US3620245A - Perforator and apparatus for using same - Google Patents

Perforator and apparatus for using same Download PDF

Info

Publication number
US3620245A
US3620245A US3620245DA US3620245A US 3620245 A US3620245 A US 3620245A US 3620245D A US3620245D A US 3620245DA US 3620245 A US3620245 A US 3620245A
Authority
US
United States
Prior art keywords
tapered portion
main
bore
fitting
thread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
English (en)
Inventor
Robert R Finney
Lawrence F Luckenbill
Gerry E Kissell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mueller Co
Original Assignee
Mueller Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mueller Co filed Critical Mueller Co
Application granted granted Critical
Publication of US3620245A publication Critical patent/US3620245A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/04Drills for trepanning
    • B23B51/044Drills for trepanning with core holding devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/04Tapping pipe walls, i.e. making connections through the walls of pipes while they are carrying fluids; Fittings therefor
    • F16L41/06Tapping pipe walls, i.e. making connections through the walls of pipes while they are carrying fluids; Fittings therefor making use of attaching means embracing the pipe
    • F16L41/065Tapping pipe walls, i.e. making connections through the walls of pipes while they are carrying fluids; Fittings therefor making use of attaching means embracing the pipe without removal of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/26Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics for branching pipes; for joining pipes to walls; Adaptors therefor
    • F16L47/34Tapping pipes, i.e. making connections through walls of pipes while carrying fluids; Fittings therefor
    • F16L47/345Tapping pipes, i.e. making connections through walls of pipes while carrying fluids; Fittings therefor making use of attaching means embracing the pipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2215/00Details of workpieces
    • B23B2215/72Tubes, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/138Screw threads
    • B23B2260/1381Conical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/598With repair, tapping, assembly, or disassembly means
    • Y10T137/612Tapping a pipe, keg, or apertured tank under pressure
    • Y10T137/6123With aperture forming means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49403Tapping device making

