US3615404A - 1 3-phenylenediamine containing photoconductive materials - Google Patents

1 3-phenylenediamine containing photoconductive materials Download PDF

Info

Publication number
US3615404A
US3615404A US724224A US3615404DA US3615404A US 3615404 A US3615404 A US 3615404A US 724224 A US724224 A US 724224A US 3615404D A US3615404D A US 3615404DA US 3615404 A US3615404 A US 3615404A
Authority
US
United States
Prior art keywords
phenylenediamine
phenylene
reaction mixture
reaction
tetra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US724224A
Inventor
Lawrence Price
John Alan Mattor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark Tissue Co
Original Assignee
Scott Paper Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scott Paper Co filed Critical Scott Paper Co
Application granted granted Critical
Publication of US3615404A publication Critical patent/US3615404A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine

Definitions

  • This invention relates to photographic reproduction and more particularly to a new group of organic photoconductors and to electrophotographic processes, namely processes in which an electrostatic latent image is produced by utilizing the property of photoconduction (i.e., a variable conductivity dependent on the intensity of illumination).
  • the electrostatic latent image may be produced in a conventional exposure operation, for example by means of a lens-projected image or by contact-printing techniques, whereby a nonvisible electrostatic charge pattern (the so-called electrostatic latent image) is created on a surface, in which pattern the charge density at any point is related to the intensity of illumination obtained at the point during the exposure.
  • The. latent image may be develo ed (i.e., rendered visible) by means of a triboelectric powder or liquid toner.
  • Said powder such as a pigmented synthetic resin, fixes the resulting visible image by rendering the powder permanently adherent to a support on which the image is desired, for example in suitable cases by heating to soften or melt the powder particles.
  • the liquid toner particles which are washed over the surface are caused to adhere permanently by the drying oil component of the liquid toner.
  • the electrostatic latent image is commonly formed on the surface of a photoconductive insulating layer carried on a support.
  • material comprising such support and photoconductive layer may be charged by applying a uniform surface charge to the free surface of the photoconductive layer.
  • the charge can be applied by conventional means such as corona discharge or the like.
  • the charge is retained due to the substantial insulating character, i.e., the low conductivity, of the insulating layer in the dark.
  • the photoconductive property of the layer causes the conductivity to increase in the illuminated areas to an extent which is proportional to the intensity of illumination. This results in a leakage of the surface charge in the illuminated areas while the charge in the unilluminated areas remains. This is what constitutes the aforementioned charge pattern or electrostatic latent image.
  • Electrophotographic processes have become of increasing importance in recent years, especially in connection with office duplicating processes. Consequently, there has been much interest aroused and much effort has been made to obtain suitable materials for making the support and photoconductive insulating layers used in such copying processes.
  • the invention is also directed to a new electrophotographic material which is quickly and easily imaged by exposure to commonly employed light sources.
  • N,N,N,N'-substituted-1,3-phenylenediamines of the present invention have been found to be very stable and do not discolor appreciably when exposed to light and oxygen for substantial periods of time.
  • electrophotographic sheets or plates having a coating containing the substituted-1,3-phenylenediamines of the present invention can be exposed to light and oxygen for long periods of time without the coatings turning dark yellow or brown.
  • R represents l,3-phenylene, 4-methyl-l ,3-phenylene, 4-halol ,3-phenylene, 4-ethyll,3-phenylene, 4-isopropyll ,3-phenylene, 4-methoxyl ,3- phenylene, 2-halo-l,3-phenylene and 4,6-dimethyl-l,3-phenylene and Z represents benzyl, monomethylbenzyl, dimethylbenzyl, trimethylbenzyl, tetramethylbenzyl, monohalobenzyl or dihalobenzyl; however, when R represents l,3-phenylene, Z must represent monomethylbenzyl, dimethylbenzyl, trimethylbenzyl, tetramethylbenzyl, monohalobenzyl, or dihalobenzyl; Z
  • alkyl and halo as employed in the present specification and claims represent an alkyl moiety having from one to six carbon atoms, inclusive, and a halogen selected from the group consisting of bromine or chlorine.
  • the new N,N,N,N'-tetrabenzyl-l,3phenylenediamines and N,N-dialkyl-N ,N-dibenzyll ,3-phenylenediamines of the present invention are hereinafter referred to as substituted l,3-phenylenediamines for the sake of convenience.
  • substituted 1,3-phenylenediamines are oils, noncrystalline solids or crystalline solids which are soluble in various common organic liquids and substantially insoluble in water.
  • the new N,N,N',N'-tetrabenzyl-l,3-phenylenediamines of the present invention corresponding to the formula are prepared by reacting a 1,3-phenylenediamine corresponding to the fonnula H,N-R-Nl-l, with a benzyl halide corresponding to the formula Z-X, where X represents bromine or chlorine.
  • the reaction between the l,3phenylenediamine and benzyl halide takes place readily in an inert organic solvent as reaction medium and at temperatures within the range of from 40 to 150 C. with the production of the desired substituted l,3-phenylenediamine product and the hydrogen halide of reaction.
  • the temperature of the reaction mixture is maintained within the reaction temperature range for from 1 to 4 hours and conveniently until there is a substantial cessation in the production of the hydrogen halide of reaction.
  • the proportions of the reactants to be employed are not critical, some of the desired product being produced when the reactants are contacted together in any proportions.
  • the reaction consumes 4 molar proportions of a benzyl halide such as benzyl chloride or benzyl bromide for each molar proportion of l,3-phenylenediamine; however, in a preferred procedure the benzyl halide is employed in an amount slightly in excess (about percent) of the stoichiometric amount necessary to react with all of the 1,3-phenylenediamine.
  • the use of a larger excess of the benzyl halide does not adversely affect the yield or the desired product.
  • the benzyl halide and 1,3-phenylenediamine are dispersed in the inert organic reaction medium in any order or fashion.
  • Representative inert organic liquids include ethanol, methyl cellosolve, 2-propanol, and methanol. It is preferred that the solvents be at least slightly polar in nature.
  • a base such as sodium hydroxide or potassium hydroxide is added to the reaction mixture in order to neutralize the reaction mixture and prevent the formation of the hydrohalide salt of the 1,3-phenylenediamine starting material.
  • the temperature of the reaction mixture is maintained within the reaction temperature range until there is a substantial cessation in the production of hydrogen halide byproduct as indicated by the amount of base, preferably an aqueous base, needed to neutralize the reaction mixture.
  • the water added to the reaction mixture with the aqueous base can be removed by azeotropic distillation with additional inert organic solvent being added to the reaction mixture to replace the solvent lost during the distillation.
  • additional inert organic solvent being added to the reaction mixture to replace the solvent lost during the distillation.
  • the desired product can be isolated from the reaction mixture by conventional procedures.
  • the oily product is separated by decantation and thereafter dissolved in an organic solvent such as acetone.
  • the solvent solution is filtered to remove the salt byproduct formed during the neutralization procedure and cooled.
  • the product separates as an oil, noncrystalline solid, or crystalline solid. This product can then be further purified by such conventional procedures as washing, crystallization, distillation or recrystallization.
  • the N ,N-disubstitutedl ,3-phenylenediamine starting material is prepared by the condensation of 1,3-phenylenediamine with the appropriate benzyl alcohol (Z-OH) according to the method of Y. Sbluac, J. Am. Chem. Soc., 78, 3207( 1956).
  • the reaction between the N,N- disubstituted-l,3-phenylenediamine and benzyl halide takes place in an inert organic solvent as the reaction medium and occurs readily at temperatures of from 40 to C. and preferably at the boiling temperature of the reaction mixture.
  • the group of new N,N'-dialkyl-N,N-dibenzyl-l,3-phenylenediamine compounds corresponding to the formula are prepared by reacting together N,N'-dialkyl-l ,3-phenylenediamine and a benzyl halide corresponding to the formula Z-X, dispersed in an inert organic solvent such as ethanol, methyl cellosolve, or 2-propanol as reaction medium.
  • the reaction proceeds readily at temperatures from 40 to 150 C., with the temperature of the reaction mixture being maintained within the reaction temperature range for from about 1 to 4 hours.
  • the reaction mixture is neutralized by the addition of aqueous base as previously described.
  • the desired product is isolated from the reaction mixture and further purified using the same procedures as previously described for the production ofthe N,N,N',N'-tetrabenzyll ,3phenylenediamines.
  • N,N'-diethyl-N,N-dibenzyl-1,3- phenylenediamine is prepared by ethylation of the appropriate N,N-dibenzyl-l,S-phenylenediamine corresponding to the formula
  • the ethylation is carried out in an excess of the ethylating agent as reaction medium.
  • Representative ethylating agents include triethylphosphate and diethyl sulfate.
  • the reactants are contacted together at temperatures of from 150 to 250 C. for from 1 to 4 hours. However, in a convenient procedure, the reaction mixture is maintained at the reflux temperature for from 1 to 4 hours. Following the reaction period, the reaction mixture is treated with an aqueous base to hydrolyze the polyphosphates formed during the reaction period and to facilitate the isolation of the desired product. During the hydrolysis procedure, the desired product separates in the reaction mixture as an oily residue which is then extracted from the reaction mixture with ether. The ether extract is then dried and fractionally distilled to obtain the desired product.
  • the new substituted-1,3-phenylenediamine products of the present invention are oils, noncrystalline solids or crystalline solids. It has been found that when seed crystals for the oils and noncrystalline materials are obtained, the oils and noncrystalline products can be caused to readily crystallize.
  • the oils and noncrystalline solids are conveniently prepared for use as photoconductors as follows: the oil or noncrystalline solid is dissolved in an organic solvent and the solvent solution washed with water to remove any salt remaining in the product. In those cases where it is found that the product does not form a crystalline solid the reaction mixture is diluted with water to remove ionic materials. The recovered oil is then washed with an alcohol such as methanol or ethanol.
  • the washed oil is then dissolved in chloroform and the chloroform solution dried, filtered, stripped of low boiling constituents to yield the product as an oily residue.
  • This residue can then be dissolved in an organic solvent and employed as a photoconductor as described in the present specification and claims.
  • benzyl halides to be employed as starting materials for the production of the substituted l,3-phenylenediamines include 4-chlorobenzyl chloride, 4-methy1- benzyl chloride, 2,5-dimethylbenzyl chloride, 4-bromobenzyl bromide, 2,3,5,6-tetramethylbenzyl bromide, 2,3,4,5- tetramethylbenzyl chloride, 2-chlorobenzyl chloride, 3,4- dichlor Tavernzyl chloride, 3,5-dibromobenzyl bromide and 3- chlorobenzyl chloride.
  • the new electrophotographic material of the present invention is comprised of a conductive support layer, being coated on at least one surface thereof with a photoconductive insulating layer, said photoconductive insulating layer being comprised of an insulating resin binder, and a substituted 1,3- phenylenediamine or N,N,N,N-tetrabenzyl-1,3 phenylenediamine.
  • the substituted 1,3-phenylenediamines correspond to one of the formulas as previouly defined and N,N,N',N-tetrabenzyl-l,3-phenylenediamine and N,N'-di-oxylylene-l,3,-phenylenediamine have been found to be useful as organic photoconductors.
  • the new substituted 1,3-phenylenediamines, N,N '-di-o-xylylenel ,3-phenylenediamine and N,N,N',N'-tetrabenzyl-l,3-phenylenediamine will be referred to as TSMPD for the sake of convenience.
  • the TSMPD compounds generally absorb the lower end of the ultraviolet spectrum (i.e., 3300 A. and below). Therefore, when it is desired to shift the spectral response of the electrophotographic product of the present invention to a longer wavelength, an electron-accepting sensitizing agent is added to the TSMPD- containing photoconductive layer.
  • the sensitizer compounds serve as electron acceptors, and in addition to shifting the spectral response, these sensitizers facilitate mobile charge carrier transport, thereby increasing the efiiciency of the system.
  • sensitizers are the substituted fluorene compounds such as 9-fluorenone, 2,4,7-trinitro-9-fluorenone and 2-nitrofluorene; and substituted stilbenes such as 2,4,3- trinitrostilbene, 2,4-dinitrostilbene, and 2,4,6-trinitrostilbene and substituted benzothiazoles such as Z-styrylbenzothiazole, 3-nitrophenylbenzothiazole, 2-phenylbenzothiazole, 2-(3'- nitrophenyl)-benzothiazole, 2-(4-dimethylamino)- benzothiazole, 4-phenylbutadienyl-Z-benzothiazole, 2- styrylquinoline, p-nitroacetophenone, l,l-dicyano-4-phenylbutadiene, 9,10-phenanthrenedione, 3,5-dinitromethyl benzoate, 2,4-dinitrophenyl sulfide, 2,4,4-trinitro
  • the TSMPD compounds and the sensitizer, if utilized, are em ployed in association with a resin or synthetic polymer, for example: natural resins, synthetic resins (including copolymers) such as the polystyrenes or polystyrene copolymers including styrene-butadiene, styrene-butadiene-acrylonitrile; acrylates, polyvinyl acetals, polycarbonates, polyphenylene oxide, phenoxy resins, polysulfones, polyesters and other synthetic polymeric resinous materials.
  • a resin or synthetic polymer for example: natural resins, synthetic resins (including copolymers) such as the polystyrenes or polystyrene copolymers including styrene-butadiene, styrene-butadiene-acrylonitrile; acrylates, polyvinyl acetals, polycarbonates, polyphenylene oxide, phenoxy resins, polys
  • the TSMPD photoconductive substances and sensitizers when used for preparation of the photoconductive insulating layer are preferably so used in solution in organic solvents, such as for example ethanol, benzene, chloroform, acetone, toluene, methylene chloride, methyl ethyl ketone or ethylene glycol monomethyl ether. Mixtures of two or more TSMPD compounds may be employed. Mixtures of solvents may also be used. It is also possible to employ the photoconductive substances in association with other organic photoconductive substances.
  • organic solvents such as for example ethanol, benzene, chloroform, acetone, toluene, methylene chloride, methyl ethyl ketone or ethylene glycol monomethyl ether.
  • the TSMPD compound or mixture thereof is employed in an amount equivalent to from 0.01 to 200 or more percent by weight with respect to the resinous binder. in many cases the photoconductive TSMPD compound or mixture thereof may be employed at greater than 200 percent with advantageous results.
  • the amount of TSMPD to be employed will depend upon the system in which the product is being utilized, i.e. the particularly light source, the length of exposure, the particular TSMPD compound being used, etc.
  • the amount of electron-acceptor sensitizing agent to be utilized will vary depending upon Such factors as the sensitizer, the TSMPD, the light source and the length of exposure.
