US3601945A - Structural units, suitable for use in reinforcing concrete - Google Patents
Structural units, suitable for use in reinforcing concrete Download PDFInfo
- Publication number
- US3601945A US3601945A US798747A US3601945DA US3601945A US 3601945 A US3601945 A US 3601945A US 798747 A US798747 A US 798747A US 3601945D A US3601945D A US 3601945DA US 3601945 A US3601945 A US 3601945A
- Authority
- US
- United States
- Prior art keywords
- pockets
- concrete
- tunnel
- crests
- panel unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004567 concrete Substances 0.000 title claims description 70
- 230000003014 reinforcing effect Effects 0.000 title description 3
- 238000009415 formwork Methods 0.000 claims description 38
- 238000010276 construction Methods 0.000 claims description 11
- 230000002787 reinforcement Effects 0.000 claims description 8
- 230000000994 depressogenic effect Effects 0.000 claims description 6
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 19
- 239000011435 rock Substances 0.000 description 24
- 238000007789 sealing Methods 0.000 description 12
- 238000009412 basement excavation Methods 0.000 description 9
- 238000005422 blasting Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000010426 asphalt Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 239000011378 shotcrete Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 101100156207 African swine fever virus (isolate Warthog/Namibia/Wart80/1980) War-090 gene Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/16—Load-carrying floor structures wholly or partly cast or similarly formed in situ
- E04B5/32—Floor structures wholly cast in situ with or without form units or reinforcements
- E04B5/36—Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
- E04B5/38—Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element
- E04B5/40—Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element with metal form-slabs
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C11/00—Details of pavings
- E01C11/16—Reinforcements
- E01C11/165—Reinforcements particularly for bituminous or rubber- or plastic-bound pavings
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C3/00—Foundations for pavings
- E01C3/006—Foundations for pavings made of prefabricated single units
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F13/00—Coverings or linings, e.g. for walls or ceilings
- E04F13/02—Coverings or linings, e.g. for walls or ceilings of plastic materials hardening after applying, e.g. plaster
- E04F13/04—Bases for plaster
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/04—Lining with building materials
- E21D11/10—Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
- E21D11/107—Reinforcing elements therefor; Holders for the reinforcing elements
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/14—Lining predominantly with metal
- E21D11/15—Plate linings; Laggings, i.e. linings designed for holding back formation material or for transmitting the load to main supporting members
- E21D11/152—Laggings made of grids or nettings
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/14—Lining predominantly with metal
- E21D11/18—Arch members ; Network made of arch members ; Ring elements; Polygon elements; Polygon elements inside arches
Definitions
- PATENTEDAUB31 1971 36019215- mm 02 0F 1
- JEAN P- Btnu cp ArroxueYi PATENTH M1831
- SHEET 03 HF 14 lnyenlorx Jaw P BERNOLO Bu z g -t
- An object of this invention is to provide a structural unit which is readily mated with similar units.
- a panellike structural unit particularly for use as permanent formwork and reinforcement in concrete constructions, said unit being formed with corrugations, at least one crest of which is depressed at intervals to form a row of pockets for receiving a connecting element extending longitudinally of the corrugations, whereby overlapping units are connectable, the pockets each decreasing in width, considered longitudinally of the corrugations, with increase in depth of the pocket.
- the units mate readily both when the units are flat, and when they are deformed to construct an arch during tunnel construction.
- the pockets are arched to reduce their width, for example being of U- or V-form cross section.
- the edges defining the pockets merge substantially along a straight line with the troughs adjacent the crest or crests in which the pockets are formed. This simplifies manufacture of the unit because it is possible to use a tool simpler than that used for conventional units. At the same time, flexural strength is increased, thus enabling the units to be installed with greater unsupported lengths.
- a particularly favorable cross-sectional form for the corrugations is obtained where the sides of the troughs include between them an angle of about 90, because in this way the corrugations lie tightly adjacent one another in the overlap zone and offer particularly high resistance to pressure and tension.
- the panellike structural unit according to the invention may be used to line tunnels and galleries.
- the unit acts as permanent formwork which is backfilled with concrete and optionally covered with a sealing compound on that side facing the tunnel.
- tunnels and galleries have to be lined under circumstances differing from those encountered in normal concrete construction, such as the ground pressure whose effeet is largely governed by the nature of the surrounding rock, and for which appropriate allowance has to be made.
