US3609369A - Neutron generator with radiation acceleration - Google Patents

Neutron generator with radiation acceleration Download PDF

Info

Publication number
US3609369A
US3609369A US719887A US3609369DA US3609369A US 3609369 A US3609369 A US 3609369A US 719887 A US719887 A US 719887A US 3609369D A US3609369D A US 3609369DA US 3609369 A US3609369 A US 3609369A
Authority
US
United States
Prior art keywords
target
particle
annular
charged
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US719887A
Other languages
English (en)
Inventor
Petrica Croitoru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSTITUTTUL DE FIZICA ATOMICA
Original Assignee
INSTITUTTUL DE FIZICA ATOMICA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSTITUTTUL DE FIZICA ATOMICA filed Critical INSTITUTTUL DE FIZICA ATOMICA
Application granted granted Critical
Publication of US3609369A publication Critical patent/US3609369A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators

Definitions

  • PETRICA CROITORU aw 9'. w
  • ATTORNEY NEUTRON GENERATOR WITH RADIATION ACCELERATION My present invention relates to a method of generating neutrons at high intensity and of irradiating a sample with high-intensity neutrons, and to an apparatus capable of producing high-intensity neutron fluxes in a sample-accommodating region.
  • neutron generators and apparatus for the production of a neutron flux comprise a mass of materials capable of undergoing nuclear reaction and transformation to yield neutrons.
  • Such neutron sources may make use of a particlegenerating substance capable of radioactive decay to yield bombarding particles, e.g. particles (,He), which impinge upon a target (e.g. lithium, beryllium,...) to yield neutrons for irradiating a specimen or sample.
  • a-particle sources are radium, plutonium, and the like.
  • the bombarding source is intimately combined with the target material, e.g. as an alloy.
  • a high or low energy, linear or nonlinear direct charged-particle accelerator is used for neutron production.
  • the accelerated charged-particle beam is allowed to impinge on a suitable target such that a neutron flux is produced by the resulting nuclear reactions.
  • the neutrons may result from nuclear reactions between a beam of deuterons (D or H ion), tritons (T or H ion), or a mixture of these charged particles, which are accelerated to high-energy in an electric field via an electrostatic high-voltage accelerator (13.6.) or a Cockroft-Walton high-voltage accelerator (C. ⁇ V.) and are focused on a target which may contain tritium or deuterium or mixtures thereof, beryllium, and like materials known to have a high neutron yield when bombarded with the high-energy-charged particles.
  • D or H ion deuterons
  • T or H ion tritons
  • C. ⁇ V. Cockroft-Walton high-voltage accelerator
  • a typical reaction is that of the deuteron undergoing nuclear transformation .with a tritium nucleus to form an a-particle and a neutron the sample level and the specific rate of the target by using large-diameter targets although this increase is accompanied by difficulties in obtaining high-intensity beams of large aperture and constant density at the target.
  • the principal object of the present invention to provide an improved method of increasing the neutron flux intensity at the sample irradiation zone in a neutron generator using a charged-particle accelerator as previously described.
  • a further object of this invention is to provide an improved neutron generator with direct charged-particle acceleration, adapted to provide high neutron flux and neutron irradiation of high intensity at the sample irradiation zone.
  • Still another object of this invention is to provide a neutron generator of the character described, in the form of a neutron tube with high neutron flux in the sample zone.
  • Yet a further object of this invention is to provide an improved neutron generator using charged-particle acceleration in a radiofrequency field having intensive neutron flux in a sample zone.
  • an annular target capable of undergoing nuclear interaction with an accelerator-particle beam which closely surrounds an axis of symmetry and may extend along that axis in the form of a tube or cylinder while a charged-particle (i.e. ion) beam is directed at this target from at least one, but preferably a plurality of, charged-particle injectors or sources while radially effective accelerator means is provided in the common continuously evacuated envelope housing the target for radial acceleration of the incident ion beam toward the cylindrical target.
  • the region surrounded by the target constitutes the. sample irradiation zone and may be unevacuated (i.e.
  • the target may contain deuterium, tritium, beryllium or other neutron emitters undergoing neutron production upon interaction with the ion beams.
  • the sample is thus located within the axial limits of the cylindrical target and in the interior thereof so that, at the sample level, the neutron flux will generally be equal to the specific rate of the target.
  • the impinging charged-particle beams are directed from a number of sources against the cylindrical target, the source being angularly spaced around the axis of the target and, therefore, its cylindrical periphery; angular equispacing is preferred.