  • the TSMPD compounds of the present invention can be employed without the use of a sensitizer at 3600 A. or below. However, it is generally desirable to employ a sensitizer to shift the spectral response. In such cases the amount employed will be within the range of from 0.01 to 20 percent by weight ofthe TSMPD compound.
  • the support may be of any material suitable for use in electrophotographic processes, for example, aluminum or other metal plates or foils, plastic foil and preferably paper sheets or webs.
  • paper When paper is to be used as a support for the photoconductive layer, it is preferable that it shall have been pretreated against penetration by the coating solution, for example with methyl-cellulose in aqueous solution; polyvinyl alcohol in aqueous solution; a solution in acetone and methyl ethyl ketone of a mixed polymer of acrylic acid methyl ester and acrylonitrile; or with solutions of polyamides in aqueous alcohols or a coating containing some conductive polymer such as polyvinylbenzyltrimethylammonium chloride. Solutions of the photoconductive substances and insulating resins in organic solvents are applied to the support by known methods (for example, by spraying, reverse-roll coating, or whirl coating). Following the coating procedure, the coating thus prepared is dried.
  • the photoconductive layers are usually charged positively or negatively by means of a corona discharge.
  • the light sensitivity of the thus obtained photoconductive layers lies mainly in the range of 3,000 to 7,000 A.
  • Very good images may be obtained by a short exposure using a positive or negative to a conventional electrophotographic light source such as a highpressure mercury vapor lamp, tungsten lamp or the like.
  • the latent image so produced may be developed in known fashion by the application ofdry powder or liquid toner.
  • the filtrate was allowed to cool whereupon an oily product began to separate. Acetone was added to the filtrate to keep the oily product in solution. The filtrate was then cooled in an ice bath and seed crystals were added to initiate the crystallization of the desired product.
  • the solid product was isolated by filtration and recrystallized from a solution of equal parts of acetone and ethanol. The recrystallized N,N,N,N'-tetrabenzyl-1,3-phenylenediamine was found to melt at 99-l00 C.
  • N,N ,N ,N -tetra-(4-methylbenzyl)-1,3-pheny1enediamine (m.p. 101B 103 C.) N,N,N,N'-tetra-(2-chlorobenzy1)-1,3- phenylenediamine (m.p. l73175C.).
  • the following new compounds of the present invention are prepared by reacting (a) 4- 45 b. N,N,N',N'-tetrabenzyl-(4-chloro-1,3-phenylenediamine) 60 (m.p.107.5109.5 C.)
  • N,N,N,N-tetra-(2,5-dimethy1benzy1)-4-chloro-l ,3-phenylenediamine (m.p. 15 8-160 C.)
  • N,N,N',N-tetrabenzy1-(4-isopropyl-l ,3-phenylenediamine) (m.p.112-1 14 C.)
  • N,N,N',N-tetra-(4-methylbenzyl)-4-isopropy1-1,3-phenylenediamine oil
  • N ,N,N',N-tetrabenzyl-(4-methoxy-l ,3-pheny1enediamine) m.p.1l5-117C.
  • N,N-diisopropyl1,3-phenylenediamine (4grams, 0.0021 mole) and 2,5-dimethy1benzyl chloride (7.16 grams, 0.0046 mole) were dispersed in milliliters of ethanol.
  • the reaction mixture thus prepared was heated at the reflux temperature for 1.5 hours. During the reflux period the reaction mixture was periodically neutralized by the addition of aqueous sodium hydroxide. Following the reaction period, the reaction mixture was filtered while hot and the filtrate cooled. The oily product which separated from the filtrate was washed with water and ethanol.
  • the oily product was then dissolved in chloroform, dried over sodium sulfate, and distilled under reduced pressure to remove the low-boiling constituents and obtain the N,N'-diisopropyl-N,N'-di-(2,5-dimethylbenzyl)- 1,3-phenylenediamine product as an oil.
  • N,N-di-sec.-butyl-N,N'-di(2-chlorobenzyl) phenylenediamine (an oil) by reacting together N ,N'-di-sec.-buty1- 1,3-phenylenediamine and 2-chlorobenzyl chloride.
  • N,N'-diisopropy1-N,N'-dibenzyl-l,3-phenylenediamine (an oil) by reacting together N,N'-diisopropyl-1,3-phenylenediamine and benzyl chloride.
  • Example 3 N,N'-diisopropy1-N,N'-dibenzyl-l,3-phenylenediamine (an oil) by reacting together N,N'-diisopropyl-1,3-phenylenediamine and benzyl chloride.
  • N,N-dibenzyl-l,3-phenylenediamine (10 grams, 0.035 mole) and 2,5-dimethylbenzyl chloride (12.5 grams, 0.08 mole) were dispersed in 50 milliliters of isopropanol and the resulting mixture heated at the reflux temperature for 2.5 hours.
  • Aqueous potassium hydroxide was periodically added to the reaction mixture.
  • the oil which separated in the reaction mixture during the reflux period was taken up in hot acetone and the hot acetone solution was filtered.
  • N,N'-dibenzy1-l,3-phenylenediamine grams, 0.087 mole) and triethyl phosphate (15.9 grams, 0.087 mole) were placed in a reaction vessel and heated until the exothermic reaction started, whereupon the heat was removed. The reaction was allowed to proceed for about 10 minutes and then phenylenediamine was heated at the reflux temperature for about minutes. Following the reflux period, aqueous sodium hydroxide (12 grams NaOH in 50 ml. of water) was added 5 to the reaction mixture and the mixture thereafter heated for 1 hour. During the heating period an oily product separated in the aqueous mixture. Following this heating period the aqueous mixture and oily product were allowed to cool.
  • a photoconductive insulating coating was prepared by mixmg Toluene ll 9 liters Polystyrene (Dow Chemical Co. 23 kilograms Styron 666U) N,N,N' N'-tetrabenzyl-I,3- 10.6 kllogram phenylcnediamine 9 l0-phenanthrenedionc 4 grams (dissolved in 200 milliliters of chloroform) The above-listed constituents were thoroughly mixed to provide a uniform coating composition.
  • This coating composition was applied by means of a reverse-coil coater to one side of a 34-pound paper base stock having on each side thereof a l-pound base coating of clay, titanium dioxide, polyvinyl alcohol and electrically conductive polyvinyl benzyl trimethyl ammonium chloride.
  • the photoconductive insulating coating was applied in an amount equivalent to pounds dry weight of coating per ream (25 inches X 38 inches-500 sheets).
  • This paper yielded a clear image upon exposure using ZOO-watt high-pressure mercury light source (microfilm projection exposure) for 5 seconds. The imaged paper was very stable showing barely discernable discoloration after 30 minutes in a Fade-ometer Microfilm projection exposures were effected using silver, Kalvar and diazo microfilms.
  • N,N,N,N'-tetra-(2-methylbenzyl)-I,3-phenylenediamine (0.25 grams), tetramethylthiuram disulfide, toner set, (007 grams) and 2-styrylbenzothiazole (0.03 gram) were dissolved in 20 grams of a polymer solution comprised of polystyrene (Dow Chemical Company, Styron 666U) dissolved in 108 milliliters of chloroform.
  • the coating composition was mixed thoroughly and thereafter applied to a paper base sheet by means of a No. 20 Meyer bar.
  • the coating was then dried, charged by means ofa corona discharge and imaged through a transparency by means ofa high-pressure mercury vapor lamp for a period of seconds.
  • the imaged surface was then treated with a standard, commercial liquid toner.
  • a sample of the paper thus produced was placed in the Fade-ometer for 30 minutes with only very slight discoloration.
  • a coating composition is prepared by mixing 1 part by weight of N,N,N',N-tetra-(4-methylbenzyl)-l ,3-phenylenediamine, 3 parts by weight of polysulfone P-4700 (manufactured by the Union Carbide Corporation), 0.0005 part by weight of 2,4,3'-trinitrostilbene, and parts by weight of toluene as a solvent.
  • This coating composition is applied to a suitable paper substrate which has been base-coated with 8 pounds (dry weight) per team inches X 38 inches500 sheets) ofa coating comprised of 70 parts by weight of polyvinyl alcohol, 20 parts by weight of calcium carbonate and 10 parts by weight of polyvinyl benzyl trimethyl ammonium chloride.
  • a positive print is made by negatively charging the coated paper by means of a corona discharge, and subsequently exposing the paper sheet through a positive transparency to a ill
  • the latent electrostatic image thus produced is developed by applying thereto a dry, positively charged thermoplastic resinous toner (comprising carbon black particles coated with thermoplastic resin).
  • the toner thus applied is attracted to the latent image areas producing a visible image which is permanently fixed by heating the thermoplastic toner on the sheet surface at a temperature of C for short time which solidly fuses the toner.
  • the clear print thus prepared shows no appreciable discoloration when placed in a Fade-ometer for 30 minutes. developing produced the positively
  • all steps are repeated as described above except that the coated paper is positively charged, and the developing toner is negatively charged. Clear images are produced when the positively charged paper is developed with the negative toner.
  • a coating composition is prepared by mixing 2 parts by Weight of tetrabenzyl-l ,3 phenylenediamine, 3 parts by weight of polyvinyl butyral (Butvar 8-76, manufactured by the Monsanto Chemical Company) as a resinous binder, 0.002 parts by weight of a sensitizing dye (ethyl red), and 15 parts by weight of a solvent for the above composition, which solvent component is comprised of9 parts by weight of toluene and 6 parts by weight of methyl ethyl ketone.
  • a sensitizing dye ethyl red
  • This coating composition is applied to one side of a web of bleached paper bodystock having a basis weight of 40 pounds per ream, and previously coated with 3 pounds (dry weight) per ream of the base coating described in Example 8.
  • the paper sheet thus coated is negatively charged by means of a corona discharge, and charged sheet is then exposed through a positive transparency to a 60-watt tungsten lamp at a distance of22 cm. for 15 seconds,
  • the latent image thus produced in selected areas of the copy sheet is developed by applying to the exposed surface a positively charged liquid toner comprised of an oxidizing oil which has been intimately admixed with a colored body (carbon black), this composition having been dispersed in a strongly insulating liquid (deodorized kerosene).
  • a positively charged liquid toner comprised of an oxidizing oil which has been intimately admixed with a colored body (carbon black), this composition having been dispersed in a strongly insulating liquid (deodorized kerosene).
  • the particles of oil and carbon black are attracted to the laten image areas in the exposed sheet, and a clear, sharp visible image is produced. No heat-fusing step is necessary in this method as the oil quickly hardens and adheres permanently upon expo sure to air.
  • the thus produced is placed in a. Fade-ometer for 60 minutes with only very slight discoloration.
  • TSMPD compounds and sensitizers listed below were made into coating compositions by dissolving 0.5 gram of the TSMPD and 1.5 grams of polystyrene in l2 milliliters of chloroform. In the resulting solution the sensitizer was dissolved in a quantity expressed as percent weight based on the weight of TSMPD present. In each case the solution was spread on a paper base sheet by means of a No. 20 Meyer bar, about 3 to 4 pounds dry weight per ream, being applied.
  • TSM PD Compounds Sensitizer Sensitrzer in 71 of TSMPD N.N,N',N'-tetra(Z,5-d
  • a photoconductive coating was prepared by combining N,N,N,N'-tetra-(2,5-dimethylbenzyl)-1,3-phenylenediamine (0.5 gram), polyvinyl butyral (21.5 grams ofa solution comprised of 12 grams of polymer in l08 ml. chloroform) and 2-(-4-diethylaminobenzylidene)- picolinc methiodide.
  • the coating thus prepared was applied to the base stock described in example 6 by means of a No. 20 Meyer bar. The sheet was charged to 800 volts and showed little dark decay and retained 15 volts after seconds of exposure to visible light. No discoloration was observed after minutes in the Fade-ometer.
  • the Fade-ometer employed to test the electrophotographic materials of the present invention is an Atlas Color Fade-ometer, Type FDA-R sold by Atlas Electric Devices Company.
  • the starting 1,3-phenylenediamine and benzyl halide starting materials employed in the present invention are all produced in accordance with procedures well known in the art.
  • the N,N-dialkyl-l,3-phenylenediamine starting materials are prepared by a modification of the Jones and Cowie method (German Pat. No. 927,165).
  • the modified procedure comprises reacting a ketone such as acetone, methyl ethyl ketone, cyclohexanone and the like with a l,3-phenylenediamine in the presence of platinum oxide as a catalyst.
  • the reaction is carried out for 8 hours in an excess of the ketone as reaction medium in a high-pressure reactor at a temperature of 160 C. and under hydrogen at a pressure of 300 pounds per square inch.
  • 1,3-phenylenediamine (2.80 grams, 0.26 mole) and 04,01 dichloro-o-xylene 10 grams, 0.057 mole) were dispersed with stirring in 40 milliliters ofmethyl cellosolve.
  • the reaction mixture was heated at 90 C. for l hour. During the heating period aqueous sodium hydroxide was periodically added to the reaction mixture. The product precipitated as a crystalline solid in the reaction mixture during the heating period.
  • the reaction mixture was filtered and the filter cake washed with water to remove the salts, and remaining solid product was recrystallized from chloroform-ethanol mixture.
  • the recrystallized N,N'-di-o-xylylene-l,3-phenylenediamine product was found to melt at 232-235C.
  • An electrophotographic material comprising a relatively more conductive support having a photoconductive insulating layer thereon which comprises a photoconductor selected from the class consisting of N,N-di-o-xylylene-l ,3-phenylenediamine and substituted 1,3-phenylenediamines having the general formula:
  • R is a divalent arylene group selected from the class consisting of 1,3-phenylene; 4-methyl-l-3,phenylene; 4-ethyl- 1,3-phenylene; 4-halo-l,3phenylene; 4-isopropylene-l,3- phenylene;4-methoxy-l,3phenylene; 2-halo-l,3-phenylene; 5 and 4,6-dimethyl-l,3-phenylene; R is a divalent arylene group selected from the class consisting of 1,3-phenylene; 4- methyl-1,3-phenylene; 4-ethyl-l,3-phenylene and 4-isopropyl- 1,3-phenylene; Z is an aralkyl group selected from the class consisting of benzyl, monomethylbenzyl, dimethylbenzyl, trimethylbenzyl, monohalobenzyl and dihalobenzyl; and alkyl represents an alkyl
  • the photoconductive insulating layer comprises a photoconductor having the general formula N-R-N wherein R is a divalent arylene group selected from the class consisting of l,3phenylene, 4-methyl-l,3-phenylene, 4-ethyl- 1,3-phenylene, 4-halol ,3-phenylene, 4-isopropyl-l ,3-phenylene, 4-methyloxy-l,3-phenylene, 2halo-l,3-phenylene and 4,6-dimethyl-l,3-phenylene and Z is an aralkyl group selected from the class consisting of benzyl, monomethylbenzyl, di methylbenzyl, trimethylbenzyl, tetramethylbenzyl, monohalobenzyl and dihalobenzyl.
  • R is a divalent arylene group selected from the class consisting of l,3phenylene, 4-methyl-l,3-phenylene, 4-ethyl- 1,3-phenylene
  • the photoconductive insulating layer comprises a photoconductor having the general formula wherein R is a divalent arylene group selected from the class consisting of 1,3-phenylene, 4-methyll,3-phenylene, 4-ethyl- 1,3-phenylene, 4-halo-l,3-phenylene, 4-isopropyl-l,3-phenylene, 4-methyoxy l,3-phenylene, 2-halo-l.3-phenylene and 4,6-dimethyl-l,3-phenylene;
  • Z is an aralkyl group selected from the class consisting of benzyl, monomethylbenzyl, dimethylbenzyl, trimethylbenzyl, and tetramethylbenzyl, monohalobenzyl and dihalobenzyl; and Z is a dissimilar aralkyl group selected from the group designated by Z.
  • photoconductive insulating layer comprises a photoconductor having the general formula alkyl /ulkyl N-RN ⁇ Z 7,
  • An electrophotographic material as claimed in claim 2 dimethylbenzyl)-l,3-phenylenediamine. wherein the electron acceptor 1S gfluorenone 10.
  • An electrophotographic material as claimed in claim 2 trinitrofluorenone, or 2-nitrofluorenone.
  • An electrophotographic material as claimed in claim 3 wherein the photoconductor is N,N,N,N'-tetra-(4-methyl- 5 benzyl)-1,B-phenylenediamine or N,N,N,N'-tetra(2,5-
  • the electron acceptor is 2,4,3-trinitrostilbene, 2,4- dinitrostilbene or 2,4,6trinitrostilbene.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