- This aspect of the invention is based on the recognition that ideal progress on tunnel driving can only be made when the concrete vault is installed simultaneously with the advance in the tunnel profile.
- a subterranean cavity or hollow can remain open for a certain period of time without any need for support, ie without any signs of detectable ground pressure occurring and putting strain upon any lining installed.
- the relaxation zones around the cavity are gradually formed and over a period of time are propagated further and further into the rock because the pressure takes some time to develop because as a rule the mountain only undergoes plastic deformation some time after relaxation has been absorbed by the lining.
- this object is achieved by installing erection arches whose external outline corresponds substantially to the internal cross section of the lined tunnel or gallery to be constructed, right up to the working face after blasting and removal of the debris, sealing off the cavity to be concreted at its front end by frontal formwork, and placing the panellike units provided by this invention on the erection arches in alignment with the previously installed units, and backfilling the space between the units and the tunnel with concrete, which is preferably vibrated, up to the tunnel apex.
- erection arches whose external outline corresponds substantially to the internal cross section of the lined tunnel or gallery to be constructed, right up to the working face after blasting and removal of the debris, sealing off the cavity to be concreted at its front end by frontal formwork, and placing the panellike units provided by this invention on the erection arches in alignment with the previously installed units, and backfilling the space between the units and the tunnel with concrete, which is preferably vibrated, up to the tunnel apex.
- ground pressure actually begins to exert its effect when the freshly installed concrete lining is completed and has acquired the requisite bearing strength.
- the minimum period which can be expected in any rock and within which the lining has to be installed, is beaten without any difficulty during installation of the lining.
- the process according to the invention thus enables a concrete supporting structure to be erected in a single operation on the construction site itself, the ground pressures occuring being absorbed by a homogeneous structure of rockconcrete formwork and reinforcement of the erection arches without affecting progress in any way.
- the panellike structural units acting as formwork and reinforcement may be designed in such a way as to produce a firm bond between the concrete and a sealing compound sprayed on to that surface facing the tunnel.
- a temporary, movable sheetlike support consisting of elongated, platelike lances two to three times longer than the interval between the arches, is with advantage used to make safe the roadway lying exposed between the workface and the lining.
- the lances are provided along their longitudinal sides with interengaging guides which permit bending around a. longitudinal axis and limited deviation from the longitudinal direction between two adjacent lances.
- a particularly favorable and practical design for the mutually guiding lances is obtained by arranging on one longitudinal edge of the lance a guide channel open at both ends which is accessible from the edge through a longitudinal slot, and on the other longitudinal edge a slide member of T-form cross section which engages with clearance in the adjacent guide channel. Toothlike ribs with which a device for moving the lance forwards may be releasably engaged, may be provided on that side of the lance facing the tunnel. To prevent the lances, part of which is permanently situated in the concrete, from bonding with the concrete, they are preferably made fromsteel, being ground smooth on the outside. The lances are also fitted with a point which tapers conically at that end facing the tunnel.
- the device for moving the lances forwards may consist of a pneumatic cylinder which, on the extendable rod of the 1 piston, has a claw for engaging in the toothlike ribs on the lances, and whose cylinder is arranged to be supported by the side face of an erection arch.
- Panellike units may also be used for performing another function frequently required in building construction, namely to make safe exposed ground and rock. It has been found that this function can be performed in a unique advantageous manner by arranging the permanent formwork in front of and at a distance from the area to made safe and filling the space behind the formwork with concrete introduced through the formwork. It is particularly easy with an arrangement such as this to introduce the concrete by spraying it through at a right angle to the structural unit.
- the permanent formwork is secured to driven vertical pilot beams, backfilled and extended downwards in sections as excavation continues.
- the spraythrough process referred to above may be applied, or alternatively a cement mortar containing a waterglass additive is initially sprayed on to that surface of the permanent formwork facing the tunnel, after which the space left between formwork and tunnel wall is filled with concrete.
- the panellike structural units of the aforementioned type have excellent strength properties and are easy to store, transport and handle.
- the aforementioned structural units may also be used for the construction of carriageways, for example runways at airports, roads for tank traffic, and also for soil consolidation.
- the process which the invention provides to this end comprises immersing the units in cold asphalt, laying them as sheetform reinforcement and covering them with the material forming the surface of the carriageway.
- One embodiment of the process comprises covering the units with a mixed bitumen coating forming the surface of the carriageway.
- the units are covered with grit and stones which are then sprayed with bitumen and rolled, after which the surface is prepared by gritting and rolling.