  • the angularly equispaced, radially directed and preferably divergent charged-particle beams impinge upon mutually overlapping zones of the target and thus ensure a substantially unifonn radiation intensity.
  • Still another feature of this invention resides in the use, independently of but possibly in combination with the preceding feature, of a plurality of axially offset beams of charged parti cles which impinge upon axially overlapping zones of the cylindrical target.
  • the axially overlapping zones may derive from charged-particle beams whose axes lie in a common axial plane of the cylindrical target but converge with respect to one another at the target so that, for example, a central beam is directed normal to the surface of the target in each of the axial planes while at least a pair of outer beams are oriented toward one another and thus converge toward the normal to the surface corresponding to the axis of the central beam.
  • the term cylindrical used with reference to the target, is intended to refer also to prismatic configurations having axial symmetry.
  • the target may be a right-circular cylinder or a body of revolution produced by a line generatrix rotated about the axis of the device along a closed path which may be noncircular.
  • the generatrix will be rotated about the axis along a polygonal path with angularly adjoining sides, thereby imparting a transverse cross section to the target corresponding to the polygon.
  • the charged-particle sources are preferably located equidistantly from the surface of the target as measured along the axis of the respective beam, while the particle-accelerator means comprises a plurality of electrodes forming acceleration gaps which also are equidistant from the target surface at each acceleration region.
  • annular ion source is provided (as distinct from a plurality of charged-particle sources equispaced around the surface of the target) and its ion particles are directly and radially accelerated in the direction of the target by continuous or pulsed electric field or by a radio frequency field of a coaxial cavity resonator.
  • FIG. I-A is an axial cross-sectional view, partly in diagrammatic form of a neutron-irradiating generator, according to the present invention.
  • FIG. lB is a transverse cross-sectional view through another arrangement of this character.
  • FIG. l-C is an axial cross-sectional view through a system embodying principles of both these systems;
  • FIG. 2 is a diagrammatic cross-sectional view of a neutron tube capable of generating high-intensity neutron flux
  • FIG. 3 is a longitudinal section, partly in diagrammatic form through a neutron generator using a resonant coaxial cavity and a radiofrequency electric field as the acceleration means.
  • I show a neutron generator which comprises an envelope 1 having an inner tubular core la receiving the specimen I to be irradiated and centered upon the axis of symmetry A of the neutron generator.
  • the tubular core la and the outer housing wall lb form a vacuum tight enclosure with a pair of electrically insulating thermal disks 2 which is subjected to continuous evacuation and suction by the pumping system represented at P.
  • the pumping system may be any of those described at pages 843-856 of the Concise Encyclopedia of Nuclear Energy," Interscience Publishers, New York, I962.
  • I provide a cylindrical target 7 containing deuterium, tritium, beryllium or like material capable of generating neutrons upon radiation with an accelerated charged-particle beam.
  • I provide along the outer wall 1b of the housing I, a number of ion sources S S S these sources generating annular beams F F and F respectively, in the form of inwardly diverging sheetlike distributions of charged particles.
  • ion sources S S S these sources generating annular beams F F and F respectively, in the form of inwardly diverging sheetlike distributions of charged particles.
  • duoplasmatron or Penning ion sources may be used.
  • the annular sources (centered on the axis A and axially spaced therealong) are employed, they may be of the type described in .loumal de Physique et Radium," vol. 12 (1951), p. 563.
  • FIG. l-A Three such beams are shown in FIG. l-A including a central beam lying in the radial plane R and a pair of inwardly directed beams whose axes are represented at R, and R,,", respectively.
  • the beams diverge toward the target 7 and overlap upon impingement thereagainst.
  • the radial accelerator means of this system includes a plurality of inwardly concave generally coaxial accelerator electrodes 3, 4, 5 and 6 which are provided with circular slits 3', 3", 3", etc. permitting passage of the beams F,, F and F respectively.
  • a pulsed or continuous electrostatic accelerator source (E.G. as described in my concurrently filed copending application Ser. No. 719,963, now Pat. No.
  • the cylindrical housing 8 is hermetically sealed and has a tubular core 8a carrying the neutron-emitting target 13 in the form ofa cylinder.