A new group of N,N,N'',N''-substituted-1,3-phenylenediamines and an electrophotographic material comprised of a slightly conductive support and an insulating coating thereon comprised of an insulating resin, and a N,N,N'',N''-substituted-1,3phenylenediamine photoconductor. An electron-acceptor sensitizing agent can also be added to the insulating coating.

Description

States Patent Lawrence Price Old Orchard Beach;
John Alan Mattor, Hollis, both of Maine 724,224
Apr. 25, 1968 Oct. 26, 1971 The Scott Paper Company Delaware County, Pa.
inventors Appl. No. Filed Patented Assignee 1,3-P1111ENYLENEDIAMINE CONTAINING PHOTOCONDUCTIVE MATERIALS 10 Claims, No Drawings US. Cl 96/1.5, 252/501, 96/].6, 260/576 Int. Cl G03g 5/06 Field of Search 252/501; 96/1.5, 1.6; 260/576 [56] References Cited UNITED STATES PATENTS 3,265,496 8/1966 Fox 96/1 3,287,123 11/1966 Hoegl 96/15 3,314,788 4/1967 Mattor 96/1.5 3,408,184 10/1968 Mammino 96/15 Primary Examiner-George F. Lesmes Assistant Examiner-John C. Cooper, 111
Att0rneys-John A. Weygandt, William J. Foley, John W.
Kane, Jr., Stanton T. Hadley and Martin L. Faigus l ,3-Pl1llENYlLlENEDllAli/llllNlE CONTAINING PHOTOCONDUCTHVE MATERIALS BACKGROUND OF THE INVENTION This invention relates to photographic reproduction and more particularly to a new group of organic photoconductors and to electrophotographic processes, namely processes in which an electrostatic latent image is produced by utilizing the property of photoconduction (i.e., a variable conductivity dependent on the intensity of illumination). The electrostatic latent image may be produced in a conventional exposure operation, for example by means of a lens-projected image or by contact-printing techniques, whereby a nonvisible electrostatic charge pattern (the so-called electrostatic latent image) is created on a surface, in which pattern the charge density at any point is related to the intensity of illumination obtained at the point during the exposure. The. latent image may be develo ed (i.e., rendered visible) by means of a triboelectric powder or liquid toner. Said powder, such as a pigmented synthetic resin, fixes the resulting visible image by rendering the powder permanently adherent to a support on which the image is desired, for example in suitable cases by heating to soften or melt the powder particles. The liquid toner particles which are washed over the surface are caused to adhere permanently by the drying oil component of the liquid toner.
ln electrophotographic processes the electrostatic latent image is commonly formed on the surface of a photoconductive insulating layer carried on a support. For example, material comprising such support and photoconductive layer may be charged by applying a uniform surface charge to the free surface of the photoconductive layer. The charge can be applied by conventional means such as corona discharge or the like. The charge is retained due to the substantial insulating character, i.e., the low conductivity, of the insulating layer in the dark. On exposure as described above, the photoconductive property of the layer causes the conductivity to increase in the illuminated areas to an extent which is proportional to the intensity of illumination. This results in a leakage of the surface charge in the illuminated areas while the charge in the unilluminated areas remains. This is what constitutes the aforementioned charge pattern or electrostatic latent image.
Electrophotographic processes have become of increasing importance in recent years, especially in connection with office duplicating processes. Consequently, there has been much interest aroused and much effort has been made to obtain suitable materials for making the support and photoconductive insulating layers used in such copying processes.
Attempts have been made to develop colorless organic photoconductors; however, problems have been encountered in obtaining colorless photoconductors sufficiently sensitive to be imaged using known light sources without being so sensitive as to become severely discolored by the interaction of light and oxygen during aging.
It is therefore the major objective of the present invention to provide a new group of colorless organic photoconductors that do not become appreciably discolored when exposed to light and oxygen. The invention is also directed to a new electrophotographic material which is quickly and easily imaged by exposure to commonly employed light sources.
PRIOR ART In recent years many investigations have been made with respect to the nature of suitable photoconductive materials. Most notable among the photoconductive substances hitherto used in electrophotographic processes have been inorganic materials such as zinc oxide and selenium.
However, within the last few years the search for suitable photoconductors has been broadened to include organic chemical compounds and polymers. As a result of these searches several classes of organic compounds have been found to be useful as photoconductors; included in this group are the 2,5 bis (p-aminophenyl)-1,3,4-oxadiazoles, U.S. Pat. No. 3,189,447; 2-aryl-4-arylidene oxazolones, U.S. Pat. No.
3,072,479; substituted Schiff bases, U.S. Pat. No. 3,041,165; aryl-substituted-p and-m-phenylenedliamines, U.S. Pat. Nos. 3,314,788, 3,141,770, and 3,265,496; N-disubstituted benzylideneazines, U.S. Pat. No. 3,290,147, and various other compounds, see Great Britain, Pat. No. 895,00 1.
U.S. Pat. No. 3,314,788 describes the use of N,N,N',N-
tetrabenzyl-p-pheny1enediamines and N,N"dibenzy1-N,N-dialkyl substituted-p-phenylenediamines as organic photocon ductors. While electrophotographic plates or sheets having coatings containing the substituted-p-phenylenediamines give good prints, it has been discovered that they discolor appreciably upon aging in the presence of light and oxygen. Upon exposure to light in the presence of oxygen the p-phenylenediamines cause thesheet to turn darlt yellow or brown, thus making the electrophotographic product containing them unsuitable for use when it must be exposed to light for any period of time. However, the N,N,N,N'-substituted-1,3-phenylenediamines of the present invention have been found to be very stable and do not discolor appreciably when exposed to light and oxygen for substantial periods of time. Thus electrophotographic sheets or plates having a coating containing the substituted-1,3-phenylenediamines of the present invention can be exposed to light and oxygen for long periods of time without the coatings turning dark yellow or brown.
SUMMARY OF THE INVENTION a. New N,N,N',N'-substituted-l ,3-phenylenediamines.
The new N,N,N',N'-substituted-l,3-phenylenediamine compounds of the present invention correspond to one of the In the present specification and claims, R represents l,3-phenylene, 4-methyl-l ,3-phenylene, 4-halol ,3-phenylene, 4-ethyll,3-phenylene, 4-isopropyll ,3-phenylene, 4-methoxyl ,3- phenylene, 2-halo-l,3-phenylene and 4,6-dimethyl-l,3-phenylene and Z represents benzyl, monomethylbenzyl, dimethylbenzyl, trimethylbenzyl, tetramethylbenzyl, monohalobenzyl or dihalobenzyl; however, when R represents l,3-phenylene, Z must represent monomethylbenzyl, dimethylbenzyl, trimethylbenzyl, tetramethylbenzyl, monohalobenzyl, or dihalobenzyl; Z represents a dissimilar moiety selected from the group designated by Z, and R represents l,3-phenylene, methyl-l,3-phenylene, 4-ethyl-1,3-phenylene, or 4-isopropyll,3-phenylene. The terms alkyl and halo as employed in the present specification and claims represent an alkyl moiety having from one to six carbon atoms, inclusive, and a halogen selected from the group consisting of bromine or chlorine. The new N,N,N,N'-tetrabenzyl-l,3phenylenediamines and N,N-dialkyl-N ,N-dibenzyll ,3-phenylenediamines of the present invention are hereinafter referred to as substituted l,3-phenylenediamines for the sake of convenience. These new substituted 1,3-phenylenediamines are oils, noncrystalline solids or crystalline solids which are soluble in various common organic liquids and substantially insoluble in water.
The new N,N,N',N'-tetrabenzyl-l,3-phenylenediamines of the present invention corresponding to the formula are prepared by reacting a 1,3-phenylenediamine corresponding to the fonnula H,N-R-Nl-l, with a benzyl halide corresponding to the formula Z-X, where X represents bromine or chlorine. The reaction between the l,3phenylenediamine and benzyl halide takes place readily in an inert organic solvent as reaction medium and at temperatures within the range of from 40 to 150 C. with the production of the desired substituted l,3-phenylenediamine product and the hydrogen halide of reaction. The temperature of the reaction mixture is maintained within the reaction temperature range for from 1 to 4 hours and conveniently until there is a substantial cessation in the production of the hydrogen halide of reaction.
The proportions of the reactants to be employed are not critical, some of the desired product being produced when the reactants are contacted together in any proportions. The reaction consumes 4 molar proportions of a benzyl halide such as benzyl chloride or benzyl bromide for each molar proportion of l,3-phenylenediamine; however, in a preferred procedure the benzyl halide is employed in an amount slightly in excess (about percent) of the stoichiometric amount necessary to react with all of the 1,3-phenylenediamine. The use of a larger excess of the benzyl halide does not adversely affect the yield or the desired product.
In carrying out the reaction, the benzyl halide and 1,3-phenylenediamine are dispersed in the inert organic reaction medium in any order or fashion. Representative inert organic liquids include ethanol, methyl cellosolve, 2-propanol, and methanol. It is preferred that the solvents be at least slightly polar in nature. Following the addition of the reactants to the reaction medium the resulting reaction mixture is heated at a temperature within the reaction temperature range. In a convenient procedure, the reaction mixture is heated at the reflux temperature of the reaction mixture. In order to obtain optimum yields, a base such as sodium hydroxide or potassium hydroxide is added to the reaction mixture in order to neutralize the reaction mixture and prevent the formation of the hydrohalide salt of the 1,3-phenylenediamine starting material. in a convenient procedure, the temperature of the reaction mixture is maintained within the reaction temperature range until there is a substantial cessation in the production of hydrogen halide byproduct as indicated by the amount of base, preferably an aqueous base, needed to neutralize the reaction mixture.
The water added to the reaction mixture with the aqueous base can be removed by azeotropic distillation with additional inert organic solvent being added to the reaction mixture to replace the solvent lost during the distillation. However, it is not necessary to remove the water from the reaction mixture as the product separates during the reaction period as an oil and can be easily isolated from the reaction mixture.
Following the reaction period, the desired product can be isolated from the reaction mixture by conventional procedures. In a convenient procedure, the oily product is separated by decantation and thereafter dissolved in an organic solvent such as acetone. The solvent solution is filtered to remove the salt byproduct formed during the neutralization procedure and cooled. During the cooling procedure, the product separates as an oil, noncrystalline solid, or crystalline solid. This product can then be further purified by such conventional procedures as washing, crystallization, distillation or recrystallization.
Mixed symmetrical substituted 1,3-phenylenediamines corresponding to the formula Z /Z NR--N\ Z' Z wherein Z is as previously described and Z represents a dissimilar radical selected from the group comprising Z, are prepared by reacting an N,N-disubstituted-l,3-phenylenediamine corresponding to the formula with a benzyl halide corresponding to the formula Z-X, wherein Z represents a moiety from the group designated by Z which is different from the Z substituent on the N,N-l,3- phenylenediamine. The N ,N-disubstitutedl ,3-phenylenediamine starting material is prepared by the condensation of 1,3-phenylenediamine with the appropriate benzyl alcohol (Z-OH) according to the method of Y. Sprinzac, J. Am. Chem. Soc., 78, 3207( 1956). The reaction between the N,N- disubstituted-l,3-phenylenediamine and benzyl halide takes place in an inert organic solvent as the reaction medium and occurs readily at temperatures of from 40 to C. and preferably at the boiling temperature of the reaction mixture. While the proportions of the reactants to be employed are not critical, optimum yields are obtained by employing the benzyl halide in an amount slightly in excess (about l0 percent) of the stoichiometric amount necessary to react with the N,N'- disubstituted-l,3-phenylenediamine. The reaction is carried out and the product isolated in the same manner as described for the other N,N,N',N-tetrabenzyl-l ,3-phenylenediamine products of the present invention.
The group of new N,N'-dialkyl-N,N-dibenzyl-l,3-phenylenediamine compounds corresponding to the formula are prepared by reacting together N,N'-dialkyl-l ,3-phenylenediamine and a benzyl halide corresponding to the formula Z-X, dispersed in an inert organic solvent such as ethanol, methyl cellosolve, or 2-propanol as reaction medium. The reaction proceeds readily at temperatures from 40 to 150 C., with the temperature of the reaction mixture being maintained within the reaction temperature range for from about 1 to 4 hours. During the reaction period, the reaction mixture is neutralized by the addition of aqueous base as previously described. Following the reaction period the desired product is isolated from the reaction mixture and further purified using the same procedures as previously described for the production ofthe N,N,N',N'-tetrabenzyll ,3phenylenediamines.
In a preferred procedure, N,N'-diethyl-N,N-dibenzyl-1,3- phenylenediamine is prepared by ethylation of the appropriate N,N-dibenzyl-l,S-phenylenediamine corresponding to the formula The ethylation is carried out in an excess of the ethylating agent as reaction medium. Representative ethylating agents include triethylphosphate and diethyl sulfate.
In carrying out the reaction, the reactants are contacted together at temperatures of from 150 to 250 C. for from 1 to 4 hours. However, in a convenient procedure, the reaction mixture is maintained at the reflux temperature for from 1 to 4 hours. Following the reaction period, the reaction mixture is treated with an aqueous base to hydrolyze the polyphosphates formed during the reaction period and to facilitate the isolation of the desired product. During the hydrolysis procedure, the desired product separates in the reaction mixture as an oily residue which is then extracted from the reaction mixture with ether. The ether extract is then dried and fractionally distilled to obtain the desired product.