Definitions

  • ABSTRACT An apparatus for opening a flow-way in a main I 54] :EQE AND APPARATUS FOR USING when a main is to be connected to a secondary main or service 28 Chi "D I line.
  • a perforator or raw tapping tool is utilized, which will progressively form the hole [52] US. Cl 137/318, or aperture in the main by upsetting the material of the main 29/l57 outwardly of the same into the through bore of a fitting at- [5l Int. Cl B23b 41/08 tached to the main, the upset material acting as a mechanical [50] Field ofSearch 29/]57; fastening means for increasing the resistance of a fitting to [37/315. 317. 318 twist about the axis or centerline of the main.
  • the present invention relates to improvements in an apparatus for tapping a main when setting up a flow-way from the main to a secondary main or service line.
  • Self-tapping fittings such as service Ts, nipples. or the like, have been heretofore utilized in connecting a secondary main or service line to a main without the escape of fluid from the main to atmosphere.
  • Such prior arrangements have utilized drilling machines connected to the fittings through which shell cutters or other drills were advanced through a valve and through the fitting to form the hole in a main.
  • some fittings have been provided with a through bore that is threaded interiorly, the through bore threadedly receiving the tapping tool which may be advanced by rotation.
  • Such tapping tools had annular cutters for removing the coupon from the main or piercing members forpunching a hole through the main.
  • Typical prior art arrangements may be found in the following U.S. Pats. Nos.
  • the present invention involves an apparatus in which a hole or aperture is formed in a main through a bore in a fitting.
  • the main at least preliminarily secured to the main, by .upsetting the material of the main in a generally radial and outward direction into the bore of the fitting.
  • the upset material surrounding the formed hole functions as a mechanical or secondary fastening means between the main and the fitting as it limits the amount the fitting will twist about the center line or axis of the main. In situations where the upset material is substantially in contact with the wall of the through bore, there is no slippage and an immediate lock. On the other hand, in situations where the upset material has a slight clearance with the wall of the through bore, there is a slight slippage before locking would be effected.
  • the invention contemplates swagging the upset material into tight engagement with the walls of the bore of the fitting so as to assist in locking the fitting to the main against removal in not only a circumferential sense but also in a radial sense.
  • This mechanical locking of the fitting to the main reduces the dependence of clamping straps and minimizes loosing which might take place due to corrosion under the straps.
  • the material being displaced during the progressive forming of the hole can be controlled so as to be upset outwardly of the main into the fitting and against the wall of the bore of the fitting.
  • the material By upsetting the material outwardly of the main. the material does not extend inwardly of the main so as inside diameter of the main. Additionally. the smooth upsetting of the material outwardly of the main into the through bore of the fitting results in a smooth. well-rounded opening, thereby maintaining a minimum pressure drop across the same.
  • Another aspect of the present invention is to provide a preliminary undersize hole or aperture in the main by cutting a coupon therefrom and then further forming the hole to a predetemiined size by upsetting the material around the undersized hole outwardly of the main into the bore of the particular fitting used.
  • This latter mentioned arrangement would be utilized especially where it is desired to provide a relatively large hole in a main, and thus the necessity of cutting an undersized hole first and retaining this coupon and then sub sequently progressively increasing the size of the undersize hole by upsetting the material around the undersize hole by swaging such material into the bore of the fitting attached to the main.
  • FIG. I is a vertical cross-sectional view of the assembly of the present invention. taken through a main, the assembly utilizing a saddle service T-type of fitting.
  • FIG. 2 is an enlarged fragmentary sectional view illustrating the main of FIG. 1 having been perforated with the material from the hole being swaged or upset outwardly of the main into the through bore of the fitting.
  • FIG. 3 is an enlarged vertical sectional view of the perforating or tapping tool of the present invention.
  • FIG. 4 is a vertical sectional view similar to FIG. I. but illustrating a plastic service T and a plastic pipe with a modified perforating or tapping tool.
  • FIG. 5 is an enlarged vertical sectional view of the tapping tool of FIG. 4.
  • FIG. 6 is an enlarged fragmentary vertical sectional view illustrating the tapping of a hole in a main by the tool shown in FIGS. 4 and 5.
  • FIG. 7 is a schematic drawing of a typical drilling machine attached to a fitting on a main, the fitting and the main being shown in vertical section with the main having been perforated, or tapped.
  • FIG. 8 illustrates a further modification of the present invention utilized with a shell cutter for the drilling machine of FIG. 7, the shell cutter functioning to cut a coupon when forming the undersized hole.
  • FIG. 9 is an enlarged fragmentary sectional view showing the main with the hole formed therein and with the coupon initially removed by the shell cutter of FIG. 8.
  • FIG. 10 is a still further modification of the present invention, the view being partially schematic and partially in vertical section and illustrating a different type of hand-operated drilling machine.
  • FIG. 11 is a vertical sectional view of the modified form of drilling machine shown in FIG. 10, the view illustrating the drilling machine inserting a completion plug into the fitting or I service T after the hole has been drilled.
  • FIGS. 1-3 there is dis closed in FIGS. 1-3 one embodiment of the present invention for opening a flow way from a main to a service line or pipe.
  • a service fitting generally designated at 10 equipped with a tapping tool 11, the service fitting being utilized to connect a main 12 of a fluid pressure system, such as a gas system or the like. to a service line 14, extending to a point of use, such as a dwelling or the like.
  • the main 12 and/or service line 14, as disclosed in this particular environment of the invention, is made of metal but. as will be described later in the specification. the main and the service line may be plastic.
  • the service fitting 10 is shown as a saddle clamp type of fitting having a unitary body member 16 made as a malleable iron casting or as a steel forging, the body member 16 being provided with an integral saddle part 18 having an arcuate surface 20 of a curvature complementary to the curvature of a portion of the external surface of the main l2.
