US3624146A - Process for the production of acrylic acid from propylene - Google Patents

Process for the production of acrylic acid from propylene Download PDF

Info

Publication number
US3624146A
US3624146A US482487A US3624146DA US3624146A US 3624146 A US3624146 A US 3624146A US 482487 A US482487 A US 482487A US 3624146D A US3624146D A US 3624146DA US 3624146 A US3624146 A US 3624146A
Authority
US
United States
Prior art keywords
bismuth
cobalt
catalyst
propylene
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US482487A
Inventor
R Parthasarthy
Robert M Dobres
John L Warthen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WR Grace and Co Conn
Original Assignee
WR Grace and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WR Grace and Co filed Critical WR Grace and Co
Application granted granted Critical
Publication of US3624146A publication Critical patent/US3624146A/en
Assigned to W.R. GRACE & CO.-CONN. reassignment W.R. GRACE & CO.-CONN. MERGER (SEE DOCUMENT FOR DETAILS). EFFECTIVE DATE: MAY 25, 1988 CONNECTICUT Assignors: GRACE MERGER CORP., A CORP. OF CONN. (CHANGED TO), W.R. GRACE & CO., A CORP. OF CONN. (MERGED INTO)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the process is characterized by the use of a bismuth promoted cobalt-molybdate catalyst having a gram atom ratio of bismuth to molybdenum of from 0.05 to 0.15 and a cobalt to bismuth ratio in the range of5:1 to 20:1.
  • PROCESS FOR THE PRODUCTION OF ACRYLIC ACID FROM PROPYLENE This invention relates to an improved process for the production of alpha beta unsaturated oxygen containing compounds comprising aliphatic monocarboxylic acids. More particularly, the invention relates to an improved process for the direct vapor phase oxidation of propylene and/or isobutylene to acrylic acid and/or methacrylic acid respectively.
  • the aliphatic monocarboxylic acids having alpha, beta unsaturation such as acrylic acid and methacrylic acid, for example, are valuable starting and intermediate materials for a whole series of reactions because of their highly reactive nature. However, their reactive nature also makes these materials difficult to prepare and contributes to the problems encountered in large scale production of these acids.
  • hydrocarbon raw material used in the process of our invention can be broadly defined as olefinic unsaturated hydrocarbons. This invention is particularly applicable to normal gaseous hydrocarbons comprising propylene and/or isobutylene. Propylene is converted to reaction products comprising substantial amounts of acrylic acid and isobutylene to substantial amounts of methacrylic acid.
  • the raw material for use in our process may contain other hydrocarbons in the vapor state which do not undergo substantial reactions but which do not adversely affect the oxidation under the conditions of our process.
  • the feedstocks of our process may contain in addition to unsaturated olefinic hydrocarbons such as propylene and isobutylene, for example, other parafinic hydrocarbons such as methane, ethane, butanes which are in a vapor state under the conditions of operation of the claimed process.
  • the olefin contained charge is admixed with added oxygen in the form of an oxygen contained gas or oxygen in relatively pure form is passed through a reaction zone containing our novel catalyst.
  • the oxygen for use in this process may be recovered from the fractionization of air or it may be a more dilute oxygen containing gas.
  • a suitable source of oxygen comprises, for example, molecular oxygen in admixture with an inert diluent gas such as nitrogen. Air may be used as the source of molecular oxygen reactant.
  • the oxygen containing charge' may be admixed with the olefinic charge of the system before it is introduced into the reaction zone, but may be introduced in part or in its entirety directly into the reaction at one or more points in the reaction zone. Once the reactants are passed into the reaction zone, they are contacted with the catalyst.
  • co-precipitated cobalt-molybdate catalyst promoted with bismuth was highly selective.
  • Freshly precipitated cobaltmolybdate alone is too active in that it converts 27 percent of the propylene at a temperature of 660 F.
  • the unpromoted catalyst was 34 percent selective to acetic acid, 52 percent to carbon oxides and only '10 percent to acrylic acid.