As previously stated the new substituted-1,3-phenylenediamine products of the present invention are oils, noncrystalline solids or crystalline solids. It has been found that when seed crystals for the oils and noncrystalline materials are obtained, the oils and noncrystalline products can be caused to readily crystallize. The oils and noncrystalline solids are conveniently prepared for use as photoconductors as follows: the oil or noncrystalline solid is dissolved in an organic solvent and the solvent solution washed with water to remove any salt remaining in the product. In those cases where it is found that the product does not form a crystalline solid the reaction mixture is diluted with water to remove ionic materials. The recovered oil is then washed with an alcohol such as methanol or ethanol. The washed oil is then dissolved in chloroform and the chloroform solution dried, filtered, stripped of low boiling constituents to yield the product as an oily residue. This residue can then be dissolved in an organic solvent and employed as a photoconductor as described in the present specification and claims.
Representative benzyl halides to be employed as starting materials for the production of the substituted l,3-phenylenediamines include 4-chlorobenzyl chloride, 4-methy1- benzyl chloride, 2,5-dimethylbenzyl chloride, 4-bromobenzyl bromide, 2,3,5,6-tetramethylbenzyl bromide, 2,3,4,5- tetramethylbenzyl chloride, 2-chlorobenzyl chloride, 3,4- dichlor obenzyl chloride, 3,5-dibromobenzyl bromide and 3- chlorobenzyl chloride.
b. Electrophotographic Material.
The new electrophotographic material of the present invention is comprised of a conductive support layer, being coated on at least one surface thereof with a photoconductive insulating layer, said photoconductive insulating layer being comprised of an insulating resin binder, and a substituted 1,3- phenylenediamine or N,N,N,N-tetrabenzyl-1,3 phenylenediamine.
The substituted 1,3-phenylenediamines correspond to one of the formulas as previouly defined and N,N,N',N-tetrabenzyl-l,3-phenylenediamine and N,N'-di-oxylylene-l,3,-phenylenediamine have been found to be useful as organic photoconductors. The new substituted 1,3-phenylenediamines, N,N '-di-o-xylylenel ,3-phenylenediamine and N,N,N',N'-tetrabenzyl-l,3-phenylenediamine will be referred to as TSMPD for the sake of convenience. The TSMPD compounds generally absorb the lower end of the ultraviolet spectrum (i.e., 3300 A. and below). Therefore, when it is desired to shift the spectral response of the electrophotographic product of the present invention to a longer wavelength, an electron-accepting sensitizing agent is added to the TSMPD- containing photoconductive layer. The sensitizer compounds serve as electron acceptors, and in addition to shifting the spectral response, these sensitizers facilitate mobile charge carrier transport, thereby increasing the efiiciency of the system. Representative sensitizers are the substituted fluorene compounds such as 9-fluorenone, 2,4,7-trinitro-9-fluorenone and 2-nitrofluorene; and substituted stilbenes such as 2,4,3- trinitrostilbene, 2,4-dinitrostilbene, and 2,4,6-trinitrostilbene and substituted benzothiazoles such as Z-styrylbenzothiazole, 3-nitrophenylbenzothiazole, 2-phenylbenzothiazole, 2-(3'- nitrophenyl)-benzothiazole, 2-(4-dimethylamino)- benzothiazole, 4-phenylbutadienyl-Z-benzothiazole, 2- styrylquinoline, p-nitroacetophenone, l,l-dicyano-4-phenylbutadiene, 9,10-phenanthrenedione, 3,5-dinitromethyl benzoate, 2,4-dinitrophenyl sulfide, 2,4,4-trinitrodiphenyl ether, bis(3-nitrophenyl) disulfide bis(4-chloro-2-nitrophenyl) disulfide, and cyanine dyes, such as Orthochrome T, pinacyanol, Kryptacyanine, and ethyl red.
in preparing the photoconductive insulating layers the TSMPD compounds and the sensitizer, if utilized, are em ployed in association with a resin or synthetic polymer, for example: natural resins, synthetic resins (including copolymers) such as the polystyrenes or polystyrene copolymers including styrene-butadiene, styrene-butadiene-acrylonitrile; acrylates, polyvinyl acetals, polycarbonates, polyphenylene oxide, phenoxy resins, polysulfones, polyesters and other synthetic polymeric resinous materials.
The TSMPD photoconductive substances and sensitizers when used for preparation of the photoconductive insulating layer are preferably so used in solution in organic solvents, such as for example ethanol, benzene, chloroform, acetone, toluene, methylene chloride, methyl ethyl ketone or ethylene glycol monomethyl ether. Mixtures of two or more TSMPD compounds may be employed. Mixtures of solvents may also be used. It is also possible to employ the photoconductive substances in association with other organic photoconductive substances.
ln producing the electrophotographic plate or sheet material of the present invention the TSMPD compound or mixture thereof is employed in an amount equivalent to from 0.01 to 200 or more percent by weight with respect to the resinous binder. in many cases the photoconductive TSMPD compound or mixture thereof may be employed at greater than 200 percent with advantageous results. The amount of TSMPD to be employed will depend upon the system in which the product is being utilized, i.e. the particularly light source, the length of exposure, the particular TSMPD compound being used, etc.
The amount of electron-acceptor sensitizing agent to be utilized will vary depending upon Such factors as the sensitizer, the TSMPD, the light source and the length of exposure. The TSMPD compounds of the present invention can be employed without the use of a sensitizer at 3600 A. or below. However, it is generally desirable to employ a sensitizer to shift the spectral response. In such cases the amount employed will be within the range of from 0.01 to 20 percent by weight ofthe TSMPD compound.
The support may be of any material suitable for use in electrophotographic processes, for example, aluminum or other metal plates or foils, plastic foil and preferably paper sheets or webs. When paper is to be used as a support for the photoconductive layer, it is preferable that it shall have been pretreated against penetration by the coating solution, for example with methyl-cellulose in aqueous solution; polyvinyl alcohol in aqueous solution; a solution in acetone and methyl ethyl ketone of a mixed polymer of acrylic acid methyl ester and acrylonitrile; or with solutions of polyamides in aqueous alcohols or a coating containing some conductive polymer such as polyvinylbenzyltrimethylammonium chloride. Solutions of the photoconductive substances and insulating resins in organic solvents are applied to the support by known methods (for example, by spraying, reverse-roll coating, or whirl coating). Following the coating procedure, the coating thus prepared is dried.
The photoconductive layers are usually charged positively or negatively by means of a corona discharge. The light sensitivity of the thus obtained photoconductive layers lies mainly in the range of 3,000 to 7,000 A. Very good images may be obtained by a short exposure using a positive or negative to a conventional electrophotographic light source such as a highpressure mercury vapor lamp, tungsten lamp or the like.
The latent image so produced may be developed in known fashion by the application ofdry powder or liquid toner.
The following examples are merely illustrative and are not deemed to be limiting.
PREFERRED EMBODIMENTS Example 1.
Meta-phenylenediamine (10.8 grams, 0.1 mole) and benzylchloride (50.6 grams, 0.4 mole) were dispersed in 70 ml. of methyl cellosolve. The reaction mixture thus prepared was then heated at the reflux temperature. Within a few minutes the acid salt began to precipitate in few reaction mixture. This acid salt was neutralized by the periodic addition of methyl cellosolve added to the reaction mixture slowly portionwise. After refluxing for one hour, 0.1 mole of benzyl chloride was added to the reaction mixture and the refluxing continued for an additional hour. Following the reaction period, the reaction period, the reaction mixture was filtered while hot to remove the precipitated sodium chloride, and the 10 filtrate recovered. The filtrate was allowed to cool whereupon an oily product began to separate. Acetone was added to the filtrate to keep the oily product in solution. The filtrate was then cooled in an ice bath and seed crystals were added to initiate the crystallization of the desired product. The solid product was isolated by filtration and recrystallized from a solution of equal parts of acetone and ethanol. The recrystallized N,N,N,N'-tetrabenzyl-1,3-phenylenediamine was found to melt at 99-l00 C.
In a similar manner, the following products of the invention are prepared by reacting 1,3-phenylenediamine with the appropriate substituted benzyl chloride corresponding to the formula Z-Cl:
N ,N,N ',N'-tetra-(2-methylbenzyl)-1,3-phenylenediamine (m.p.164B166 C.)
N,N ,N ,N -tetra-(4-methylbenzyl)-1,3-pheny1enediamine (m.p. 101B 103 C.) N,N,N,N'-tetra-(2-chlorobenzy1)-1,3- phenylenediamine (m.p. l73175C.).
N ,N,N ,N-tetra-(4-chlorobenzyl)-1,3-phenylenediamine (m.p.l33B135C.)
N,N,N,N-tetra-(2,5-dimethylbenzy1)-l,3-phenylenediamine (m.p.l64-167 C.)
N,N,N ',N'-tetra-( 3 ,4-dichlorobenzyl)- l ,3phenylenediamine (m.p.l26-128 C.)
N ,N,N,N'-tetra-( 3-methylbenzyl)-l ,3-phenylenediamine (oil) N ,N ,N ',N '-tetra-( 3 ,4-dimethylbenzyl)-1,3-phenylenediamine (oil) N ,N,N',N'-tetra-( 2,3 ,5 ,6-tetramethylbenzyl)-1,3-phenylenediamine (m.p. l 29-149 C.)
N,N,N,N'-tetra-(2,4,6-trimethylbenzyl)-1,3-phenylenediamine (m.p.183-l93 C.).
In other similar procedures, the following new compounds of the present invention are prepared by reacting (a) 4- 45 b. N,N,N',N'-tetrabenzyl-(4-chloro-1,3-phenylenediamine) 60 (m.p.107.5109.5 C.)
N,N,N,N'-tetra-(2-methylbenzyl)-4-chloro-1,3-phenylenediamine (m.p. 129-l 32 C.)
N,N,N,N-tetra-(2,5-dimethy1benzy1)-4-chloro-l ,3-phenylenediamine (m.p. 15 8-160 C.) c. N,N,N',N-tetrabenzy1-(4-isopropyl-l ,3-phenylenediamine) (m.p.112-1 14 C.)
N ,N,N',N' -tetra-( 2-chlorobenzy1)-4-isopropyl-1 ,3-phenylenediamine (m.p. 134-137 C.)
N,N,N',N-tetra-(4-methylbenzyl)-4-isopropy1-1,3-phenylenediamine (oil) d. N ,N,N',N-tetrabenzyl-(4-methoxy-l ,3-pheny1enediamine) (m.p.1l5-117C.)
e. N,N,N',N'-tetrabenzyl-(2-chloro-l,3-phenylenediamine) (m.p. 106108C.)
substituted benzyl 50 f. N,N,N,N-tetrabenzyl-(4,5-dimethyl-1,3-phenylenediamine) (oil) Example 2.
N,N-diisopropyl1,3-phenylenediamine (4grams, 0.0021 mole) and 2,5-dimethy1benzyl chloride (7.16 grams, 0.0046 mole) were dispersed in milliliters of ethanol. The reaction mixture thus prepared was heated at the reflux temperature for 1.5 hours. During the reflux period the reaction mixture was periodically neutralized by the addition of aqueous sodium hydroxide. Following the reaction period, the reaction mixture was filtered while hot and the filtrate cooled. The oily product which separated from the filtrate was washed with water and ethanol. The oily product was then dissolved in chloroform, dried over sodium sulfate, and distilled under reduced pressure to remove the low-boiling constituents and obtain the N,N'-diisopropyl-N,N'-di-(2,5-dimethylbenzyl)- 1,3-phenylenediamine product as an oil.
In further operations, using the procedure set forth in the previous paragraph the following compounds of the present invention are prepared:
N ,N-di-sec.-butyl-N,N-dibenzyl- 1 ,3-phenylenediamine (oil) by reacting together N,N'-di-sec.-butyl-1,3-phenylenediamine and benzyl chloride.
N,N-di-sec.-butyl-N,N'-di(2-chlorobenzyl) phenylenediamine (an oil) by reacting together N ,N'-di-sec.-buty1- 1,3-phenylenediamine and 2-chlorobenzyl chloride.
N,N'-diisopropy1-N,N'-dibenzyl-l,3-phenylenediamine (an oil) by reacting together N,N'-diisopropyl-1,3-phenylenediamine and benzyl chloride. Example 3.
5 perature for 2 hours. During the reflux period, aqueous sodium hydroxide (4 grams in 7 milliliters of water) was added periodically to neutralize the reaction mixture. Following the reflux period, 10 milliters of methyl cellosolve was added to the reaction mixture and the mixture filtered while hot. The filtrate thus obtained was allowed to cool whereupon the N,N'-dicyclohexyl-l,3-phenylenediamine product separated as an oil. This oily product was collected by decantation, washed with ethanol and water and dissolved in chloroform. This chloroform solution was evaporated to dryness to obtain the N,N-dicyclohexyl-N,N-di-(2,S-dimethylbenzyl-1,3-phenylenediamine product as a glassy noncrystalline solid.
In a similar procedure, the N,N'-dibenzyl-N,N'-dicyclohexyl-1,3-phenylenediamine (oil) was prepared by reacting N,N dicyclohexyl-1,3-pheny1enediamine with benzyl chloride. EXAMPLE 4.
N,N-dibenzyl-l,3-phenylenediamine (10 grams, 0.035 mole) and 2,5-dimethylbenzyl chloride (12.5 grams, 0.08 mole) were dispersed in 50 milliliters of isopropanol and the resulting mixture heated at the reflux temperature for 2.5 hours. Aqueous potassium hydroxide was periodically added to the reaction mixture. Following the reflux period the oil which separated in the reaction mixture during the reflux period was taken up in hot acetone and the hot acetone solution was filtered. The filtrate was then allowed to cool, whereupon the N,N'-dibenzyl-N,N-di-(2,5-dimethylbenzyl)- 1,3-pheny1enediamine product precipitated as a crystalline solid. This solid product was recrystallized from an acetoneethanol mixture and the recrystallized product found to melt at 124-126 C.
Example 5.
N,N'-dibenzy1-l,3-phenylenediamine grams, 0.087 mole) and triethyl phosphate (15.9 grams, 0.087 mole) were placed in a reaction vessel and heated until the exothermic reaction started, whereupon the heat was removed. The reaction was allowed to proceed for about 10 minutes and then phenylenediamine was heated at the reflux temperature for about minutes. Following the reflux period, aqueous sodium hydroxide (12 grams NaOH in 50 ml. of water) was added 5 to the reaction mixture and the mixture thereafter heated for 1 hour. During the heating period an oily product separated in the aqueous mixture. Following this heating period the aqueous mixture and oily product were allowed to cool. The oily product was then extracted with diethyl ether, the ether layer washed with water, dried over sodium sulfate and fractionally distilled. The N,N-diethyl-N,N'-dibenzyl-l ,3-phenylenediamine product distilled over at 225-235 C. at 0.1 mm. of mercury. Example 6.