  • Clamping means generally designated at 22 form part of the service fitting l and clamp the body member 16 in fluid-type connection to the main 12.
  • the clamping means 22 include an arcuate straplike member 24 with an eye 26 at one end thereof for fitting over a hook portion 30 on the body member 16 and a lug member 32 at the other end thereof, the lug member being provided with an aperture through which bolt means 34 extend.
  • the body member 16 is provided with a similar lug 36, and it will be understood that by tightening the bolt means 34, the service fitting is positioned on the main 12.
  • service fitting is disclosed as a saddle clamp type of service fitting, it will be appreciated such service fitting may be a conventional service T welded directly to the main, or otherwise suitably secured thereto, or other types of fittings, some of which are shown in the drawing and which will be described later in the specification.
  • the body member 16 is provided with a through bore 38 opening to the arcuate surface at its inner end and extending therefrom outwardly.
  • the through bore 38 in the particular arrangement shown in FIGS. 1 and 2 is interiorly threaded at 40, along its entire length for the functions to be described later in the specification,
  • Body member 16 is also provided with a lateral bore 41 opening at the through bore at its inner end, the lateral bore being arranged to communicate with the service line 14 suitably connected to the fitting.
  • the tapping tool 11 for forming a hole or flow way 43 in the main 12 is shown in FIG. 1 in a retracted position in the through bore 38, after the hole 43 has been formed.
  • the tapping tool 11 is provided with a pluglike body member 42, having a first body portion 44 with exterior threads 46 whereon that may be received in the interior threads 40 of the body member 16 of service fitting 10.
  • a noncircular socket or recess 48 for receiving an Allen wrench or other tool which can rotate the tapping tool on its longitudinal axis A and either advance or retract the same in the threaded through bore 38 of the service fitting 10, depending on the direction of rotation.
  • the body member 42 of the tapping tool is also provided with an intermediate body portion 50, which is frustoconical and tapers inwardly at an angle of l0 with respect to the longitudinal axis A of the tapping tool. Further, body member 42 is provided with a tapered or conical third body portion 52, which has an external thread 54 of the same hand as the thread 46. The largest diameter of the tapered body portion 54 at the line B is slightly greater than the smallest diameter of the intermediate body portion 50 at the line C, the purpose of which will be described in detail later in the specification.
  • the included angle D of the tapered body portion 52 defining the penetrating end of the tapping tool 11 is preferably It will be noted that the thread 54 on the tapered body portion 52 starts at a slight distance from the point P, as the point P functions as a centering means and keeps the tip P aligned when the hole 43 is started and the thread 54 begins its work.
  • the thread 54 terminates at its upper end, as viewed in FIG. 3, in a buttress thread 56 for the last helix thereof, the purpose of providing such a buttress thread being to make the tapping tool stronger at this area where there could be damage to the thread by the material of the main 12 being upset.
  • the thread 54 other than where the buttress helix 56 is provided, has a blunt root, as indicated at 58, and a sharp crest as indicated at 60, so that it somewhat resembles the thread of a sheet metal screw.
  • a blunt root at 58 rather than a sharp root as in a conventional thread, stress rises, due to the upsetting of material from the main, are reduced and the thread can fully function to swage or move the material when the hole 43 is being formed.
  • the lead or pitch of the helices of the thread 54 on the tapered body portion 52 of the tapping tool differs from the lead or pitch of the helices of the thread 46 on the first body portion 44.
  • the thread 54 has a greater lead than the thread 46, and consequently when the tapping tool 11 is positively advanced in the through bore 38 of the service fitting 10 and the tapered body portion 52 begins and is penetrating the wall of the main 12, the material of the main 12 will be swaged or upset outwardly of the main, as indicated at 62 in FIG. 2 up into the through bore 38.
  • the ratio between the helices driving thread 46 and the helices of the perforating or swaging thread 54 should be in the order of five to four.
  • the number of helices per inch of the thread 54 should be percent ofthe number ofhelices per inch of the thread 46.
  • the tapping tool 11 is preferably made of fully hardened steel, at least when it is being used to form a hole in steel or iron pipe. in this respect, it has been found that the tapping tool 11 should be at least 15 Rockwell C" points harder than the material of the main to be perforated or tapped and with respect to certain steel mains, such tapping tools 11 have been made with a 50 Rockwell C" hardness number throughout. By providing a fully hardened or for that matter, a casehardened tapping tool 11, extensive galling of the threads 46 and 54 is prevented during operation.
  • the service fitting 10 is assembled on the main 12 at a location where it is desired to tap the hole 43 into the main for the purpose ofconnecting the main to the service line 14.
  • the service fitting 10 is provided with a groove 13 on the surface 20 surrounding the lower opening of the through bore 38.
  • An O-ring 15 is provided in the groove 13, the O-ring sealing against the exterior of the main around the location where the hole 43 is to be made.
  • the service line 14 is then connected to the service fitting 10 and the main is ready to be tapped.
  • the tapping tool 11 is rotated in the threads 40 of the through bore 38 in such a manner as to advance the tapered end portion 52 of the tapping tool toward the main.
  • the point P will begin penetration of the main and then the tapered thread 54 begins its work to progressively form the hole 43.
  • it is positively advanced a predetermined distance, dependent upon the lead or pitch of the driving thread 46. Since the lead or pitch of the thread 54 is greater than the lead or pitch of the thread 46, the material being displaced by the thread 54 will be directed outwardly of the main l2 and upwardly into the lower end of the through bore 38.
  • the ultimate size of the hole in the main 12 is determined by the maximum diameter B of the tapered thread 54 on the tapered portion 52 of the body member 42.
  • the purpose of the tapered intermediate portion 50 is to force the upset material 62 around the hole 43 radially outwardly of the hole, so that it fills the lowermost helices of the thread 40 of the through bore 38.
  • the tapping tool 11 may be coated with a dry film lubricant L such as disclosed in the common assignees U.S. PAT. No. 3,264,907, issued Aug. 9, 1966 on all of its surfaces, except the swaging surface of the smooth, tapered intermediate portion 50.