  • Thermal treatment deactivated the catalyst and improved the acrylic acid selectively to 34 percent at the expense of the acetic acid which was then reduced to 13 percent;
  • the process is carried out at temperatures in the range of 700 to 950 F., preferably at 750 to 850 F.
  • the propylene is present in an amount equal to 2 to 20 volume percent, preferably 4 to 12 volume percent of the reaction mixture.
  • the ratio of oxygen to propylene is maintained in the range of 0.5 to l to 5 to l.
  • the preferred oxygen to olefin ratio is l to l.
  • the reaction is carried on for a period of time such that the reactants contact the catalyst for periods of l to 10 seconds, preferably about 3 to 4 seconds.
  • Alpha mono-olefinic hydrocarbons containing fewer than eight carbon atoms in the molecule can be converted, according to our process, to a reactant mixture comprising substantial amounts of alpha beta unsaturated monocarboxylic acid corresponding to said olefinic hydrocarbons by reacting said olefinic hydrocarbons in a vapor phase with an oxygen containing gas at a temperature of about 700 to 900 F.
  • a bed of a catalyst consisting of a bismuth promoted cobalt-molyb date wherein the gram atom of bismuth to gram atom of molybdenum ratio is in the range of 0.05 to 0.l5 and wherein the bismuth promoter in the cobalt-bismuth-molybdate catalyst is present in a cobalt to bismuth ratio in the range of 5 to l-20 to l..Air can be used as the oxygen-containing gas.
  • the bismuth promoted cobalt-molybdate catalyst employed in the process of this invention may be prepared by physically mixing bismuth molybdate with the cobalt-molybdate catalyst prepared in the usual manner.
  • coprecipitation of the two molybdates is achieved when a bismuth solution is added to the cobalt solution and this mixture of salts is treated with ammonium molybdate solution. The precipitation is completed by adjustment of the pH. The resulting mixture is then dried, pilled if desired, and calcined.
  • the mole ratio of cobalt to bismuth in the catalyst should be in the range of5zl to 20:1.
  • the preferred catalyst contains a cobalt to bismuth ratio of 9 to l.
  • the amount of bismuth present in the catalyst is critically important. Optimum yields of acrylic acid are obtained when the gram atom of bismuth to gram atom of molybdenum ratio in the catalyst is in the range of 0.05 to 0.15. lncreasing the bismuth content of the catalyst to a cobalt to bismuth ratio of 4 to l shifts its selectively more towards acrolein.
  • the concentration of molybdate should also be controlled so that the M00 to cobalt plus bismuth ratio is at least 1.0.
  • the criticality of the bismuth concentration is shown in the FIGURE.
  • the FIGURE shows that the alpha beta unsaturated acid of the product goes through a maximum at gram atom of bismuth to gram atom molybdenum content of about 0.1. lncreasing this ratio to the order of 0.2 results in a drastic increase in the amount of acrolein recovered from the reaction. The acetic acrid recovery decreases progressively with increase in the bismuth content of the catalyst. lt is apparent from the examples and the graph that the products of a once A The invention is further illustrated by the following specific but nonlimiting examples.
  • Co-Bl molybdate (CmBl 9:1) 7. 5-37. 5-55 798 3.5 35 20. 2 48.4 15.7 1.5 15.6
  • a catalyst was prepared to contain a cobalt/bismuth/molybdenum ratio of 0.8 to 0.2 to l. in this preparation, 233 grams of cobalt nitrate was dissolved in 220 ml. of deionized water and heated to l40 F.
  • the bismuth solution was prepared by dissolving 97.6 grams of bismuth nitrate pentahydrate in I00 ml. of deionized water and 20 ml. of 25 percent nitric acid.
  • the bismuth solution was added to the cobalt solution with stirring while maintaining the temperature at 140 F.
  • a solution of ammonium molybdate was prepared by dissolving l77 grams of the salt containing four molecules of water in 200 ml.
  • selectivity to acrylic acid and to acrolein based on propylene charge, we means the number of moles of acrylic acid and acrolein respectively produced, multiplied by 100, divided by the number of moles of propylene in the charge converted.
  • a process for the production of acrylic acid which comratio in the catalyst is about of 0.05 to 0.15 and wherein the cobalt to bismuth mole ratio in the catalyst is in the range of [5: 1-20: I of bismuth to gram atom of molybdenum ratio is in the range of 0.05 to 0.15.

