | 2001-09-04 | Trexel, Inc. | Method and apparatus for microcellular polymer extrusion |
US6884377B1 (en) | 1996-08-27 | 2005-04-26 | Trexel, Inc. | Method and apparatus for microcellular polymer extrusion |
US20050256215A1 (en) * | 1996-08-27 | 2005-11-17 | Trexel, Inc. | Method and apparatus for microcellular polymer extrusion |
EP3209478A4 (en) * | 2014-10-23 | 2018-07-04 | 3M Innovative Properties Company | Foaming die and method of use |
US10449702B2 (en) | 2014-10-23 | 2019-10-22 | 3M Innovative Properties Company | Laterally-coalesced foam slab |
US20170100870A1 (en) * | 2014-12-17 | 2017-04-13 | Poly-Wood, Llc | Extruded board with realistic appearance |
US10486354B2 (en) * | 2014-12-17 | 2019-11-26 | Poly-Wood, Llc | Extruded board with realistic appearance |
US11712831B2 (en) | 2014-12-17 | 2023-08-01 | Poly-Wood, Llc | Extruded board with realistic appearance |
Also Published As
Publication number | Publication date |
---|---|
US3694116A (en) | 1972-09-26 |
BE715259A (en:Method) | 1968-11-18 |
DE1778541A1 (de) | 1971-08-05 |
FR1566936A (en:Method) | 1969-05-09 |
GB1166937A (en) | 1969-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3431163A (en) | Foamed aliphatic resin products having elongated cells at right angles to a surface skin and their manufacture | |
US3431164A (en) | Foamed polyvinylaromatic resin products having elongated cells at right angles to a surface skin and their manufacture | |
US3624192A (en) | Production of foamed resins | |
US3523988A (en) | Method of making large celled plastic materials with integral skins | |
GB788133A (en) | Method and apparatus for shaping plastic foams | |
US3121130A (en) | Method of producing plastic foam | |
US3413388A (en) | Rectangular extrusion | |
US4154785A (en) | Method of manufacturing a tough board of thermoplastic resin foam having integral skins and a dense intermediate layer | |
US5006566A (en) | Preparation of foams having a high compressive strength | |
US3461496A (en) | Apparatus for extruding a skin covered,foamed thermoplastic | |
US3406230A (en) | Extrusion of resins | |
US3467570A (en) | Extrusion of resins | |
US3920876A (en) | Process for the manufacture of shaped bodies from cellular thermoplastic materials | |
US4221621A (en) | Process for preparing a foamed article of thermoplastic resin and a die therefor | |
JPS6053689B2 (ja) | 加熱可塑化したゲルを成型用溝に押出すことによる拡大断面積をもつ熱可塑性スポンジの製法とその装置 | |
JPS5830135B2 (ja) | プラスチツクハツポウタイ ノ オシダシセイケイホウホウ | |
US3427371A (en) | Process and apparatus for extruding foamed articles free from warping | |
US3897528A (en) | Method for the extrusion of thermoplastic foam | |
US3488746A (en) | Process for the production of a foamed polyethylene layflat tube | |
US3723586A (en) | A process of extruding a foamable thermoplastic resin | |
US3327030A (en) | Method and apparatus for forming elongated members | |
US3422172A (en) | Production of plastic foam sheet | |
US3810965A (en) | Process of producing a foamed resin sheet | |
US3331103A (en) | Extrusion die for foamable thermoplastic compositions | |
JP3654697B2 (ja) | スキン層を有する熱可塑性樹脂発泡シートの製造方法 |