  • a dry film lubricant L such as disclosed in the common assignees U.S. PAT. No. 3,264,907, issued Aug. 9, 1966 on all of its surfaces, except the swaging surface of the smooth, tapered intermediate portion 50.
  • FIGS. 4-6 inclusive there is disclosed a modification of the assembly of the present invention which may be utilized for connecting a plastic main 12' to a plastic service line 14'.
  • a plastic service fitting or T 10 is utilized, the same being somewhat similar to the common assignee's U.S. Pat. No. 2,839,075, issued June 17, I958, or to the common assignees U.S. Pat. No. 3,460,553, issued Aug. 12, 1969.
  • T 10 is utilized, the same being somewhat similar to the common assignee's U.S. Pat. No. 2,839,075, issued June 17, I958, or to the common assignees U.S. Pat. No. 3,460,553, issued Aug. 12, 1969.
  • the plastic service fitting 10' includes a body portion 16 having at its lower end a saddle part 18' provided with an arcuate shaped surface 20' complementary to the exterior surface of the plastic main 12'.
  • a lateral outlet 21 provided with a lateral bore 41' opens to an interiorly threaded through bore 38.
  • the lateral outlet 21 is arranged to receive the plastic service line 14'.
  • a groove 13' surrounding the opening of the through bore 38' to the surface 20' is provided for receiving an O-ring 15'.
  • Clamping means 22' such as a pair of hose clamps 24', are arranged to extend about the main l2 and the exterior of the saddle part 18 so as to clamp the service fitting 10 at least temporarily on the plastic main I2. Sufficient pressure is applied through the hose clamps 24' to enable the O-ring 15 to make fluid type contact between the saddle part 18' and the plastic main 12' during the forming of a solvent weld between the saddle part 18' and the main I2, if such is used.
  • the through bore 38' is provided with an interior thread 40' which extends from at least adjacent its upper end to a point spaced slightly from its lower end. At its lower end, the through bore 38' is provided with an annular groove, or recess, 45, which functions similarly to the lower helices of the thread 40 in the embodiment of FIGS. 1-3, inclusive.
  • the groove is arranged to receive the upset material 62', when such material is caused to flow or move radially outwardly'of the formed hole or flow way 43 to thereby provide a positive lock or anchor between the main and the service fitting.
  • a tapping tool ll somewhat similar to the tapping tool 11 is provided for forming the hole 43'.
  • the tapping tool 11 is provided with a pluglike body 42 having a first body portion 44' provided with an exterior driving thread 46', which is received in the interior thread 40 of the through bore 38'.
  • the first body portion 44 has a noncircular socket 48' in its outer end, in which an Allen wrench or other tool may be inserted for rotating the tapping tool ll to advance or retract the same in the bore 38'.
  • An intermediate body portion 50' which is frustoconical and tapers inwardly from the first body portion 44' at an angle in the order of 30 with respect to the longitudinal axis A to a point where it is provided with a short cylindrical portion, is provided for swagging or moving the upset material 62' radially outwardly into the groove 45.
  • the body member 42' is further provided with a tapered frustoconical third body portion 52', the third body portion tapering inwardly from the lower end of the cylindrical portion of intermediate body portion 50', as viewed in FIG. 5.
  • An external cutting or swaging thread 54 is provided on the exterior of body portion 52'.
  • the included angle of the frustoconical third body portion 54 is in the order of 30, whereas the thread 54' is coarser than the driving thread 46'.
  • the ratio between the helices of the driving thread 46 and the swaging thread 54 is in the order of five to four, so that the lead of the thread 54' which progressively forms the hole 43' is greater than the lead or pitch of the thread 46', and thus will upset material outwardly of the main 12'.
  • the end of the tapping tool 11' is provided with an annular cutting edge 57 and a longitudinally extending closed bottom bore or recess 59.
  • the cutting edge 57 cuts from the main 12' a coupon or slug S and forms a preliminary hole in the main l2.
  • rotation with positive advancement of the tapping tool 11' in the through bore 38' will result in the threads 54' progressively forming the hole 43 and since the lead of the thread 54' is greater than the lead of the thread 46, the material being removed from around the hole will be progressively moved and upset outwardly of the main I2 into the through bore 38' until the last helix of the thread 54' has performed its work.
  • Plastic material used in plastic mains usually has a greater elastic memory.
  • plastic material can be flowed past its elastic memory and this occurs when the hole 43' is being progressively formed by the tapered thread 54' and the material is being upset at 62.
  • the material of the plastic main I2 when moved or swaged radially outwardly by the swaging surface of intermediate body portion 52' into the groove 45, it may have a slight tendency to contract when the tapping tool 11' is withdrawn from the hole 43'.
  • a reinforcing metallic ring 6] having an interior shape complementary to the shape of the intermediate portion 50' is loosely fit onto the tapping tool 11 prior to formation of the hole.
  • the ring 61 When the tapping tool ll is withdrawn, the ring 61, which has a loose fit on the tool, will remain embedded in the upset material 62' and will form the wall of the hole 43', thus reinforcing the upset material and increasing the amount of force necessary to produce failure from shear.
  • the overall longitudinal length of the ring 61 is approximately equal to the wall thickness of the main I2, plus the overall height of the upset material 62'.
  • the cutting tool 11' has been illustrated and described in the use with a plastic service fitting for connecting a plastic main to a plastic service line, it will be understood that such a tool may be used in forming large diameter holes in metal mains.
  • the tapping tool must be harder than the material of the main being perforated and the same is true of the tapping tool 11' regardless of whether it is utilized for perforating a plastic or a metal main.
  • FIGS. 7-9 there is disclosed a further modification of the present invention utilizing the same with a shell cutter operated by a drilling machine, the shell cutter being used in situations where a relatively large hole is to be provided in a relatively large main.
  • an existing main 12 in which it is desired to provide a lateral opening for connecting the same to a new supply main or service line (not shown) is provided at the area where the opening is made with a service fitting in this particular instance
  • the service fitting 10" is a tapping sleeve which includes an upper body member 70 and a lower body member 72 bolted together about the main 12".
  • the upper body member 70 has a branch 71 with a through bore 38" therein and a flange 74 at the upper end of the branch.
  • a flanged end 76 of a conventional gate valve 78 is secured to the flange 74.