  • the sample I is received with the cylinder for neutron irradiation in the direction of arrows n.
  • a plurality of duoplasmatron or Penning-type ion sources 8,, S S etc. are disposed in a common radial plane and are angularly equispaced along the outer wall of housing 8 to direct beams F F and F etc. of charged particles radially inwardly along the respective radii R R and R of the target 13.
  • the electrodes 9, 10, 11 and 12 are radially spaced but coaxially disposed within the chamber 8c of the housing 8, which is evacuated by the continuous pumping system P.
  • the electrodes 9-12 are provided with angularly equispaced slits 9a, 9b, 9c extending along generatrices and parallel to the axis of the device.
  • the slits associated with each beam are radially aligned as represented for the slits 9a, 10a, lla and 12a for the beam F
  • the slits increase progressively in angular width to ensure the divergence of the beams.
  • the electrostatic field source E is connected to each of the electrodes to sustain an accelerating potential difference across the gaps 9', l0 and 11 as described in the aforementioned copending application and in connection with FIG. 1-A.
  • the sample I is located at the high-flux zone and is at atmospheric pressure.
  • FIG. l-C I show an arrangement in which the housing 31 approaches a torus in configuration and is evacuated by the continuously operating pump 32.
  • a cylindrical neutronemitting target 33 is disposed along the core 34 of the toroid in which the sample I is positioned at atmospheric pressure.
  • a plurality of ion sources 5,, S etc. are angularly equispaced from one another about the axis A.
  • the corresponding sources S-,, S, and S are located in common axial planes of the device represented, for example, by the plane of the paper in FIG. lC.
  • the accelerator electrodes conform to coaxial spherical segments as shown for the electrodes 35, 36, 37 and 38 which are provided with the slits 35a, 36a, 37a and 38a in this Figure.
  • the continuous or pulsed electrostatic field source E" is connected to these electrodes as previously described.
  • I show a neutron-generating tube in which a tubular glass envelope 14, which is sealed after evacuation, is provided with a pressure-regulating getter 15, heated via leads l5 and 15" by an electric current supplied from the exterior.
  • I provide a mechanical/electrical transducer 16 serving as a pressure gauge and designed to indicate the pressure within the tube 14 via a meter 16a connected to the leads of the gauge period.
  • I provide a ring-shaped ion source 17 including radially spaced accelerator electrodes as described in connection with FIGS. l-A and 1-B previously. Again, a well 19a is provided within the housing at atmospheric pressure for receiving the sample.
  • the embodiment of FIG. 3 comprises a ring-shaped ion source S whose charged particles are accelerated radially toward a target 21 sealed within an annular zone of the cavity resonator 20 which is supplied, e.g. as described in the aforementioned copending application, with radiofrequency waves adapted to accelerate the charged particles.
  • the sample may be disposed at atmospheric pressure.
  • the pumping system P operates continuously to evacuate the system. In all of the aforementioned devices, the neutron flux at the sample zone is generally equal to the specific rate of the target.
  • a high-intensity neutron generator comprising an annular evacuated housing having an annular inner wall adapted to surround a sample at ambient pressure; an annular neutronemissive target activatable by accelerated charged particles disposed along said wall for subjecting said sample to high-intensity neutron flux; a plurality of charged-particle sources spaced radially from said target for radially directing chargedparticle beams substantially uniformly against said target and across the evacuated space between said source and said target; and particle-accelerator means for radially accelerating the particles of said beam, said particle-accelerator means including radially spaced generally annular electrodes disposed in said space around said target and provided with openings passing said beam and means for applying an accelerating field across said electrode.
  • said chargedparticle source includes a plurality of angularly spaced ionized surround a sample at ambient pressure; an annular neutronemissive target activatable by accelerated charged particles disposed along said wall for subjecting said sample to high-intensity neutron flux; at least one annular charged-particle source spaced radially from said target for radially directing at least one charged-particle beam substantially uniformly against said target and across the evacuated space between said source and said target, said annular ionized-particle source directing charged particles against said target generally uniformly therealong; and particle-accelerator means for radially accelerating the particles of said beam.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)
US719887A 1967-04-10 1968-04-09 Neutron generator with radiation acceleration Expired - Lifetime US3609369A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RO5351967 1967-04-10