A photoconductive insulating coating was prepared by mixmg Toluene ll 9 liters Polystyrene (Dow Chemical Co. 23 kilograms Styron 666U) N,N,N' N'-tetrabenzyl-I,3- 10.6 kllogram phenylcnediamine 9 l0-phenanthrenedionc 4 grams (dissolved in 200 milliliters of chloroform) The above-listed constituents were thoroughly mixed to provide a uniform coating composition. This coating composition was applied by means of a reverse-coil coater to one side of a 34-pound paper base stock having on each side thereof a l-pound base coating of clay, titanium dioxide, polyvinyl alcohol and electrically conductive polyvinyl benzyl trimethyl ammonium chloride. The photoconductive insulating coating was applied in an amount equivalent to pounds dry weight of coating per ream (25 inches X 38 inches-500 sheets). This paper yielded a clear image upon exposure using ZOO-watt high-pressure mercury light source (microfilm projection exposure) for 5 seconds. The imaged paper was very stable showing barely discernable discoloration after 30 minutes in a Fade-ometer Microfilm projection exposures were effected using silver, Kalvar and diazo microfilms.
In another operation, a photoconductive coating varying from the above described coating only by having 4 grams of 2,4,3'-trinitrostilbene in place of the 9,10-phenanthrenedione was prepared and coated on the same body stock. This paper yielded a clear image which did not discolor appreciably when placed in the Fade-ometer for 30 minutes.
Example 7.
N,N,N,N'-tetra-(2-methylbenzyl)-I,3-phenylenediamine (0.25 grams), tetramethylthiuram disulfide, toner set, (007 grams) and 2-styrylbenzothiazole (0.03 gram) were dissolved in 20 grams of a polymer solution comprised of polystyrene (Dow Chemical Company, Styron 666U) dissolved in 108 milliliters of chloroform. The coating composition was mixed thoroughly and thereafter applied to a paper base sheet by means of a No. 20 Meyer bar. The coating was then dried, charged by means ofa corona discharge and imaged through a transparency by means ofa high-pressure mercury vapor lamp for a period of seconds. The imaged surface was then treated with a standard, commercial liquid toner. A sample of the paper thus produced was placed in the Fade-ometer for 30 minutes with only very slight discoloration.
Example 8.
A coating composition is prepared by mixing 1 part by weight of N,N,N',N-tetra-(4-methylbenzyl)-l ,3-phenylenediamine, 3 parts by weight of polysulfone P-4700 (manufactured by the Union Carbide Corporation), 0.0005 part by weight of 2,4,3'-trinitrostilbene, and parts by weight of toluene as a solvent. This coating composition is applied to a suitable paper substrate which has been base-coated with 8 pounds (dry weight) per team inches X 38 inches500 sheets) ofa coating comprised of 70 parts by weight of polyvinyl alcohol, 20 parts by weight of calcium carbonate and 10 parts by weight of polyvinyl benzyl trimethyl ammonium chloride.
A positive print is made by negatively charging the coated paper by means of a corona discharge, and subsequently exposing the paper sheet through a positive transparency to a ill The latent electrostatic image thus produced is developed by applying thereto a dry, positively charged thermoplastic resinous toner (comprising carbon black particles coated with thermoplastic resin). The toner thus applied is attracted to the latent image areas producing a visible image which is permanently fixed by heating the thermoplastic toner on the sheet surface at a temperature of C for short time which solidly fuses the toner.
The clear print thus prepared shows no appreciable discoloration when placed in a Fade-ometer for 30 minutes. developing produced the positively In another variation of the procedures of this example, all steps are repeated as described above except that the coated paper is positively charged, and the developing toner is negatively charged. Clear images are produced when the positively charged paper is developed with the negative toner.
It is a unique characteristic of the coatings of the present invention that in addition to the clear images obtained by oppositely charged electrophotographic sheets and toner, excellent results may be obtained by employing sheets and toner having like charges. Thus, positively charged paper and positive toner may be employed in one variation, and negatively charged paper and negative toner in yet another. Both of these like charged combinations produce clear, sharp images with no appreciable discoloration in light and oxygen for substantial periods of time.
Example 9.
In another example, a coating composition is prepared by mixing 2 parts by Weight of tetrabenzyl-l ,3 phenylenediamine, 3 parts by weight of polyvinyl butyral (Butvar 8-76, manufactured by the Monsanto Chemical Company) as a resinous binder, 0.002 parts by weight of a sensitizing dye (ethyl red), and 15 parts by weight of a solvent for the above composition, which solvent component is comprised of9 parts by weight of toluene and 6 parts by weight of methyl ethyl ketone.
This coating composition is applied to one side of a web of bleached paper bodystock having a basis weight of 40 pounds per ream, and previously coated with 3 pounds (dry weight) per ream of the base coating described in Example 8.
The paper sheet thus coated is negatively charged by means of a corona discharge, and charged sheet is then exposed through a positive transparency to a 60-watt tungsten lamp at a distance of22 cm. for 15 seconds,
The latent image thus produced in selected areas of the copy sheet is developed by applying to the exposed surface a positively charged liquid toner comprised of an oxidizing oil which has been intimately admixed with a colored body (carbon black), this composition having been dispersed in a strongly insulating liquid (deodorized kerosene). The particles of oil and carbon black are attracted to the laten image areas in the exposed sheet, and a clear, sharp visible image is produced. No heat-fusing step is necessary in this method as the oil quickly hardens and adheres permanently upon expo sure to air.
The thus produced is placed in a. Fade-ometer for 60 minutes with only very slight discoloration.
Example 10.
The various TSMPD compounds and sensitizers listed below were made into coating compositions by dissolving 0.5 gram of the TSMPD and 1.5 grams of polystyrene in l2 milliliters of chloroform. In the resulting solution the sensitizer was dissolved in a quantity expressed as percent weight based on the weight of TSMPD present. In each case the solution was spread on a paper base sheet by means of a No. 20 Meyer bar, about 3 to 4 pounds dry weight per ream, being applied.
Amount of TSM PD Compounds Sensitizer Sensitrzer in 71 of TSMPD N.N,N',N'-tetra(Z,5-d|mcthyl beri1.yl)-4 methyl'l,B-phenylenediamine Z-slyrylbenzothiazole 2% N ,N,N.N'tetrabenzyl-4-isopropyll .3-
phenylenediamine Z-Slyrylkcnznthiazolc 2% Table -Continued phenylenediarnine 9.10-phenanthrenedione 0.5 N.N'-diethyl-N.N '-dibenzyl-l.3-
phenylenediamine 9,]-phenanthrenedione 0.5 N.N.N',N'-tetrabenzyl-l.3-
phenylenediamine ZA-dinitrostilbene l N,N,N.N-te!rabenzyl-l,3-
phenylenediamine 2-slrylbenzothiazole l N.N'-dibenzyl-N,N-(2.5dimethyl benzyl)-l.3-phenylenediamine 9.l0-phenanthrenedione 0.5 N.N,N',N'-tetra(3,4-dichloro-benzyl)- l.3-phenylenediarnine Z-styrylbenzothiazole 2 N,N.N',N-tetra(2-methyl benzyl)-l ,3-
phenylenediamine Z-styrylbenzothiazole 2 N N ,N ,N -tetra(4-chloro-benzyl )-4- methyl-l ,B-phenylenediarnine Z-styrylbenzothiazole 2 Each of these sheets was charged negatively by a corona discharge, imaged through a positive transparency by means of ultraviolet light for 5 seconds. The image was then developed with a positive liquid toner. All sheets gave a clean well-defined image which did not discolor appreciably when placed in a Fade-ometer for 30 minutes.
Example 11.
In further operations a photoconductive coating was prepared by combining N,N,N,N'-tetra-(2,5-dimethylbenzyl)-1,3-phenylenediamine (0.5 gram), polyvinyl butyral (21.5 grams ofa solution comprised of 12 grams of polymer in l08 ml. chloroform) and 2-(-4-diethylaminobenzylidene)- picolinc methiodide. The coating thus prepared was applied to the base stock described in example 6 by means of a No. 20 Meyer bar. The sheet was charged to 800 volts and showed little dark decay and retained 15 volts after seconds of exposure to visible light. No discoloration was observed after minutes in the Fade-ometer.
The Fade-ometer employed to test the electrophotographic materials of the present invention is an Atlas Color Fade-ometer, Type FDA-R sold by Atlas Electric Devices Company.
The starting 1,3-phenylenediamine and benzyl halide starting materials employed in the present invention are all produced in accordance with procedures well known in the art.
The N,N-dialkyl-l,3-phenylenediamine starting materials are prepared by a modification of the Jones and Cowie method (German Pat. No. 927,165). The modified procedure comprises reacting a ketone such as acetone, methyl ethyl ketone, cyclohexanone and the like with a l,3-phenylenediamine in the presence of platinum oxide as a catalyst. The reaction is carried out for 8 hours in an excess of the ketone as reaction medium in a high-pressure reactor at a temperature of 160 C. and under hydrogen at a pressure of 300 pounds per square inch.
Example12.
1,3-phenylenediamine (2.80 grams, 0.26 mole) and 04,01 dichloro-o-xylene 10 grams, 0.057 mole) were dispersed with stirring in 40 milliliters ofmethyl cellosolve. The reaction mixture was heated at 90 C. for l hour. During the heating period aqueous sodium hydroxide was periodically added to the reaction mixture. The product precipitated as a crystalline solid in the reaction mixture during the heating period. The reaction mixture was filtered and the filter cake washed with water to remove the salts, and remaining solid product was recrystallized from chloroform-ethanol mixture. The recrystallized N,N'-di-o-xylylene-l,3-phenylenediamine product was found to melt at 232-235C.
We claim:
1. An electrophotographic material comprising a relatively more conductive support having a photoconductive insulating layer thereon which comprises a photoconductor selected from the class consisting of N,N-di-o-xylylene-l ,3-phenylenediamine and substituted 1,3-phenylenediamines having the general formula:
Z Z alkyl Z Z Z Z alkyl wherein R is a divalent arylene group selected from the class consisting of 1,3-phenylene; 4-methyl-l-3,phenylene; 4-ethyl- 1,3-phenylene; 4-halo-l,3phenylene; 4-isopropylene-l,3- phenylene;4-methoxy-l,3phenylene; 2-halo-l,3-phenylene; 5 and 4,6-dimethyl-l,3-phenylene; R is a divalent arylene group selected from the class consisting of 1,3-phenylene; 4- methyl-1,3-phenylene; 4-ethyl-l,3-phenylene and 4-isopropyl- 1,3-phenylene; Z is an aralkyl group selected from the class consisting of benzyl, monomethylbenzyl, dimethylbenzyl, trimethylbenzyl, monohalobenzyl and dihalobenzyl; and alkyl represents an alkyl group containing from one to six carbon atoms.
2. An electrophotographic material as claimed in claim 1 wherein the insulating layer contains an electron-acceptor.
sensitizing agent.
3. An electrophotographic material as claimed in claim 2 wherein the photoconductive insulating layer comprises a photoconductor having the general formula N-R-N wherein R is a divalent arylene group selected from the class consisting of l,3phenylene, 4-methyl-l,3-phenylene, 4-ethyl- 1,3-phenylene, 4-halol ,3-phenylene, 4-isopropyl-l ,3-phenylene, 4-methyloxy-l,3-phenylene, 2halo-l,3-phenylene and 4,6-dimethyl-l,3-phenylene and Z is an aralkyl group selected from the class consisting of benzyl, monomethylbenzyl, di methylbenzyl, trimethylbenzyl, tetramethylbenzyl, monohalobenzyl and dihalobenzyl.
4. An electrophotographic material as claimed in claim 3 wherein the photoconductive insulating layer comprises a photoconductor having the general formula wherein R is a divalent arylene group selected from the class consisting of 1,3-phenylene, 4-methyll,3-phenylene, 4-ethyl- 1,3-phenylene, 4-halo-l,3-phenylene, 4-isopropyl-l,3-phenylene, 4-methyoxy l,3-phenylene, 2-halo-l.3-phenylene and 4,6-dimethyl-l,3-phenylene; Z is an aralkyl group selected from the class consisting of benzyl, monomethylbenzyl, dimethylbenzyl, trimethylbenzyl, and tetramethylbenzyl, monohalobenzyl and dihalobenzyl; and Z is a dissimilar aralkyl group selected from the group designated by Z.
5. An electrophotographic material as claimed in claim 2 wherein the photoconductive insulating layer comprises a photoconductor having the general formula alkyl /ulkyl N-RN\ Z 7,
8. An electrophotographic material as claimed in claim 2 dimethylbenzyl)-l,3-phenylenediamine. wherein the electron acceptor 1S gfluorenone 10. An electrophotographic material as claimed in claim 2 trinitrofluorenone, or 2-nitrofluorenone.
9. An electrophotographic material as claimed in claim 3 wherein the photoconductor is N,N,N,N'-tetra-(4-methyl- 5 benzyl)-1,B-phenylenediamine or N,N,N,N'-tetra(2,5-
wherein the electron acceptor is 2,4,3-trinitrostilbene, 2,4- dinitrostilbene or 2,4,6trinitrostilbene.
CERTIFICATE OF CORRECTION Lawrence Price and John A. Mattor nventofls It is certified that error appears in the above-identified patent ad that said Letters Patent are hereby corrected as shown below:
lumn 4, line 75 "the" should be The. lumn 5, line 22, "being, should be having-. lumn 7, line 9, delete "the reaction period,".
line 25, delete "B" and insert a hyphen. line 27, delete "B and insert a hyphen. line 30, delete "B' and insert a hyphen. line 52, 97" should read "97 line 58, insert a hyphen between "l58 l6O C." nlumn 8, line 45, insert a parenthesis after the word "dimethylbenzyl" line 72, delete "phenylenediamine" and insert the mixture. Jlumn 9, line 16, "10.6" should read l.6--.
line 23, "coil should read roll. line 75 has been deleted completely. It should read high--pressure mercury light source at 22cm.
for 4 seconds.-. Dlumn 10*, line ll, delete "developing produced the positively".
line 57, insert "print" after the word The. line 73, "2-styrylkenzothiazole" should be 2styrylbenzothiazole. line 75 has been deleted completely, It should read phenylenediamine 2-styrylbenzothiazole 2%-. olumn ll,line 8, "2strylbenzothiazole" should read 2styrylbenzothiazole. line 28, delete the hyphen before the "4". olumn l2,line 3, "4-isopropylene" should read 4isopropyl.
line l0, after the word "trimethylbenzyl" insert tetramethylbenzyl,-. line 64, "aralky" should read -aralkyl-.
Signed and sealed this 20th day of November 1973.
EAL) test:
WARD M.FLETCHER,JR. RENE D. TEGTI [EYER testing Officer- Acting Commissioner of Patents