  • a shell cutter 80 (FIG.
  • the gate valve 78 is provided with a body 79 having a flange 82, to which a bonnet 83 for valve is secured.
  • the drilling machine 84 which is of the conventional type, for example the type shown in the common assignees U.S. Pats. Nos. 2,833,167, issued May 6, 1958; 2,884,808, issued May 5, 1959; and 2,907,229, issued Oct. 6, 1959, is provided with means for either manually or automatically rotating the boring bar 86 and advancing the same as predetermined distance for each revolution. Consequently, a detailed description of the drilling machine 84 will not be given.
  • the shell cutter 80 is attached to the lower end of the boring bar 86 and in this embodiment of the invention, such cutter defines the tapping tool.
  • a pilot drill 92 extends axially of the shell cutter 80 and projects beyond the cutting teeth 94 of the same.
  • the shell cutter 80 is rotated and advanced at a predetermined rate by the drilling machine. its pilot drill is first to engage and bore a hole in the main. Once the hole has been bored in the main and the shell cutter 80 continues to rotate and advance, the teeth 94 of the shell cutter will then cut a coupon S from the main with the coupon being retained on the pilot drill by locking means (not shown).
  • the shell cutter is provided with an outwardly tapered portion 96 above its lower cylindrical portion 98, the tapered portion 96 above its lower cylindrical portion 98, the tapered portion 96 being provided with an external swaging thread 97 for enlarging the hole preliminarily cut.
  • the swaging thread 97 With a lead or pitch which is greater than the axial travel per revolution of the shell cutter, as determined by the boring bar 86, the tapered thread 97 will progressively pull and upset the material from around the hole into the through bore 38" of the tapping sleeve 70.
  • a cylindrical swaging surface 100 is provided on the shell cutter 80 immediately above the last and largest helix of the thread 97, this surface having a diameter at least as great as the diameter of the largest helix of the thread 97 so that the material upset, as indicated at 62", is swaged radially outwardly in a similar manner to the previous embodiments.
  • the through bore 38" of the tapping sleeve is provided at its lower end, when viewing these FlGS., with a plurality of annular grooves or recesses 45", which receive the material from the upset portion 62" when the same is swaged radially outwardly of the axis ofthe hole or opening 43". This mechanically locks the main 12" to the tapping sleeve of the service fitting in a similar manner to that described with the previous embodiments ofthe invention.
  • FIGS. 10 and 11 there is disclosed a still further modification of the present invention wherein a manually operable drilling machine is utilized to take the place of the driving thread on the tapping tool 11 of the modifications of FIGS. 1-6, inclusive.
  • the service fitting 10" is a saddle clamp type of fitting substantially similar to the service fitting 10, except that the through bore 38" is not provided with threads for advancing the tapping tool 11"
  • the service fitting 10" has its body member 16" exteriorly threaded at for threadedly receiving one end ofa gate valve diagrammatically shown at 112.
  • the bore 38" is interiorly threaded as indicated at 114 adjacent its upper end for reception of a completion plug 116, whereas its lower end of this bore is provided with annular recesses or grooves 45" capable of receiving material of the upset portion 62" of hole 43" formed in main 12".
  • a manually operable drilling machine generally designated at 118 is provided with a body member 120 having a through bore 122, the through bore 122 being provided with interior feed or drive thread, as indicated at 124.
  • a feed or drive sleeve 126 extends into the through bore 122 and is provided with an exterior feed or drive thread 128 for cooperating with the thread 124.
  • the portion of the feed sleeve 126 extending out of the body member 120 has a handle 130 fixed thereto, the handle 130 having a threaded bore 132 therein.
  • Body member 120 at its lower end, as viewed in FIGS. 10 and 11, is provided with an external thread 134 arranged to be received in the gate valve 112.
  • An operating bar 136 extending through the upper end and freely slidable in the feed sleeve 126 is provided with a head 138 at its outer end exteriorly of the feed sleeve.
  • the head 138 has a hole 140 therethrough, through which a thumbscrew 142 can be inserted and threaded into the bore 132 ofthe handle 130, so as to lock the operating bar 136 both axially and rotatably with respect to the feed sleeve 126.
  • the inner end of the operating bar 136 is externally threaded, as indicated at 144 and is arranged to threadedly receive and support the tapping tool 11".
  • Tapping tool 11" is identical to tapping tool 11 of HO. 1 with respect to the tapered body portion 52", and the tapered thread 54" on the exterior thereof. Additionally, the intermediate body portion 50 is identical to the intermediate portion 50 of the tapping tool 11 in that it provides a recess after work is completed by the thread 54" and functions as a swaging surface.
  • the tapping tool 11" is threaded onto the threaded end 144 of the operating bar 136 and the operating bar is then moved to a position where the tapping tool 11" is completely retracted within the body member 120.
  • the body member 120 is assembled on the gate valve 112 and once this has been done, the operating bar 136, once the valve has been opened, can be moved to the position where the tapping tool passes through the gate valve 112 and through the bore 38" to a point where the head 138 is flush against the handle 130 ofthe feed sleeve 126.
  • the thumbscrew 142 is then inserted through the head 138 and threaded into the handle 130 to lock these two elements together.
  • the feed sleeve 126 rotates and advances in the thread 124 of the body member 120. This also causes rotation of the tapping tool 11 and a predetermined advancement of each revolution thereof. Since the threads 124 and 128 of the body member 120 and the feed sleeve 126, respectively, have less of a lead than the tapered thread 54" on the tapping tool 11", the hole 43", being progressively formed, will have the material removed therefrom upset, as indicated at 62". Once the thread 54" has completed its work, then the swaging surface of the intermediate portion 50" will urge the upset portion radially outwardly of the axis of the bore 38 into the recesses or grooves 45". When this has been accomplished, the hole 43" is complete and the reverse procedure is accomplished to withdraw the tapping tool 11" through the gate valve 112.
  • the gate valve 112 is then closed and the body member 120 is removed therefrom, so that the tapping tool 11" can be unthreaded from the end 144 of the operating. bar.
  • the completion plug 116 is inserted onto the threaded end 144 of the operating bar 136 and the body member 120 is reassembled onto the gate valve 112, so that the insertion plug can be advanced through the gate valve when opened and threaded into the interiorly threaded upper end 114 ofthe bore 38", as shown in FIG. 11.