Publications (1)

Publication Number Publication Date
US3609369A true US3609369A (en) 1971-09-28

Family

ID=20086587

Family Applications (1)

Application Number Title Priority Date Filing Date
US719887A Expired - Lifetime US3609369A (en) 1967-04-10 1968-04-09 Neutron generator with radiation acceleration

Country Status (6)

Country Link
US (1) US3609369A (enrdf_load_stackoverflow)
CH (2) CH484585A (enrdf_load_stackoverflow)
DE (1) DE1764117B1 (enrdf_load_stackoverflow)
FR (1) FR1604552A (enrdf_load_stackoverflow)
GB (1) GB1228814A (enrdf_load_stackoverflow)
NL (1) NL6805002A (enrdf_load_stackoverflow)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733490A (en) * 1971-01-08 1973-05-15 En Atomique Rotary target for electrostatic accelerator which operates as a neutron generator
US3786258A (en) * 1971-03-13 1974-01-15 Kernforschung Gmbh Ges Fuer Closed system neutron generator tube
US4139777A (en) * 1975-11-19 1979-02-13 Rautenbach Willem L Cyclotron and neutron therapy installation incorporating such a cyclotron
US4202725A (en) * 1978-03-08 1980-05-13 Jarnagin William S Converging beam fusion system
US4395631A (en) * 1979-10-16 1983-07-26 Occidental Research Corporation High density ion source
US4440714A (en) * 1981-01-29 1984-04-03 The United States Of America As Represented By The United States Department Of Energy Inertial confinement fusion method producing line source radiation fluence
US4568509A (en) * 1980-10-10 1986-02-04 Cvijanovich George B Ion beam device
EP0473233A1 (fr) * 1990-08-31 1992-03-04 Societe Anonyme D'etudes Et Realisations Nucleaires S.O.D.E.R.N. Tube neutronique à flux élevé
US5135704A (en) * 1990-03-02 1992-08-04 Science Research Laboratory, Inc. Radiation source utilizing a unique accelerator and apparatus for the use thereof
WO1999024990A3 (en) * 1997-11-12 1999-09-23 George H Miley Inertial electrostatic confinement (iec) fusion device with gate-valve pulsing
DE10212825C1 (de) * 2002-03-22 2003-07-17 Astrium Gmbh Entladungsgrid für eine elektrische Neutronenquelle
US20030152186A1 (en) * 2002-01-28 2003-08-14 Jurczyk Brian E. Gas-target neutron generation and applications
US20030218430A1 (en) * 2002-05-22 2003-11-27 Ka-Ngo Leung Ion source with external RF antenna
US20030223528A1 (en) * 1995-06-16 2003-12-04 George Miley Electrostatic accelerated-recirculating-ion fusion neutron/proton source
US20040022341A1 (en) * 2002-04-08 2004-02-05 Ka-Ngo Leung Compact neutron generator
US20040104683A1 (en) * 2002-05-22 2004-06-03 Ka-Ngo Leung Negative ion source with external RF antenna
US20040146133A1 (en) * 2002-01-23 2004-07-29 Ka-Ngo Leung Ultra-short ion and neutron pulse production
US6907097B2 (en) * 2001-03-16 2005-06-14 The Regents Of The University Of California Cylindrical neutron generator
US7139349B2 (en) * 2001-03-16 2006-11-21 The Regents Of The University Of California Spherical neutron generator
US20090262881A1 (en) * 2008-04-22 2009-10-22 Ka-Ngo Leung Cylindrical Neutron Generator
US8090071B2 (en) * 2001-08-08 2012-01-03 James Robert DeLuze Apparatus for hot fusion of fusion-reactive gases
US20120213319A1 (en) * 2009-08-14 2012-08-23 The Regents Of The University Of California Fast Pulsed Neutron Generator
US20120330084A1 (en) * 2011-06-27 2012-12-27 Richard Harris Pantell Neutron Source for Neutron Capture Therapy
CN109769337A (zh) * 2019-03-08 2019-05-17 北京中百源国际科技创新研究有限公司 一种激光离子加速器
US20220270775A1 (en) * 2008-05-02 2022-08-25 Shine Technologies, Llc Device and method for producing medical isotopes
US12412676B2 (en) * 2022-04-15 2025-09-09 Shine Technologies, Llc Device and method for producing medical isotopes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US26081A (en) * 1859-11-15 James bidwell
US3173006A (en) * 1962-10-22 1965-03-09 Field Emission Corp Short pulse-high energy electron radiation tube
US3309522A (en) * 1965-05-13 1967-03-14 Dresser Ind Pulsed neutron generator