Claims (9)

  1. 2. An electrophotographic material as claimed in claim 1 wherein the insulating layer contains an electron-acceptor sensitizing agent.
  2. 3. An electrophotographic material as claimed in claim 2 wherein the photoconductive insulating layer comprises a photoconductor having the general formula
  3. 4. An electrophotographic material as claimed in claim 3 wherein the photoconductive insulating layer comprises a photoconductor having the general formula
  4. 5. An electrophotographic material as claimed in claim 2 wherein the photoconductive insulating layer comprises a photoconductor having the general formula
  5. 6. An electrophotographic material as claimed in claim 2 wherein the electron acceptor is 9,10-phenanthrenedione.
  6. 7. An electrophotographic material as claimed in claim 3 wherein the photoconductor is N,N,N'',N''-tetrabenzyl-1,3-phenylenediamine and the electron acceptor is 9,10-phenanthrenedione.
  7. 8. An electrophotographic material as claimed in claim 2 wherein the electron acceptor is 9-fluorenone, 2,4,7-trinitrofluorenone, or 2-nitrofluorenone.
  8. 9. An electrophotographic material as claimed in claim 3 wherein the photoconductor is N,N,N'',N''-tetra-(4-methylbenzyl)-1,3-phenylenediamine or N,N,N'',N''-tetra(2,5-dimethylbenzyl)-1,3-phenylenediamine.
  9. 10. An electrophotographic material as claimed in claim 2 wherein the electron acceptor is 2,4,3''-trinitrostilbene, 2,4-dinitrostilbene or 2,4,6-trinitrostilbene.
US724224A 1968-04-25 1968-04-25 1 3-phenylenediamine containing photoconductive materials Expired - Lifetime US3615404A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US72422468A 1968-04-25 1968-04-25

Publications (1)

Publication Number Publication Date
US3615404A true US3615404A (en) 1971-10-26

Family

ID=24909549

Family Applications (1)

Application Number Title Priority Date Filing Date
US724224A Expired - Lifetime US3615404A (en) 1968-04-25 1968-04-25 1 3-phenylenediamine containing photoconductive materials

Country Status (7)

Country Link
US (1) US3615404A (en)
BE (1) BE732021A (en)
CH (1) CH486724A (en)
DE (1) DE1921273A1 (en)
FR (1) FR2006937A1 (en)
GB (1) GB1218000A (en)
NL (1) NL160953C (en)

Cited By (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3331592A1 (en) 1982-09-01 1984-03-01 Fuji Photo Film Co., Ltd., Minamiashigara, Kanagawa DISAZO CONNECTIONS AND PHOTO-CONDUCTIVE COMPOSITIONS CONTAINING THEM AND ELECTROPHOTOGRAPHIC LIGHT-SENSITIVE RECORDING MATERIALS
US4444863A (en) * 1981-10-15 1984-04-24 Fuji Photo Film Co., Ltd. Photoconductive composition and electrophotographic light-sensitive material using said composition
US4728593A (en) * 1985-07-12 1988-03-01 E. I. Du Pont De Nemours And Company Photoconductive polyimide-electron donor charge transfer complexes
EP0373582A1 (en) * 1988-12-14 1990-06-20 Idemitsu Kosan Company Limited Electroluminescence device
US5059503A (en) * 1989-03-30 1991-10-22 Mita Industrial Co., Ltd. Electrophotosensitive material with combination of charge transfer materials
US5087544A (en) * 1989-03-30 1992-02-11 Mita Industrial Co., Ltd. Perylene electrophotosensitive material with m-phenylenediamine
US5121029A (en) * 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
US5306813A (en) * 1991-07-09 1994-04-26 Imperial Chemical Industries Plc Reactive dyes having a bulky linker group
EP0616020A1 (en) 1989-03-20 1994-09-21 Idemitsu Kosan Company Limited Aromatic dimethylidyne compounds and process for preparation thereof
US5443922A (en) * 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
US5494765A (en) * 1993-01-14 1996-02-27 Mita Industrial Co. Ltd Electrophotosensitive material using a phenylenediamine derivative
US5500568A (en) * 1992-07-23 1996-03-19 Idemitsu Kosan Co., Ltd. Organic El device
WO2000041443A1 (en) 1998-12-28 2000-07-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2006073054A1 (en) 2005-01-05 2006-07-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
WO2007007553A1 (en) 2005-07-14 2007-01-18 Idemitsu Kosan Co., Ltd. Biphenyl derivatives, organic electroluminescent materials, and organic electroluminescent devices made by using the same
WO2007017995A1 (en) 2005-08-08 2007-02-15 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device making use of the same
WO2007029410A1 (en) 2005-09-08 2007-03-15 Idemitsu Kosan Co., Ltd. Organic electroluminescent element using polyarylamine
WO2007032162A1 (en) 2005-09-16 2007-03-22 Idemitsu Kosan Co., Ltd. Pyrene derivative and organic electroluminescence device making use of the same
WO2007032161A1 (en) 2005-09-15 2007-03-22 Idemitsu Kosan Co., Ltd. Asymmetric fluorene derivative and organic electroluminescent element containing the same
WO2007052759A1 (en) 2005-11-07 2007-05-10 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
WO2007058172A1 (en) 2005-11-17 2007-05-24 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2007058044A1 (en) 2005-11-15 2007-05-24 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element employing the same
WO2007058127A1 (en) 2005-11-16 2007-05-24 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
WO2007060795A1 (en) 2005-11-28 2007-05-31 Idemitsu Kosan Co., Ltd. Amine compound and organic electroluminescent element employing the same
WO2007061063A1 (en) 2005-11-28 2007-05-31 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2007063993A1 (en) 2005-12-02 2007-06-07 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescence device making use of the same
WO2007077766A1 (en) 2005-12-27 2007-07-12 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device
WO2007080704A1 (en) 2006-01-13 2007-07-19 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescent devices made by using the same
WO2007097178A1 (en) 2006-02-23 2007-08-30 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device, method for producing same and organic electroluminescent device
WO2007099983A1 (en) 2006-02-28 2007-09-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using fluoranthene derivative and indenoperylene derivative
WO2007100010A1 (en) 2006-02-28 2007-09-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2007102361A1 (en) 2006-03-07 2007-09-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
WO2007105448A1 (en) 2006-02-28 2007-09-20 Idemitsu Kosan Co., Ltd. Naphthacene derivative and organic electroluminescent device using same
WO2007111262A1 (en) 2006-03-27 2007-10-04 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same
WO2007111263A1 (en) 2006-03-27 2007-10-04 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same
WO2007114358A1 (en) 2006-04-03 2007-10-11 Idemitsu Kosan Co., Ltd. Benzanthracene derivative and organic electroluminescent device using the same
WO2007116750A1 (en) 2006-03-30 2007-10-18 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
WO2007116828A1 (en) 2006-04-03 2007-10-18 Idemitsu Kosan Co., Ltd. Bisanthracene derivative and organic electroluminescent device using the same
US20070247066A1 (en) * 2004-04-06 2007-10-25 Idemitsu Kosan Co., Ltd. Electrode Substrate and Its Manufacturing Method
WO2007125714A1 (en) 2006-04-26 2007-11-08 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescence element using the same
WO2007132678A1 (en) 2006-05-11 2007-11-22 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2007132704A1 (en) 2006-05-11 2007-11-22 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
WO2007138906A1 (en) 2006-05-25 2007-12-06 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and full color light-emitting device
WO2007148660A1 (en) 2006-06-22 2007-12-27 Idemitsu Kosan Co., Ltd. Organic electroluminescent device employing heterocycle-containing arylamine derivative
WO2008001551A1 (en) 2006-06-27 2008-01-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescence device using the same
WO2008015949A1 (en) 2006-08-04 2008-02-07 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2008023549A1 (en) 2006-08-23 2008-02-28 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescent devices made by using the same
WO2008023623A1 (en) 2006-08-22 2008-02-28 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2008056722A1 (en) 2006-11-09 2008-05-15 Idemitsu Kosan Co., Ltd. Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device
WO2008056652A1 (en) 2006-11-09 2008-05-15 Idemitsu Kosan Co., Ltd. Organic el material-containing solution, method for synthesizing organic el material, compound synthesized by the synthesizing method, method for forming thin film of organic el material, thin film of organic el material, and organic el device
WO2008056723A1 (en) 2006-11-09 2008-05-15 Idemitsu Kosan Co., Ltd. Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device
WO2008059713A1 (en) 2006-11-15 2008-05-22 Idemitsu Kosan Co., Ltd. Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
WO2008062636A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
WO2008081823A1 (en) 2006-12-29 2008-07-10 Idemitsu Kosan Co., Ltd. Solution containing organic el material, method for synthesis of organic el material, compound synthesized by the synthesis method, method for formation of thin film of organic el material, thin film of organic el material, organic el element
WO2008102740A1 (en) 2007-02-19 2008-08-28 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2008111554A1 (en) 2007-03-09 2008-09-18 Idemitsu Kosan Co., Ltd. Organic el device and display
WO2008123178A1 (en) 2007-03-23 2008-10-16 Idemitsu Kosan Co., Ltd. Organic el device
WO2008126802A1 (en) 2007-04-06 2008-10-23 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
WO2009011327A1 (en) 2007-07-18 2009-01-22 Idemitsu Kosan Co., Ltd. Organic electroluminescent device material and organic electroluminescent device
WO2009020095A1 (en) 2007-08-06 2009-02-12 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
WO2009066778A1 (en) 2007-11-22 2009-05-28 Idemitsu Kosan Co., Ltd. Organic el element and solution containing organic el material
WO2009069717A1 (en) 2007-11-30 2009-06-04 Idemitsu Kosan Co., Ltd. Azaindenofluorenedione derivative, organic electroluminescent device material, and organic electroluminescent device
US20090167167A1 (en) * 2006-06-05 2009-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and material for organic electroluminescent device
WO2009081857A1 (en) 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2009145016A1 (en) 2008-05-29 2009-12-03 出光興産株式会社 Aromatic amine derivative and organic electroluminescent device using the same
WO2010074087A1 (en) 2008-12-26 2010-07-01 出光興産株式会社 Material for organic electroluminescent element, and organic electroluminescent element
WO2010074181A1 (en) 2008-12-26 2010-07-01 出光興産株式会社 Organic electroluminescence element and compound
WO2010076878A1 (en) 2009-01-05 2010-07-08 出光興産株式会社 Organic electroluminescent element material and organic electroluminescent element comprising same
EP2229039A1 (en) 2003-07-02 2010-09-15 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display using same
WO2010116970A1 (en) 2009-04-06 2010-10-14 出光興産株式会社 Organic electroluminescent element and material for organic electroluminescent element
EP2262032A2 (en) 1999-04-05 2010-12-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and its manufacturing method
WO2011015265A2 (en) 2009-08-04 2011-02-10 Merck Patent Gmbh Electronic devices comprising multi cyclic hydrocarbons
WO2011032686A1 (en) 2009-09-16 2011-03-24 Merck Patent Gmbh Formulas for producing electronic devices
WO2011046182A1 (en) 2009-10-16 2011-04-21 出光興産株式会社 Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
WO2011076323A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Formulations comprising phase-separated functional materials
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
DE102010006280A1 (en) 2010-01-30 2011-08-04 Merck Patent GmbH, 64293 color conversion
WO2011110275A2 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Radiative fibers
WO2011110277A1 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Fibers in therapy and cosmetics
WO2011137922A1 (en) 2010-05-03 2011-11-10 Merck Patent Gmbh Formulations and electronic devices
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
WO2012013272A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Quantum dots and hosts
WO2012013270A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Nanocrystals in devices
WO2012014841A1 (en) 2010-07-26 2012-02-02 出光興産株式会社 Organic electroluminescence element
EP2448374A2 (en) 2003-12-01 2012-05-02 Idemitsu Kosan Co., Ltd. Asymmetric monoanthracene derivative, material for organic electroluminescent device and organic electroluminescent device utilizing the same
WO2012084114A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
WO2012110178A1 (en) 2011-02-14 2012-08-23 Merck Patent Gmbh Device and method for treatment of cells and cell tissue
WO2012126566A1 (en) 2011-03-24 2012-09-27 Merck Patent Gmbh Organic ionic functional materials
WO2012152366A1 (en) 2011-05-12 2012-11-15 Merck Patent Gmbh Organic ionic compounds, compositions and electronic devices
WO2012157211A1 (en) 2011-05-13 2012-11-22 ソニー株式会社 Organic el multi-color light-emitting device
WO2012163464A1 (en) 2011-06-01 2012-12-06 Merck Patent Gmbh Hybrid ambipolar tfts
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
WO2013035275A1 (en) 2011-09-09 2013-03-14 出光興産株式会社 Nitrogen-containing heteroaromatic ring compound
WO2013046635A1 (en) 2011-09-28 2013-04-04 出光興産株式会社 Material for organic electroluminescent element, and organic electroluminescent element produced using same
WO2013060411A1 (en) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperbranched polymers, methods for producing same, and use of same in electronic devices
WO2013069242A1 (en) 2011-11-07 2013-05-16 出光興産株式会社 Material for organic electroluminescent elements, and organic electroluminescent element using same
WO2015014427A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electro-optical device and the use thereof
WO2015014429A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electroluminescence device
EP2910619A1 (en) 2003-12-19 2015-08-26 Idemitsu Kosan Co., Ltd Light-emitting material for organic electroluminescent device, organic electroluminescent device using same, and material for organic electroluminescent device
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
WO2016107663A1 (en) 2014-12-30 2016-07-07 Merck Patent Gmbh Formulations and electronic devices
WO2016155866A1 (en) 2015-03-30 2016-10-06 Merck Patent Gmbh Formulation of an organic functional material comprising a siloxane solvent
WO2016198141A1 (en) 2015-06-12 2016-12-15 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for oled formulations
WO2017036572A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
WO2017097391A1 (en) 2015-12-10 2017-06-15 Merck Patent Gmbh Formulations containing ketones comprising non-aromatic cycles
WO2017102048A1 (en) 2015-12-15 2017-06-22 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
WO2017102052A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a solid solvent
WO2017102049A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
WO2017140404A1 (en) 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018001928A1 (en) 2016-06-28 2018-01-04 Merck Patent Gmbh Formulation of an organic functional material
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018077660A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018095395A1 (en) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 High polymer, mixture containing same, composition, organic electronic component, and monomer for polymerization
WO2018095381A1 (en) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 Printing ink composition, preparation method therefor, and uses thereof
WO2018103744A1 (en) 2016-12-08 2018-06-14 广州华睿光电材料有限公司 Mixture, composition and organic electronic device
WO2018104202A1 (en) 2016-12-06 2018-06-14 Merck Patent Gmbh Preparation process for an electronic device
WO2018108760A1 (en) 2016-12-13 2018-06-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018113785A1 (en) 2016-12-22 2018-06-28 广州华睿光电材料有限公司 Polymer containing furan crosslinking group and use thereof
WO2018114883A1 (en) 2016-12-22 2018-06-28 Merck Patent Gmbh Mixtures comprising at least two organofunctional compounds
WO2018138318A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2018138319A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic electroluminescence (el) element
WO2018178136A1 (en) 2017-03-31 2018-10-04 Merck Patent Gmbh Printing method for an organic light emitting diode (oled)
WO2018189050A1 (en) 2017-04-10 2018-10-18 Merck Patent Gmbh Formulation of an organic functional material
WO2018202603A1 (en) 2017-05-03 2018-11-08 Merck Patent Gmbh Formulation of an organic functional material
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
US10323180B2 (en) 2014-12-04 2019-06-18 Guangzhou Chinaray Optoelectronic Materials Ltd. Deuterated organic compound, mixture and composition containing said compound, and organic electronic device
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
US10364316B2 (en) 2015-01-13 2019-07-30 Guangzhou Chinaray Optoelectronics Materials Ltd. Conjugated polymer containing ethynyl crosslinking group, mixture, formulation, organic electronic device containing the same and application therof
WO2019162483A1 (en) 2018-02-26 2019-08-29 Merck Patent Gmbh Formulation of an organic functional material
US10510967B2 (en) 2014-12-11 2019-12-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic compound, and mixture, formulation and organic device comprising the same
WO2019238782A1 (en) 2018-06-15 2019-12-19 Merck Patent Gmbh Formulation of an organic functional material
US10573827B2 (en) 2014-12-11 2020-02-25 Guangzhou Chinaray Optoelectronics Materials Ltd. Organic metal complex, and polymer, mixture, composition and organic electronic device containing same and use thereof
WO2020064582A1 (en) 2018-09-24 2020-04-02 Merck Patent Gmbh Method for the production of a granular material
WO2020094538A1 (en) 2018-11-06 2020-05-14 Merck Patent Gmbh Method for forming an organic element of an electronic device
US10840450B2 (en) 2014-12-04 2020-11-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Polymer, and mixture or formulation, and organic electronic device containing same, and monomer thereof
WO2021213917A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Emulsions comprising organic functional materials
US11161933B2 (en) 2016-12-13 2021-11-02 Guangzhou Chinaray Optoelectronic Materials Ltd. Conjugated polymer and use thereof in organic electronic device
WO2021259824A1 (en) 2020-06-23 2021-12-30 Merck Patent Gmbh Method for producing a mixture
US11292875B2 (en) 2016-12-22 2022-04-05 Guangzhou Chinaray Optoelectronic Materials Ltd. Cross-linkable polymer based on Diels-Alder reaction and use thereof in organic electronic device
WO2022122607A1 (en) 2020-12-08 2022-06-16 Merck Patent Gmbh An ink system and a method for inkjet printing
US11404644B2 (en) 2016-12-22 2022-08-02 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic functional compounds, mixtures, formulations, organic functional thin films and preparation methods therefor and organic electronic devices
WO2022243403A1 (en) 2021-05-21 2022-11-24 Merck Patent Gmbh Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material
US11512039B2 (en) 2016-11-23 2022-11-29 Guangzhou Chinaray Optoelectronic Materials Ltd. Aromatic amine derivatives, preparation methods therefor, and uses thereof
US11518723B2 (en) 2016-11-23 2022-12-06 Guangzhou Chinaray Optoelectronic Materials Ltd. Fused ring compound, high polymer, mixture, composition and organic electronic component
US11555128B2 (en) 2015-11-12 2023-01-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing composition, electronic device comprising same and preparation method for functional material thin film
WO2023012084A1 (en) 2021-08-02 2023-02-09 Merck Patent Gmbh A printing method by combining inks
WO2023031073A1 (en) 2021-08-31 2023-03-09 Merck Patent Gmbh Composition
WO2023057327A1 (en) 2021-10-05 2023-04-13 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2023237458A1 (en) 2022-06-07 2023-12-14 Merck Patent Gmbh Method of printing a functional layer of an electronic device by combining inks
WO2024126635A1 (en) 2022-12-16 2024-06-20 Merck Patent Gmbh Formulation of an organic functional material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027061A (en) * 1988-06-27 1990-01-11 Fuji Electric Co Ltd Electrophotographic sensitive body
JPH0726038B2 (en) * 1988-07-27 1995-03-22 三田工業株式会社 Electrophotographic photoreceptor using m-phenylenediamine compound
DE3833454C1 (en) * 1988-10-01 1990-01-25 Friedhelm 4130 Moers De Bongards Liquid-manure channel
US5275898A (en) * 1989-06-06 1994-01-04 Fuji Electric Co., Ltd. Bisazo photoconductor for electrophotography
US5132189A (en) * 1989-09-07 1992-07-21 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US5316881A (en) * 1991-12-27 1994-05-31 Fuji Electric Co., Ltd. Photoconductor for electrophotgraphy containing benzidine derivative
JPH05224439A (en) * 1992-02-12 1993-09-03 Fuji Electric Co Ltd Electrophotographic sensitive body
JP2817822B2 (en) * 1992-05-14 1998-10-30 富士電機株式会社 Electrophotographic photoreceptor