  • the completion plug 116 has been threaded into the upper end of bore 38"
  • the rotation of the operating bar 136 in an opposite direction will cause it to separate from the completion plug 116.
  • the gate valve 112 may then be removed from the fitting and replaced by a closure (not shown).
  • An assembly for forming a hole in a main comprising:
  • tapping means movable axially of said through bore for engaging and forming the hole in the main, said tapping means including a tapping tool having a tapered portion for progressively forming the hole, said tapered portion having a thread on the exterior thereof of a predetermined lead for controlling movement of material from the hole being formed, and means to positively advance said tapping tool a predetermined distance in said bore for each revolution of the same, said advancement of said tool for each revolution of the same being less than the lead of said thread on said tapered portion whereby material, during forming of the hole, is upset outwardly of the main into the through bore of the fitting.
  • said tapping tool includes a cylindrical-shaped shell cutter extending axially from the smallest end of said tapered portion, said shell cutter having a cutting edge for preliminarily cutting a coupon from the main with said tapered portion enlarging and forming the hole in the main with material being upset outwardly of the main into the through bore of the fitting.
  • said means to advance said tapping tool includes thread means operatively between said tapping tool and said fitting for advancing said tool a predetermined distance for each revolution of the same.
  • said means to advance and rotate said tapping tool in the bore of said fitting includes a drilling machine comprising an operating bar detachably supporting said tapping tool on one end thereof, a feed sleeve slidably supporting said operating bar, means for fixedly attaching said feed sleeve and said operating bar to one another to prevent movement relative one another, a body member having an interior threaded bore therethrough, means to fixedly support said body member on said fitting with its interiorly threaded bore axially aligned with the through bore in said fitting, said feed sleeve having exterior threads thereon received in the interior threads of said body member, whereby rotation of said sleeve will advance and retract said tapping tool when said feed sleeve is fixedly attached to said operating bar.
  • said means to fixedly support said body member on said fitting includes valve means through which said tapping tool may be advanced when said valve means is open( 13.
  • said tapping tool includes a cylindrical shaped shell cutter extending axially from the smallest end of said tapered portion, said shell cutter having a cutting edge for preliminarily cutting a coupon from the main with said tapered portion and its thread enlarging and forming the hole in the main with the material being upset outwardly of the main into the through bore of the fitting, and in which said means for advancement of and rotation of said tapping tool includes a drilling machine mounted on said fitting, said drilling machine having a boring bar, said tapping tool being mounted on the end of said boring bar, and means to rotate and advance said boring bar a predetennined distance for each rotation of the same.
  • said swaging means includes a second tapered portion on said tapping tool separated from the large end of said first tapered portion by a cylindrical portion, a sleeve loosely carried on said cylindrical portion and said second portion, said sleeve being positioned by said tapping tool within the upset material after the hole is formed. to thereby reinforce the same.
  • tapping tool includes a cylindrical shaped shell cutter extending axially from the smallest end of said tapered portion and having a cutting edge preliminarily cutting a coupon from the main
  • swaging means includes a cylindrical portion extending from the large end of said tapered portion and having a diameter at least equal to the maximum crest diameter of the threads on said tapered portion.
  • a perforating tool for use with a fitting at least preliminarily secured to a main comprising a pluglike body member having means thereon for perforating the wall of the main by upsetting the material surrounding the hole into the through bore of the fitting upon rotative advancement at a predetermined rate, said means including a tapered portion having a perforating thread thereon with a lead greater than the rate of rotative advancement of the pluglike member for controlling movement of material.
  • a perforating tool as claimed in claim 22 in which said pluglike body member includes a cylindrical portion of greater diameter than the large end of said threaded tapered portion, said cylindrical portion having a thread thereon for cooperating with means on said fitting to rotatively advance the pluglike body member. the lead of said last-mentioned thread being less than the lead on the thread of the tapered portion.
  • a perforating tool as claimed in claim 23 including swaging means intermediate said cylindrical portion and said tapered portion to swage the material upset by said threaded tapered portion radially outwardly of said body member.
  • a perforating tool as claimed in claim 25 including a coating of a dry lubricant on said threaded tapered portion. and said second tapered portion being uncoated, whereby torque will materially increase when said second tapered portion is performing its swaging operation.
  • a perforating tool as claimed in claim 25 in which said second tapered portion has a diameter at its smaller end less than the maximum diameter of said first threaded tapered portion to thereby define an annular recess whereby torque at least momentarily reduces when said threaded tapered portion completes its work.
  • An assembly for forming a hole in a main comprising: a fitting having a through bore, said fitting at one end of said through bore being adapted to be secured to the main where the hole is to be formed; tapping means movable axially of said through bore for engaging and forming the hole in the main, said tapping means including a tapping tool having a tapered portion with a tapered thread thereon for progressively forming the hole, said thread having a predetermined lead; and means to rotate and positively advance said tapping tool a predetermined axial distance in said bore for each revolution of the same, said last-mentioned means advancing said tapping tool during each revolution a different distance to the travel of the lead of said thread whereby material removed in forming the hole is directed in a predetermined direction axially of said hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Drilling And Boring (AREA)
  • Forging (AREA)
  • Earth Drilling (AREA)
  • Punching Or Piercing (AREA)
US3620245D 1969-10-21 1969-10-21 Perforator and apparatus for using same Expired - Lifetime US3620245A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86804069A 1969-10-21 1969-10-21