Abstract

A vapor phase method of oxidizing alpha mono-olefinic hydrocarbon to the corresponding alpha beta unsaturated monocarboxylic acid in a single stage. The process is characterized by the use of a bismuth promoted cobalt-molybdate catalyst having a gram atom ratio of bismuth to molybdenum of from 0.05 to 0.15 and a cobalt to bismuth ratio in the range of 5:1 to 20:1.

Description

United States Patent Inventors R. Parthnsarthy Takoma Park; Robert M. Dobres, Silver Spring; John L. War-then, Baltimore, all 01' Md. Appl. No. 482,487 Filed Aug. 25, 1965 Patented Nov. 30, 1971 Assignee W. R. Grace 8; Co.
New York, N.Y.
PROCESS FOR THE PRODUCTION OF ACRYLIC ACID FROM PROPYLENE 1 Claim, 1 Drawing Fig.
U.S. Cl 260/533 N, 260/530 N, 260/604 R, 252/470 Int. Cl C07c 57/04 Field of Search 260/533, 604
[56] References Cited UNITED STATES PATENTS 3,372,128 3/1968 Maeda et a1. 260/604 3,177,257 4/1965 Detling et al. 260/604 FOREIGN PATENTS 878,802 10/1961 Great Britain 260/530 U 999,836 7/1965 Great Britain 260/5 30 U 903,034 8/1962 Great Britain 260/533 Primary Examiner.lames A. Patten Assistant ExaminerRichard Kelly Attorneys-.loseph P. Nigon and Kenneth E. Prince ABSTRACT: A vapor phase method of oxidizing alpha monoolefinic hydrocarbon to the corresponding alpha beta unsaturated monocarboxylic acid in a single stage. The process is characterized by the use of a bismuth promoted cobalt-molybdate catalyst having a gram atom ratio of bismuth to molybdenum of from 0.05 to 0.15 and a cobalt to bismuth ratio in the range of5:1 to 20:1.
PROCESS FOR THE PRODUCTION OF ACRYLIC ACID FROM PROPYLENE This invention relates to an improved process for the production of alpha beta unsaturated oxygen containing compounds comprising aliphatic monocarboxylic acids. More particularly, the invention relates to an improved process for the direct vapor phase oxidation of propylene and/or isobutylene to acrylic acid and/or methacrylic acid respectively.
The aliphatic monocarboxylic acids having alpha, beta unsaturation, such as acrylic acid and methacrylic acid, for example, are valuable starting and intermediate materials for a whole series of reactions because of their highly reactive nature. However, their reactive nature also makes these materials difficult to prepare and contributes to the problems encountered in large scale production of these acids.
The prior art processes for the production of acrylic acid and/or methacrylic acid have been based on operational procedures which are complex and costly and which do not lend themselves to economical large scale operation. These procedures generally comprise liquid phase operations which of necessity require relatively costly equipment and are very difficult to control.
It has been recognized for some time that a potential source of the alpha, beta unsaturated acid is their corresponding olefins. However, large scale production of the acids from this group has not followed because of the relatively low yields and costly operational steps involved in the available processes.
The prior art processes generally resulted in the preparation of a mixed product that contained substantial amounts of the alpha, beta unsaturated aldehydes and very little or no alpha, beta unsaturated monocarboxylic acids. These processes were frequently directed to utilization of the aldehydes in the subsequent preparation of monocarboxylic acids. Procedures of this type was obviously cumbersome and commercially unattractive.
We have found that although the use of a cobalt-molybdate catalyst in the vapor phase oxidation of olefms to unsaturated carboxylic acids, particularly the vapor phase oxidative conversion of propylene and/or isobutylene to acrylic acid and/or methacrylic acid, did not result in a substantial conversion, the promotion of this catalyst with a small but significantly important amount of bismuth results in a greatly improved yield of the unsaturated monocarboxylic acid product. Thus we have found that bismuth promoted cobalt-molybdate catalyst containing a small but critical amount of bismuth results in a selective conversion of propylene to acrylic acid, whereas the presence of bismuth in higher amounts results in products containing no appreciable amount of unsaturated acid.