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733490A (en) * 1971-01-08 1973-05-15 En Atomique Rotary target for electrostatic accelerator which operates as a neutron generator
US3786258A (en) * 1971-03-13 1974-01-15 Kernforschung Gmbh Ges Fuer Closed system neutron generator tube
US4139777A (en) * 1975-11-19 1979-02-13 Rautenbach Willem L Cyclotron and neutron therapy installation incorporating such a cyclotron
US4202725A (en) * 1978-03-08 1980-05-13 Jarnagin William S Converging beam fusion system
US4395631A (en) * 1979-10-16 1983-07-26 Occidental Research Corporation High density ion source
US4568509A (en) * 1980-10-10 1986-02-04 Cvijanovich George B Ion beam device
US4440714A (en) * 1981-01-29 1984-04-03 The United States Of America As Represented By The United States Department Of Energy Inertial confinement fusion method producing line source radiation fluence
US5135704A (en) * 1990-03-02 1992-08-04 Science Research Laboratory, Inc. Radiation source utilizing a unique accelerator and apparatus for the use thereof
FR2666477A1 (fr) * 1990-08-31 1992-03-06 Sodern Tube neutronique a flux eleve.
EP0473233A1 (fr) * 1990-08-31 1992-03-04 Societe Anonyme D'etudes Et Realisations Nucleaires S.O.D.E.R.N. Tube neutronique à flux élevé
US5215703A (en) * 1990-08-31 1993-06-01 U.S. Philips Corporation High-flux neutron generator tube
US20030223528A1 (en) * 1995-06-16 2003-12-04 George Miley Electrostatic accelerated-recirculating-ion fusion neutron/proton source
WO1999024990A3 (en) * 1997-11-12 1999-09-23 George H Miley Inertial electrostatic confinement (iec) fusion device with gate-valve pulsing
US7362842B2 (en) * 2001-03-16 2008-04-22 Regents Of The University Of California Cylindrical neutron generator
US7139349B2 (en) * 2001-03-16 2006-11-21 The Regents Of The University Of California Spherical neutron generator
US20050220244A1 (en) * 2001-03-16 2005-10-06 The Regents Of The University Of California Cylindrical neutron generator
US6907097B2 (en) * 2001-03-16 2005-06-14 The Regents Of The University Of California Cylindrical neutron generator
US8090071B2 (en) * 2001-08-08 2012-01-03 James Robert DeLuze Apparatus for hot fusion of fusion-reactive gases
US20040146133A1 (en) * 2002-01-23 2004-07-29 Ka-Ngo Leung Ultra-short ion and neutron pulse production
US6985553B2 (en) * 2002-01-23 2006-01-10 The Regents Of The University Of California Ultra-short ion and neutron pulse production
WO2003091699A3 (en) * 2002-01-28 2005-04-21 Starfire Ind Man Inc Gas-target neutron generation and applications
US6922455B2 (en) 2002-01-28 2005-07-26 Starfire Industries Management, Inc. Gas-target neutron generation and applications
US20030152186A1 (en) * 2002-01-28 2003-08-14 Jurczyk Brian E. Gas-target neutron generation and applications
DE10212825C1 (de) * 2002-03-22 2003-07-17 Astrium Gmbh Entladungsgrid für eine elektrische Neutronenquelle
US20040022341A1 (en) * 2002-04-08 2004-02-05 Ka-Ngo Leung Compact neutron generator
US6870894B2 (en) * 2002-04-08 2005-03-22 The Regents Of The University Of California Compact neutron generator
US6975072B2 (en) 2002-05-22 2005-12-13 The Regents Of The University Of California Ion source with external RF antenna
US20030218430A1 (en) * 2002-05-22 2003-11-27 Ka-Ngo Leung Ion source with external RF antenna
US7176469B2 (en) 2002-05-22 2007-02-13 The Regents Of The University Of California Negative ion source with external RF antenna
US20040104683A1 (en) * 2002-05-22 2004-06-03 Ka-Ngo Leung Negative ion source with external RF antenna
US20090262881A1 (en) * 2008-04-22 2009-10-22 Ka-Ngo Leung Cylindrical Neutron Generator
US7639770B2 (en) * 2008-04-22 2009-12-29 The Regents Of The University Of California Cylindrical neutron generator
US20220270775A1 (en) * 2008-05-02 2022-08-25 Shine Technologies, Llc Device and method for producing medical isotopes
US20120213319A1 (en) * 2009-08-14 2012-08-23 The Regents Of The University Of California Fast Pulsed Neutron Generator
US20120330084A1 (en) * 2011-06-27 2012-12-27 Richard Harris Pantell Neutron Source for Neutron Capture Therapy
CN109769337A (zh) * 2019-03-08 2019-05-17 北京中百源国际科技创新研究有限公司 一种激光离子加速器
US12412676B2 (en) * 2022-04-15 2025-09-09 Shine Technologies, Llc Device and method for producing medical isotopes