Publications (1)

Publication Number Publication Date
US3620245A true US3620245A (en) 1971-11-16

Family

ID=25350969

Family Applications (1)

Application Number Title Priority Date Filing Date
US3620245D Expired - Lifetime US3620245A (en) 1969-10-21 1969-10-21 Perforator and apparatus for using same

Country Status (10)

Country Link
US (1) US3620245A (xx)
AU (1) AU2129770A (xx)
BE (1) BE757734A (xx)
CA (1) CA931792A (xx)
DE (1) DE2051702A1 (xx)
ES (2) ES384654A1 (xx)
FR (1) FR2066322A5 (xx)
GB (1) GB1297417A (xx)
LU (1) LU61903A1 (xx)
NL (1) NL7015314A (xx)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995655A (en) * 1975-10-07 1976-12-07 Mueller Co. Apparatus for and method of making a service line connection through a fitting
US4258941A (en) * 1979-07-19 1981-03-31 Mueller Co. Service clamp for plastic pipe or the like
US4654942A (en) * 1985-03-08 1987-04-07 Dayco Products, Inc. Method of making a branched hose construction
US4708374A (en) * 1984-07-30 1987-11-24 Naco Industries, Inc. Plastic Tee fitting
US4730636A (en) * 1986-11-19 1988-03-15 Perfection Corporation Valve and tapping tee apparatus and method
US5609181A (en) * 1996-04-02 1997-03-11 Evans; Donald L. Tube connector and tapping device
CN104406002A (zh) * 2014-11-25 2015-03-11 苏军科 管道快速连接方法及快速管道连接开通器
EP4279790A3 (en) * 2016-09-01 2024-03-13 Oceaneering International, Inc. System for and method of sealing a flowline with a metal seal after hot tapping