The hydrocarbon raw material used in the process of our invention can be broadly defined as olefinic unsaturated hydrocarbons. This invention is particularly applicable to normal gaseous hydrocarbons comprising propylene and/or isobutylene. Propylene is converted to reaction products comprising substantial amounts of acrylic acid and isobutylene to substantial amounts of methacrylic acid.
It is not necessary that the olefin be purified. The raw material for use in our process may contain other hydrocarbons in the vapor state which do not undergo substantial reactions but which do not adversely affect the oxidation under the conditions of our process. Thus, the feedstocks of our process may contain in addition to unsaturated olefinic hydrocarbons such as propylene and isobutylene, for example, other parafinic hydrocarbons such as methane, ethane, butanes which are in a vapor state under the conditions of operation of the claimed process.
ln accordance with our process, the olefin contained charge is admixed with added oxygen in the form of an oxygen contained gas or oxygen in relatively pure form is passed through a reaction zone containing our novel catalyst.
The oxygen for use in this process may be recovered from the fractionization of air or it may be a more dilute oxygen containing gas. A suitable source of oxygen comprises, for example, molecular oxygen in admixture with an inert diluent gas such as nitrogen. Air may be used as the source of molecular oxygen reactant. The oxygen containing charge'may be admixed with the olefinic charge of the system before it is introduced into the reaction zone, but may be introduced in part or in its entirety directly into the reaction at one or more points in the reaction zone. Once the reactants are passed into the reaction zone, they are contacted with the catalyst.
In investigating catalysts for this reaction, we have found co-precipitated cobalt-molybdate catalyst promoted with bismuth to be highly selective. Freshly precipitated cobaltmolybdate alone is too active in that it converts 27 percent of the propylene at a temperature of 660 F. The unpromoted catalyst was 34 percent selective to acetic acid, 52 percent to carbon oxides and only '10 percent to acrylic acid. Thermal treatment deactivated the catalyst and improved the acrylic acid selectively to 34 percent at the expense of the acetic acid which was then reduced to 13 percent;
However, introducing a small amount of the bismuth promoter in the preparation of cobalt-molybdate catalyst shifted the selectivity to acrylic acid and acrolein at the expense of the acetic acid. The coprecipitated cobalt-bismuthmolybdate catalyst converted 35 percent of the propylene charge and was 48 percent selective to acrylic acid, 20 percent to acrolein and only 14 percent to acetic acid.
Our process is carried out at temperatures in the range of 700 to 950 F., preferably at 750 to 850 F. The propylene is present in an amount equal to 2 to 20 volume percent, preferably 4 to 12 volume percent of the reaction mixture. The ratio of oxygen to propylene is maintained in the range of 0.5 to l to 5 to l. The preferred oxygen to olefin ratio is l to l. The reaction is carried on for a period of time such that the reactants contact the catalyst for periods of l to 10 seconds, preferably about 3 to 4 seconds.
Alpha mono-olefinic hydrocarbons containing fewer than eight carbon atoms in the molecule can be converted, according to our process, to a reactant mixture comprising substantial amounts of alpha beta unsaturated monocarboxylic acid corresponding to said olefinic hydrocarbons by reacting said olefinic hydrocarbons in a vapor phase with an oxygen containing gas at a temperature of about 700 to 900 F. in a bed of a catalyst consisting of a bismuth promoted cobalt-molyb date wherein the gram atom of bismuth to gram atom of molybdenum ratio is in the range of 0.05 to 0.l5 and wherein the bismuth promoter in the cobalt-bismuth-molybdate catalyst is present in a cobalt to bismuth ratio in the range of 5 to l-20 to l..Air can be used as the oxygen-containing gas.