Cited By (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444863A (en) * 1981-10-15 1984-04-24 Fuji Photo Film Co., Ltd. Photoconductive composition and electrophotographic light-sensitive material using said composition
DE3331592A1 (en) 1982-09-01 1984-03-01 Fuji Photo Film Co., Ltd., Minamiashigara, Kanagawa DISAZO CONNECTIONS AND PHOTO-CONDUCTIVE COMPOSITIONS CONTAINING THEM AND ELECTROPHOTOGRAPHIC LIGHT-SENSITIVE RECORDING MATERIALS
US4728593A (en) * 1985-07-12 1988-03-01 E. I. Du Pont De Nemours And Company Photoconductive polyimide-electron donor charge transfer complexes
US5121029A (en) * 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
EP0373582A1 (en) * 1988-12-14 1990-06-20 Idemitsu Kosan Company Limited Electroluminescence device
EP0616020A1 (en) 1989-03-20 1994-09-21 Idemitsu Kosan Company Limited Aromatic dimethylidyne compounds and process for preparation thereof
US5059503A (en) * 1989-03-30 1991-10-22 Mita Industrial Co., Ltd. Electrophotosensitive material with combination of charge transfer materials
US5087544A (en) * 1989-03-30 1992-02-11 Mita Industrial Co., Ltd. Perylene electrophotosensitive material with m-phenylenediamine
US5306813A (en) * 1991-07-09 1994-04-26 Imperial Chemical Industries Plc Reactive dyes having a bulky linker group
US5443922A (en) * 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
US5500568A (en) * 1992-07-23 1996-03-19 Idemitsu Kosan Co., Ltd. Organic El device
US5494765A (en) * 1993-01-14 1996-02-27 Mita Industrial Co. Ltd Electrophotosensitive material using a phenylenediamine derivative
WO2000041443A1 (en) 1998-12-28 2000-07-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
EP2270117A2 (en) 1998-12-28 2011-01-05 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
EP2262032A2 (en) 1999-04-05 2010-12-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and its manufacturing method
EP2229039A1 (en) 2003-07-02 2010-09-15 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display using same
EP2448374A2 (en) 2003-12-01 2012-05-02 Idemitsu Kosan Co., Ltd. Asymmetric monoanthracene derivative, material for organic electroluminescent device and organic electroluminescent device utilizing the same
EP2910619A1 (en) 2003-12-19 2015-08-26 Idemitsu Kosan Co., Ltd Light-emitting material for organic electroluminescent device, organic electroluminescent device using same, and material for organic electroluminescent device
US20070247066A1 (en) * 2004-04-06 2007-10-25 Idemitsu Kosan Co., Ltd. Electrode Substrate and Its Manufacturing Method
WO2006073054A1 (en) 2005-01-05 2006-07-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
EP2371810A1 (en) 2005-01-05 2011-10-05 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
WO2007007553A1 (en) 2005-07-14 2007-01-18 Idemitsu Kosan Co., Ltd. Biphenyl derivatives, organic electroluminescent materials, and organic electroluminescent devices made by using the same
WO2007017995A1 (en) 2005-08-08 2007-02-15 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device making use of the same
WO2007029410A1 (en) 2005-09-08 2007-03-15 Idemitsu Kosan Co., Ltd. Organic electroluminescent element using polyarylamine
WO2007032161A1 (en) 2005-09-15 2007-03-22 Idemitsu Kosan Co., Ltd. Asymmetric fluorene derivative and organic electroluminescent element containing the same
WO2007032162A1 (en) 2005-09-16 2007-03-22 Idemitsu Kosan Co., Ltd. Pyrene derivative and organic electroluminescence device making use of the same
WO2007052759A1 (en) 2005-11-07 2007-05-10 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
WO2007058044A1 (en) 2005-11-15 2007-05-24 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element employing the same
WO2007058127A1 (en) 2005-11-16 2007-05-24 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
WO2007058172A1 (en) 2005-11-17 2007-05-24 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2007061063A1 (en) 2005-11-28 2007-05-31 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2007060795A1 (en) 2005-11-28 2007-05-31 Idemitsu Kosan Co., Ltd. Amine compound and organic electroluminescent element employing the same
WO2007063993A1 (en) 2005-12-02 2007-06-07 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescence device making use of the same
WO2007077766A1 (en) 2005-12-27 2007-07-12 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device
WO2007080704A1 (en) 2006-01-13 2007-07-19 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescent devices made by using the same
WO2007097178A1 (en) 2006-02-23 2007-08-30 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device, method for producing same and organic electroluminescent device
WO2007105448A1 (en) 2006-02-28 2007-09-20 Idemitsu Kosan Co., Ltd. Naphthacene derivative and organic electroluminescent device using same
WO2007099983A1 (en) 2006-02-28 2007-09-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using fluoranthene derivative and indenoperylene derivative
WO2007100010A1 (en) 2006-02-28 2007-09-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2007102361A1 (en) 2006-03-07 2007-09-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
WO2007111262A1 (en) 2006-03-27 2007-10-04 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same
WO2007111263A1 (en) 2006-03-27 2007-10-04 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same
WO2007116750A1 (en) 2006-03-30 2007-10-18 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
WO2007114358A1 (en) 2006-04-03 2007-10-11 Idemitsu Kosan Co., Ltd. Benzanthracene derivative and organic electroluminescent device using the same
WO2007116828A1 (en) 2006-04-03 2007-10-18 Idemitsu Kosan Co., Ltd. Bisanthracene derivative and organic electroluminescent device using the same
WO2007125714A1 (en) 2006-04-26 2007-11-08 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescence element using the same
WO2007132704A1 (en) 2006-05-11 2007-11-22 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
WO2007132678A1 (en) 2006-05-11 2007-11-22 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2007138906A1 (en) 2006-05-25 2007-12-06 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and full color light-emitting device
US8268457B2 (en) 2006-06-05 2012-09-18 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and material for organic electroluminescent device
US20090167167A1 (en) * 2006-06-05 2009-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and material for organic electroluminescent device
WO2007148660A1 (en) 2006-06-22 2007-12-27 Idemitsu Kosan Co., Ltd. Organic electroluminescent device employing heterocycle-containing arylamine derivative
WO2008001551A1 (en) 2006-06-27 2008-01-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescence device using the same
WO2008015949A1 (en) 2006-08-04 2008-02-07 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2008023623A1 (en) 2006-08-22 2008-02-28 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2008023549A1 (en) 2006-08-23 2008-02-28 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescent devices made by using the same
WO2008023759A1 (en) 2006-08-23 2008-02-28 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescence devices using the same
WO2008056722A1 (en) 2006-11-09 2008-05-15 Idemitsu Kosan Co., Ltd. Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device
WO2008056723A1 (en) 2006-11-09 2008-05-15 Idemitsu Kosan Co., Ltd. Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device
WO2008056652A1 (en) 2006-11-09 2008-05-15 Idemitsu Kosan Co., Ltd. Organic el material-containing solution, method for synthesizing organic el material, compound synthesized by the synthesizing method, method for forming thin film of organic el material, thin film of organic el material, and organic el device
WO2008059713A1 (en) 2006-11-15 2008-05-22 Idemitsu Kosan Co., Ltd. Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
EP2518045A1 (en) 2006-11-24 2012-10-31 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
WO2008062636A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
WO2008081823A1 (en) 2006-12-29 2008-07-10 Idemitsu Kosan Co., Ltd. Solution containing organic el material, method for synthesis of organic el material, compound synthesized by the synthesis method, method for formation of thin film of organic el material, thin film of organic el material, organic el element
WO2008102740A1 (en) 2007-02-19 2008-08-28 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2008111554A1 (en) 2007-03-09 2008-09-18 Idemitsu Kosan Co., Ltd. Organic el device and display
WO2008123178A1 (en) 2007-03-23 2008-10-16 Idemitsu Kosan Co., Ltd. Organic el device
WO2008126802A1 (en) 2007-04-06 2008-10-23 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
WO2009011327A1 (en) 2007-07-18 2009-01-22 Idemitsu Kosan Co., Ltd. Organic electroluminescent device material and organic electroluminescent device
WO2009020095A1 (en) 2007-08-06 2009-02-12 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
WO2009066778A1 (en) 2007-11-22 2009-05-28 Idemitsu Kosan Co., Ltd. Organic el element and solution containing organic el material
WO2009069717A1 (en) 2007-11-30 2009-06-04 Idemitsu Kosan Co., Ltd. Azaindenofluorenedione derivative, organic electroluminescent device material, and organic electroluminescent device
WO2009081857A1 (en) 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2009145016A1 (en) 2008-05-29 2009-12-03 出光興産株式会社 Aromatic amine derivative and organic electroluminescent device using the same
WO2010074087A1 (en) 2008-12-26 2010-07-01 出光興産株式会社 Material for organic electroluminescent element, and organic electroluminescent element
EP2713415A1 (en) 2008-12-26 2014-04-02 Idemitsu Kosan Co., Ltd Material for organic electroluminescent element, and organic electroluminescent element
WO2010074181A1 (en) 2008-12-26 2010-07-01 出光興産株式会社 Organic electroluminescence element and compound
WO2010076878A1 (en) 2009-01-05 2010-07-08 出光興産株式会社 Organic electroluminescent element material and organic electroluminescent element comprising same
WO2010116970A1 (en) 2009-04-06 2010-10-14 出光興産株式会社 Organic electroluminescent element and material for organic electroluminescent element
WO2011015265A2 (en) 2009-08-04 2011-02-10 Merck Patent Gmbh Electronic devices comprising multi cyclic hydrocarbons
WO2011032686A1 (en) 2009-09-16 2011-03-24 Merck Patent Gmbh Formulas for producing electronic devices
WO2011046182A1 (en) 2009-10-16 2011-04-21 出光興産株式会社 Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
WO2011076323A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Formulations comprising phase-separated functional materials
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
WO2011091946A1 (en) 2010-01-30 2011-08-04 Merck Patent Gmbh Organic electroluminescent device comprising an integrated layer for colour conversion
DE102010006280A1 (en) 2010-01-30 2011-08-04 Merck Patent GmbH, 64293 color conversion
WO2011110277A1 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Fibers in therapy and cosmetics
WO2011110275A2 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Radiative fibers
WO2011137922A1 (en) 2010-05-03 2011-11-10 Merck Patent Gmbh Formulations and electronic devices
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
EP3309236A1 (en) 2010-05-27 2018-04-18 Merck Patent GmbH Compositions comprising quantum dots
WO2012013272A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Quantum dots and hosts
WO2012013270A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Nanocrystals in devices
WO2012014841A1 (en) 2010-07-26 2012-02-02 出光興産株式会社 Organic electroluminescence element
WO2012084114A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
DE102010055901A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
WO2012110178A1 (en) 2011-02-14 2012-08-23 Merck Patent Gmbh Device and method for treatment of cells and cell tissue
WO2012126566A1 (en) 2011-03-24 2012-09-27 Merck Patent Gmbh Organic ionic functional materials
WO2012152366A1 (en) 2011-05-12 2012-11-15 Merck Patent Gmbh Organic ionic compounds, compositions and electronic devices
WO2012157211A1 (en) 2011-05-13 2012-11-22 ソニー株式会社 Organic el multi-color light-emitting device
WO2012163464A1 (en) 2011-06-01 2012-12-06 Merck Patent Gmbh Hybrid ambipolar tfts
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
WO2013035275A1 (en) 2011-09-09 2013-03-14 出光興産株式会社 Nitrogen-containing heteroaromatic ring compound
WO2013046635A1 (en) 2011-09-28 2013-04-04 出光興産株式会社 Material for organic electroluminescent element, and organic electroluminescent element produced using same
WO2013060411A1 (en) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperbranched polymers, methods for producing same, and use of same in electronic devices
DE102011117422A1 (en) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperbranched polymers, process for their preparation and their use in electronic devices
WO2013069242A1 (en) 2011-11-07 2013-05-16 出光興産株式会社 Material for organic electroluminescent elements, and organic electroluminescent element using same
WO2015014427A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electro-optical device and the use thereof
WO2015014429A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electroluminescence device
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
US10840450B2 (en) 2014-12-04 2020-11-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Polymer, and mixture or formulation, and organic electronic device containing same, and monomer thereof
US10323180B2 (en) 2014-12-04 2019-06-18 Guangzhou Chinaray Optoelectronic Materials Ltd. Deuterated organic compound, mixture and composition containing said compound, and organic electronic device
US10510967B2 (en) 2014-12-11 2019-12-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic compound, and mixture, formulation and organic device comprising the same
US10573827B2 (en) 2014-12-11 2020-02-25 Guangzhou Chinaray Optoelectronics Materials Ltd. Organic metal complex, and polymer, mixture, composition and organic electronic device containing same and use thereof
WO2016107663A1 (en) 2014-12-30 2016-07-07 Merck Patent Gmbh Formulations and electronic devices
US10364316B2 (en) 2015-01-13 2019-07-30 Guangzhou Chinaray Optoelectronics Materials Ltd. Conjugated polymer containing ethynyl crosslinking group, mixture, formulation, organic electronic device containing the same and application therof
WO2016155866A1 (en) 2015-03-30 2016-10-06 Merck Patent Gmbh Formulation of an organic functional material comprising a siloxane solvent
EP3581633A1 (en) 2015-06-12 2019-12-18 Merck Patent GmbH Esters containing non-aromatic cycles as solvents for oled formulations
WO2016198141A1 (en) 2015-06-12 2016-12-15 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for oled formulations
WO2017036572A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
US11555128B2 (en) 2015-11-12 2023-01-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing composition, electronic device comprising same and preparation method for functional material thin film
WO2017097391A1 (en) 2015-12-10 2017-06-15 Merck Patent Gmbh Formulations containing ketones comprising non-aromatic cycles
WO2017102048A1 (en) 2015-12-15 2017-06-22 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
EP4084109A1 (en) 2015-12-15 2022-11-02 Merck Patent GmbH Esters containing aromatic groups as solvents for organic electronic formulations
WO2017102049A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
WO2017102052A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a solid solvent
WO2017140404A1 (en) 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
WO2017157783A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Receptacle comprising a formulation containing at least one organic semiconductor
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018001928A1 (en) 2016-06-28 2018-01-04 Merck Patent Gmbh Formulation of an organic functional material
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018077660A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
US11512039B2 (en) 2016-11-23 2022-11-29 Guangzhou Chinaray Optoelectronic Materials Ltd. Aromatic amine derivatives, preparation methods therefor, and uses thereof
US11518723B2 (en) 2016-11-23 2022-12-06 Guangzhou Chinaray Optoelectronic Materials Ltd. Fused ring compound, high polymer, mixture, composition and organic electronic component
US11453745B2 (en) 2016-11-23 2022-09-27 Guangzhou Chinaray Optoelectronic Materials Ltd. High polymer, mixture containing same, composition, organic electronic component, and monomer for polymerization
US11248138B2 (en) 2016-11-23 2022-02-15 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing ink formulations, preparation methods and uses thereof
WO2018095381A1 (en) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 Printing ink composition, preparation method therefor, and uses thereof
WO2018095395A1 (en) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 High polymer, mixture containing same, composition, organic electronic component, and monomer for polymerization
WO2018104202A1 (en) 2016-12-06 2018-06-14 Merck Patent Gmbh Preparation process for an electronic device
WO2018103744A1 (en) 2016-12-08 2018-06-14 广州华睿光电材料有限公司 Mixture, composition and organic electronic device
US10978642B2 (en) 2016-12-08 2021-04-13 Guangzhou Chinaray Optoelectronic Materials Ltd. Mixture, composition and organic electronic device
WO2018108760A1 (en) 2016-12-13 2018-06-21 Merck Patent Gmbh Formulation of an organic functional material
US11161933B2 (en) 2016-12-13 2021-11-02 Guangzhou Chinaray Optoelectronic Materials Ltd. Conjugated polymer and use thereof in organic electronic device
WO2018113785A1 (en) 2016-12-22 2018-06-28 广州华睿光电材料有限公司 Polymer containing furan crosslinking group and use thereof
US11289654B2 (en) 2016-12-22 2022-03-29 Guangzhou Chinaray Optoelectronic Materials Ltd. Polymers containing furanyl crosslinkable groups and uses thereof
WO2018114883A1 (en) 2016-12-22 2018-06-28 Merck Patent Gmbh Mixtures comprising at least two organofunctional compounds
US11404644B2 (en) 2016-12-22 2022-08-02 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic functional compounds, mixtures, formulations, organic functional thin films and preparation methods therefor and organic electronic devices
US11292875B2 (en) 2016-12-22 2022-04-05 Guangzhou Chinaray Optoelectronic Materials Ltd. Cross-linkable polymer based on Diels-Alder reaction and use thereof in organic electronic device
WO2018138318A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2018138319A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic electroluminescence (el) element
WO2018178136A1 (en) 2017-03-31 2018-10-04 Merck Patent Gmbh Printing method for an organic light emitting diode (oled)
WO2018189050A1 (en) 2017-04-10 2018-10-18 Merck Patent Gmbh Formulation of an organic functional material
WO2018202603A1 (en) 2017-05-03 2018-11-08 Merck Patent Gmbh Formulation of an organic functional material
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
WO2019162483A1 (en) 2018-02-26 2019-08-29 Merck Patent Gmbh Formulation of an organic functional material
WO2019238782A1 (en) 2018-06-15 2019-12-19 Merck Patent Gmbh Formulation of an organic functional material
WO2020064582A1 (en) 2018-09-24 2020-04-02 Merck Patent Gmbh Method for the production of a granular material
WO2020094538A1 (en) 2018-11-06 2020-05-14 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2021213917A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Emulsions comprising organic functional materials
WO2021259824A1 (en) 2020-06-23 2021-12-30 Merck Patent Gmbh Method for producing a mixture
WO2022122607A1 (en) 2020-12-08 2022-06-16 Merck Patent Gmbh An ink system and a method for inkjet printing
WO2022243403A1 (en) 2021-05-21 2022-11-24 Merck Patent Gmbh Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material
WO2023012084A1 (en) 2021-08-02 2023-02-09 Merck Patent Gmbh A printing method by combining inks
WO2023031073A1 (en) 2021-08-31 2023-03-09 Merck Patent Gmbh Composition
WO2023057327A1 (en) 2021-10-05 2023-04-13 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2023237458A1 (en) 2022-06-07 2023-12-14 Merck Patent Gmbh Method of printing a functional layer of an electronic device by combining inks
WO2024126635A1 (en) 2022-12-16 2024-06-20 Merck Patent Gmbh Formulation of an organic functional material