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2137126A (en) * 1982-10-19 1984-10-03 Talbot & Co Ltd F W Trepanning Cutter
DE3524219A1 (de) * 1985-07-06 1987-01-08 Walter Metz Anschlussnippel
GB2251818B (en) * 1991-01-21 1995-01-04 British Gas Plc Pipe Tapping
DE4309941C2 (de) * 1993-03-26 1997-02-13 Puspas Armaturen Gmbh Anbohrarmatur
IT1266524B1 (it) * 1993-05-19 1996-12-30 Olibrio Cocco Attrezzo foratubi per l'applicazione di prese a staffa su tubi in pvc, in particolare tubi per irrigazione.
DE19603254C2 (de) * 1995-02-03 1999-07-22 Manibs Spezialarmaturen Ventil-Anbohrarmatur für unter Mediendruck stehende Rohrleitungen
DE19518585C2 (de) * 1995-05-20 1998-09-10 Manibs Spezialarmaturen Anbohr- und/oder Absperrarmatur für eine unter Mediendruck stehende Rohrleitung
ATE199278T1 (de) * 1995-07-26 2001-03-15 Georg Fischer Wavin Ag Anbohrarmatur
PT3366969T (pt) * 2017-02-28 2022-06-29 Georg Fischer Wavin Ag Aparelho para perfuração de tubos
CN115798757B (zh) * 2022-12-19 2024-05-14 中国原子能科学研究院 切靶解靶装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3094137A (en) * 1961-01-09 1963-06-18 Donald J Burke Self-punching t fittings

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3094137A (en) * 1961-01-09 1963-06-18 Donald J Burke Self-punching t fittings

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995655A (en) * 1975-10-07 1976-12-07 Mueller Co. Apparatus for and method of making a service line connection through a fitting
US4258941A (en) * 1979-07-19 1981-03-31 Mueller Co. Service clamp for plastic pipe or the like
US4708374A (en) * 1984-07-30 1987-11-24 Naco Industries, Inc. Plastic Tee fitting
US4654942A (en) * 1985-03-08 1987-04-07 Dayco Products, Inc. Method of making a branched hose construction
US4730636A (en) * 1986-11-19 1988-03-15 Perfection Corporation Valve and tapping tee apparatus and method
US5609181A (en) * 1996-04-02 1997-03-11 Evans; Donald L. Tube connector and tapping device
CN104406002A (zh) * 2014-11-25 2015-03-11 苏军科 管道快速连接方法及快速管道连接开通器
EP4279790A3 (en) * 2016-09-01 2024-03-13 Oceaneering International, Inc. System for and method of sealing a flowline with a metal seal after hot tapping

Also Published As

Publication number Publication date
DE2051702A1 (de) 1971-05-13
BE757734A (fr) 1971-04-01
ES384654A1 (es) 1973-03-16
AU2129770A (en) 1972-04-27
LU61903A1 (xx) 1971-05-04
NL7015314A (xx) 1971-04-23
CA931792A (en) 1973-08-14
FR2066322A5 (xx) 1971-08-06
ES392129A1 (es) 1974-02-01
GB1297417A (xx) 1972-11-22

Similar Documents

Publication Publication Date Title
US3620245A (en) Perforator and apparatus for using same
US3995655A (en) Apparatus for and method of making a service line connection through a fitting
US3734112A (en) Method of tapping a hole in a main through a fitting
US5649791A (en) Apparatus and method for boring a hole in a broken bolt
US3313186A (en) Method of affixing a tube to a tool body
CN100450679C (zh) 与快速变换装置结合使用将孔锯安装到电钻上的接头
US6474701B1 (en) Tubing connector
US7631664B1 (en) Threaded expansion plugs
US3870431A (en) Cutter for plastic pipe and drilling tool
US4076444A (en) Drill bit extension
US20090110509A1 (en) Self-tapping insert and method of utilizing the same to replace damaged bores and threads
US4809735A (en) Valve and tapping tee apparatus and method
US4399829A (en) Tapping apparatus and method
AU712720B2 (en) Combination die and tap
US4076280A (en) Conduit coupling
DE19715119A1 (de) Leitungsstück, insbesondere Rohrformstück bzw. Fitting
US20040136807A1 (en) Thread repair insert
US3727254A (en) Method of forming an insert bush
DE1939484A1 (de) Nietwerkzeug
US5829474A (en) Tubing piercing and tapping apparatus
US3142205A (en) Lubricated tapping t
JP3739667B2 (ja) サドル分水栓及びその穿孔方法
US3068724A (en) Service t with built-in valve and drilling mechanism
US20230258086A1 (en) Friction fit drill bit assembly for a self-drilling rock bolt
US20100329816A1 (en) Self-Tapping Insert and Method of Utilizing the Same to Replace Damaged Threads for Hydraulic and Pneumatic Applications