The bismuth promoted cobalt-molybdate catalyst employed in the process of this invention may be prepared by physically mixing bismuth molybdate with the cobalt-molybdate catalyst prepared in the usual manner. In the preferred process coprecipitation of the two molybdates is achieved when a bismuth solution is added to the cobalt solution and this mixture of salts is treated with ammonium molybdate solution. The precipitation is completed by adjustment of the pH. The resulting mixture is then dried, pilled if desired, and calcined.
The mole ratio of cobalt to bismuth in the catalyst should be in the range of5zl to 20:1.
The preferred catalyst contains a cobalt to bismuth ratio of 9 to l. The amount of bismuth present in the catalyst is critically important. Optimum yields of acrylic acid are obtained when the gram atom of bismuth to gram atom of molybdenum ratio in the catalyst is in the range of 0.05 to 0.15. lncreasing the bismuth content of the catalyst to a cobalt to bismuth ratio of 4 to l shifts its selectively more towards acrolein. The concentration of molybdate should also be controlled so that the M00 to cobalt plus bismuth ratio is at least 1.0.
The criticality of the bismuth concentration is shown in the FIGURE. The FIGURE shows that the alpha beta unsaturated acid of the product goes through a maximum at gram atom of bismuth to gram atom molybdenum content of about 0.1. lncreasing this ratio to the order of 0.2 results in a drastic increase in the amount of acrolein recovered from the reaction. The acetic acrid recovery decreases progressively with increase in the bismuth content of the catalyst. lt is apparent from the examples and the graph that the products of a once A The invention is further illustrated by the following specific but nonlimiting examples.
EXAMPLE I This example describes the preferred method of preparing our bismuth promoted cobalt-molybdate catalyst.
To 265 grams of cobalt nitrate, Co(No,),-b6l-i,0, dissolved in 250 ml. of deionized water, was added a solution of 38.5
4 EXAMPLE III A mixture of propylene air and steam containing a volume percent ratio of propylene to oxygen and steam of 7.5 to 37.5
to 55 was passed through a bed of a cobalt-molybdate-bismuth catalyst having a cobalt to bismuth ratio of 9 to l. The system was operated at a temperature of 798 F. and a pressure of one atmosphere. The contact time was 3.6 seconds. The reactor effluent was recovered and analyzed. The propylene conversion was 35 percent with a selectivity to acrylic acid of 48.4 percent and to acrolein of 20.2 percent. The selectivity for acetic acid was l5.7 percent and for acetalaldehyde, 1.6 percent. The amount of converted propylene going to carbon oxides was 15.6 percent.
grams of bismuth nitrate Bi( Mo h-511,0 in 50 ml. of deionized water and 10 ml. of 25 percent nitric acid. The mixture was EX M E v maintained at a temperature of 140 F. A charge of 177 grams of ammonium molybdate, (NR4) 40202441420, was dissolved The cnticality of the cobalt-bismuth ratio in the cobaltin 200 ml. of deionized water. The solution was heated to 140 bismuth'mlybdae caalyst er"P"asized a Whih The ammonium molybdate Solution was added to the the cobalt-bismuth ratio in the catalyst 4 to l. in this run, cobalt-bismuth solution with stirring. The temperature was a f of Propylene" and steam m a volumc Pe'ccm maintained at 140 F. during this addition. The mixture "3 of7-5 to 315m 55 were passed through a bed ofcobaltthickened upon addition of the molybdate. The pH of mixture bsmuthmolybdafe catalyst h'avmg a cobalt to blsmmh of was adjusted by adding 182 of 50 percent ammonium 4 to l. The reaction was carried out at a temperature of 870 hydroxide solution dropwise with stirring The final PH was F. The contact time was 3.6 seconds. The reactor effluent was 6.2. The mixture was stirred an additional 15 minutes, filtered recovered and analyzed' A total of 26 Pcrcem of the and washed with 2 liters of deionized water. The filtrate was Propylene was convenFd i a selcctivity acrolein of checked by adding additional ammonium hydroxide to be sure Percem and W and of P only that precipitation was complete. The products were dried for P m aceilc and fcetalalfjchyde were refovefed m 40 hours at 220 F. and calcined for l6 hours at 1000 F. The P'" m product was sized to recover those particles in the 8 to 25 vened P w was Percentmesh size range. The ratios of components in the products EXAMPLE,