Also Published As

Publication number Publication date
NL160953B (en) 1979-07-16
DE1921273A1 (en) 1969-11-13
FR2006937A1 (en) 1970-01-02
BE732021A (en) 1969-10-24
GB1218000A (en) 1971-01-06
NL160953C (en) 1979-12-17
NL6906419A (en) 1969-10-28
CH486724A (en) 1970-02-28

Similar Documents

Publication Publication Date Title
US3615404A (en) 1 3-phenylenediamine containing photoconductive materials
US4403025A (en) Electrophotographic photoreceptor
US3141770A (en) Electrophotographic layers and sensitizers for same
US3542544A (en) Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
US3279918A (en) Electrophotographic material
US3189447A (en) Electrophotographic material and method
US3240597A (en) Photoconducting polymers for preparing electrophotographic materials
US3265496A (en) Photoconductive substances for electrophotography
US3679406A (en) Heterogeneous photoconductor composition formed by low-temperature conditioning
US3488705A (en) Thermally unstable organic acid salts of triarylmethane dyes as sensitizers for organic photoconductors
JPS5857739B2 (en) Hikaridendousei Seibutsu
US3719480A (en) Electrophotographic compositions and elements
US3655378A (en) Charge-transfer complexes of dibenzofuran-formaldehyde or dibenzothiophene-formaldehyde resins as photoconductive materials
US4365016A (en) Benzotelluropyrylium diketonate electron accepting dye sensitizers for electron donating photoconductive compositions
US3290147A (en) Electrophotographic organic photoconductors
US3707369A (en) Photoconductive elements containing 2-methyl-3,3-dimethyl indole derivatives
US3244517A (en) Electrophotographic process
US4229510A (en) Photoconductive polymer material of N-alkylphenothiazine and formaldehyde
US3705913A (en) Electrophotographic sensitizers
US3314788A (en) Electrophotographic process and element comprising n, n, n,' n', tetrasubstituted-p-phenylenediamines
US3549361A (en) Electrophotographic compositions and elements
US4329284A (en) 1,2-Oxachalcogenol-1-ium salts
US3647429A (en) Photoconductive compositions and electrophotographic elements containing group iva or group va organometallic photoconductors
US3943108A (en) Photoconductive composition of an aldehyde condensate
US4476208A (en) Compounds having barbituric acid or thiobarbituric acid residue, photoconductive compositions and electrophotographic light sensitive materials containing the compounds as charge generating materials