Also Published As

Publication number Publication date
CH484585A (fr) 1970-01-15
DE1764117B1 (de) 1970-10-22
NL6805002A (enrdf_load_stackoverflow) 1968-10-11
CH482266A (de) 1969-11-30
FR1604552A (enrdf_load_stackoverflow) 1971-12-06
GB1228814A (enrdf_load_stackoverflow) 1971-04-21

Similar Documents

Publication Publication Date Title
US3609369A (en) Neutron generator with radiation acceleration
US6909764B2 (en) Method and apparatus for high-energy generation and for inducing nuclear reactions
US5135704A (en) Radiation source utilizing a unique accelerator and apparatus for the use thereof
US20110176648A1 (en) Portable low energy neutron source for high sensitivity material characterization
Alfassi et al. Elemental analysis by particle accelerators
US20090095895A1 (en) Apparatus and process for generating a neutron beam
US2816243A (en) Negative ion source
US5745536A (en) Secondary electron ion source neutron generator
US20130129027A1 (en) High Flux Neutron Source
US4210813A (en) Ionizing radiation generator
KR20110038705A (ko) 중성입자 생성기
US4661710A (en) Negative ion source
JP3867972B2 (ja) 慣性静電閉じ込め核融合装置
Anishchenko et al. Cumulation of high-current electron beams: Theory and experiment
GB853916A (en) Method and apparatus for trapping ions in a magnetic field
US8971473B2 (en) Plasma driven neutron/gamma generator
JP2010251275A (ja) イオンの集団加速装置とその応用
SU528834A1 (ru) Импульсна нейтронна трубка
US3311771A (en) Neutron generators
US3338789A (en) Fusion generator of high intensity, pulsed neutrons
RU228879U1 (ru) Вакуумируемый компактный DD-генератор быстрых нейтронов
US2967943A (en) Gaseous discharge device
Bolduc et al. Magnetic focusing of a relativistic electron beam: experiment
Al-Aryachiyah et al. Literature Study of Particle Accelerator Development and Its Applications In Material Physics Research
US2906903A (en) Low voltage 14 mev. neutron source