were as follows:
. The criticality of the bismuth promoter was shown by passing the mixture of propylene, air and steam to the reactor in the presence of a fresh and deactivated cobalt-molybdate cabal 09 catalyst. The data showing feed temperature, conversion, coni h tact time, propylene conversion and selectivity of the convermolybdenum 1. sion is set out in table 1 below:
TABLE I Selectivity oi conv. in percent percent F. time, conv., Acrylic Acetic Acet- Carbon Catalyst C|=8ll'-H:O avg. bed sec. percent Acrolein acid acid aldehyde oxide Fresh CoMoO, (It-e473) 5-50-45 660 3.6 27 0. 3 0. 33.8 0. 3 52.4
CoMoO; deactivated at 1,200 F 10-50-40 803 3.0 20 0.5 34.4 12.5 40.3
(Jo-Bi molybdate (CozBi 4:1) 7. H7. 5-55 870 3.6 20 51.5 10.5 (J 23.9
Co-Bl molybdate (CmBl 9:1) 7. 5-37. 5-55 798 3.5 35 20. 2 48.4 15.7 1.5 15.6
Only minor amounts of acetic acid and aceteldehyde were recovered in the reaction.
EXAMPLE ll A catalyst was prepared to contain a cobalt/bismuth/molybdenum ratio of 0.8 to 0.2 to l. in this preparation, 233 grams of cobalt nitrate was dissolved in 220 ml. of deionized water and heated to l40 F. The bismuth solution was prepared by dissolving 97.6 grams of bismuth nitrate pentahydrate in I00 ml. of deionized water and 20 ml. of 25 percent nitric acid. The bismuth solution was added to the cobalt solution with stirring while maintaining the temperature at 140 F. A solution of ammonium molybdate was prepared by dissolving l77 grams of the salt containing four molecules of water in 200 ml. of deionized water. The solution was added to the cobaltbismuth solution with strong stirring. The temperature was maintained at l40 F. The mixture thickened to the extent that it was necessary to add 500 ml. of deionized water in order to facilitate stirring. While the mixture was being stirred, 230 ml. of a percent ammonium hydroxide solution was added. This addition adjusted the pH of the mixture to 6.4. The mixture was filtered and washed with 2 liters of deionized water and dried 40 hours at 220 F. The product was calcined for 16 hours at 100 F. and sized to recover the product in the 8 to 25 mesh size range. The yield in the reaction was 85 percent.
it is apparent from review of these data that the bismuth propylene conversion increased to 35 percent with the acrylic acid conversion increasing to 48.7 percent. The use of the cobalt-bismuth-molybdate catalyst also resulted in a reduction of the carbon oxide selectivity of the conversion to 15.6 percent.
When we use the term selectivity" to acrylic acid and to acrolein based on propylene charge, we means the number of moles of acrylic acid and acrolein respectively produced, multiplied by 100, divided by the number of moles of propylene in the charge converted.
Obviously many modifications and variations of the invention may be made without departing from the essence and scope thereof and only such limitations should be applied as are indicated in the appended claims.
What is claimed is:
1. A process for the production of acrylic acid which comratio in the catalyst is about of 0.05 to 0.15 and wherein the cobalt to bismuth mole ratio in the catalyst is in the range of [5: 1-20: I of bismuth to gram atom of molybdenum ratio is in the range of 0.05 to 0.15.
i i i i i
US482487A 1965-08-25 1965-08-25 Process for the production of acrylic acid from propylene Expired - Lifetime US3624146A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US48248765A 1965-08-25 1965-08-25

Publications (1)

Publication Number Publication Date
US3624146A true US3624146A (en) 1971-11-30

Family

ID=23916287

Family Applications (1)

Application Number Title Priority Date Filing Date
US482487A Expired - Lifetime US3624146A (en) 1965-08-25 1965-08-25 Process for the production of acrylic acid from propylene

Country Status (4)

Country Link
US (1) US3624146A (en)
DE (1) DE1568704A1 (en)
FR (1) FR1511572A (en)
GB (1) GB1115116A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039583A (en) * 1974-12-06 1977-08-02 Japan Synthetic Rubber Co., Ltd. Process for producing methacrolein
US4382880A (en) * 1980-04-25 1983-05-10 Rhone-Poulenc Industries Preparation of molybdenum/tungsten mixed oxide catalysts
US4418007A (en) * 1980-10-10 1983-11-29 Rhone-Poulenc Industries Preparation of mixed oxide catalysts comprising the oxides of molybdenum and/or tungsten
US4491806A (en) * 1982-10-06 1985-01-01 Motorola, Inc. Resonant cavity with integrated microphonic suppression means

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040978A (en) * 1975-11-28 1977-08-09 Monsanto Company Production of (amm)oxidation catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB878802A (en) * 1959-02-17 1961-10-04 Distillers Co Yeast Ltd Production of unsaturated aliphatic aldehydes and the corresponding acids
GB903034A (en) * 1960-04-14 1962-08-09 Distillers Co Yeast Ltd The production of acrylic and methacrylic acids
US3177257A (en) * 1965-04-06 Oxidative hydrocarbon conversion
GB999836A (en) * 1963-05-18 1965-07-28 Distillers Co Yeast Ltd Improvements in or relating to the production of acrylic acid
US3372128A (en) * 1963-01-25 1968-03-05 Sumitomo Chemical Co Novel catalyst composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3177257A (en) * 1965-04-06 Oxidative hydrocarbon conversion
GB878802A (en) * 1959-02-17 1961-10-04 Distillers Co Yeast Ltd Production of unsaturated aliphatic aldehydes and the corresponding acids
GB903034A (en) * 1960-04-14 1962-08-09 Distillers Co Yeast Ltd The production of acrylic and methacrylic acids
US3372128A (en) * 1963-01-25 1968-03-05 Sumitomo Chemical Co Novel catalyst composition
GB999836A (en) * 1963-05-18 1965-07-28 Distillers Co Yeast Ltd Improvements in or relating to the production of acrylic acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039583A (en) * 1974-12-06 1977-08-02 Japan Synthetic Rubber Co., Ltd. Process for producing methacrolein
US4382880A (en) * 1980-04-25 1983-05-10 Rhone-Poulenc Industries Preparation of molybdenum/tungsten mixed oxide catalysts
US4418007A (en) * 1980-10-10 1983-11-29 Rhone-Poulenc Industries Preparation of mixed oxide catalysts comprising the oxides of molybdenum and/or tungsten
US4491806A (en) * 1982-10-06 1985-01-01 Motorola, Inc. Resonant cavity with integrated microphonic suppression means

Also Published As

Publication number Publication date
DE1568704A1 (en) 1970-05-06
FR1511572A (en) 1968-02-02
GB1115116A (en) 1968-05-29

Similar Documents

Publication Publication Date Title
US3226421A (en) Catalytic process for the preparation of nitriles
US4000088A (en) Oxidation catalyst for the manufacture of methacrylic acid
CA1128918A (en) Catalyst compositions and their use for the preparation of methacrolein
JP2934222B2 (en) Method for producing acrolein from propylene by redox reaction and use of solid mixed oxide composition as redox system in the reaction
US3574729A (en) Production of unsaturated aliphatic acids
US4380664A (en) Process for producing unsaturated aldehydes, and unsaturated fatty acids
US3308151A (en) Process for the oxidation of olefinammonia mixtures to unsaturated nitriles
US3200081A (en) Mixed antimony oxide-manganese oxide oxidation catalyst
US3595911A (en) Production of unsaturated carboxylic acids
US3387038A (en) Process for oxidizing propylene and isobutylene to unsaturated aldehyde
EP0265733A1 (en) Process for producing methacrylic acid
US3624146A (en) Process for the production of acrylic acid from propylene
US2649477A (en) Process for the manufacture of maleic acid
EP0350862B1 (en) Process for producing methacrylic acid
EP0023699A1 (en) Process for the preparation of cyclohexanone
US3895051A (en) Catalyst and process for oxidizing or ammoxidizing n-butenes and/or isobutene
US3557199A (en) Oxidation of acrolein and methacrolein
US4052417A (en) Vapor phase oxidation of butane producing maleic anhydride and acetic acid
US4257921A (en) Catalyst for the oxidation of butene
US3403177A (en) Pretreatment of catalyst used in the production of acrylic acid and acrolein
US3346659A (en) Production of conjugated diolefines
US4469810A (en) Process for the calcination of phosphorus-molybdenum catalyst
US2437051A (en) Hydrogenation of carbon monoxide
US3504022A (en) Oxidation of aralkyl compounds
EP0113156B1 (en) Process for the calcination of phosphorus-molybdenum catalyst

Legal Events

Date Code Title Description
AS Assignment

Owner name: W.R. GRACE & CO.-CONN.

Free format text: MERGER;ASSIGNORS:W.R. GRACE & CO., A CORP. OF CONN. (MERGED INTO);GRACE MERGER CORP., A CORP. OF CONN. (CHANGED TO);REEL/FRAME:004937/0001

Effective date: 19880525