- FIG. 1 is a front elevation of two structural units overlapping at the point at which they are joined.
- FIG. 2 is a partial section through the units shown in FIG. I on the line I-I.
- FIG. 3 is a front elevation of a modified embodiment of the structural unit. I
- FIG. 4 is a section through FIG. 3 on the line IlI-III.
- FIG. 5 is a front elevation corresponding to FIG. I of a structural unit installed in an arched position, the arching running parallel to the rows of pockets.
- FIG. 6 is a section through the unit shown in FIG. I which is arched about an axis extending transversely of the rows of pockets.
- FIG. 7 is a partial section through a completed tunnel or gallery lining.
- FIG. 8 is a longitudinal section through a joint between two overlapping structural units.
- FIG. 9 is a plan view of the joint shown in FIG. 8.
- FIG. 10 is a longitudinal section through a tunnel in the course of construction.
- FIG. II shows a tunnel lining partly in section and partly as a front elevation.
- FIG. 12 is a section through FIG. 11 on the line XII-XII.
- FIG. 13 is a section corresponding to FIG. 12 through a frontal formwork closing a concreting section.
- FIG. 14 shows the arrangement illustrated in FIG. 13 after the formwork has been backfilled with gravel.
- FIG. 15 illustrates another possibility of producing frontal formwork.
- FIG. 16 is a partial elevation of an erection arch of the kind used to line a tunnel.
- FIG. 17 is a longitudinal section through a tunnel in the course of being lined, lances being used to support the swelling rock.
- FIG. 18 illustrates a tunnel lining of the kind shown in FIG. 17 partly in section and partly in side elevation.
- FIG. 19 is a section through FIG. 18 on the line XVIII XVIII.
- FIG. 20 is a sectional view corresponding to FIG. 19 of another embodiment for frontal formwork in cases where lances are used.
- FIG. 21 is a section through adjacent lances.
- FIG. 22 is a plan view of a lance.
- FIG. 23 is a side elevation of a lance.
- FIG. 24 is a vertical partial section through a tunnel whose vertical wall consisting of soil has been made safe by the process according to the invention.
- FIG. 25 is a plan view of FIG. 24.
- FIG. 26 is a partial elevation of a structural unit provided with an injection socket.
- FIG. 27 is a section through FIG. 26 on the line XXVI XXVI.
- FIG. 28 is a vertical partial section through a carriageway constructed in accordance with the process of the invention, the section lying parallel to the longitudinal direction of the carriageway. 1
- FIG. 29 is a vertical section corresponding to FIG. 28 through a modified embodiment of the invention.
- FIG. 1 is a front elevation of two partly overlapping panellike structural units 1, 2 in which curved pockets are arranged in rows, radiating alternately from a central plane E, E.
- the upwardly curved pockets in the unit towards the bottom of the drawing are denoted by the reference 2a, whilst the downwardly directed pockets are denoted by the reference 2b.
- the upper unit is provided with upwardly directed pockets 2c and downwardly directed pockets 2d.
- the pockets 2a and 2b and the pockets 2c and 2d lying one behind the other form full-length openings A which even when two units are placed one on top of the other, as shown in the Figure, leave free an opening A for accommodating a rodlike connecting element.
- the pockets 2a and 2b and the pockets 2c and 2d each begin fiat on the center plane E and E and, as shown in FIG. 2, form troughs which are concave from the outsides and which are most pronounced at the tops of the pockets.
- a full-length corrugation 3, 3a Arranged between each of the rows of pockets 2a, 2b and 2c, 2d is a full-length corrugation 3, 3a which forms a recess directed to only one side of the unit, in the drawing downwards from the center plane E, E, and whose apex is substantially level with that portion of the pockets 2b and 2d which extends furthest downwards.
- the walls of the corrugations forming the arms of the V include an angle of about between them.
- the sidewalls of the corrugation each merge smoothly with the (in the drawing) upwardly directed pockets 2a, 2c. Since the structural units are identical in shape, the corrugations 3, 3a also interengage exactly in the overlap zone.
- the design and relative positions of the pockets are shown in the sectional diagram in FIG. 2.
- the section is taken through those portions of the pockets 2a, 2b and 2c, 2d extending furthest outwards, i.e. through the region in which the concave arching of the pockets is at its most pronounced.
- the pockets which lie one behind the other form openings which lie one behind the other substantially in the center plane of the unit and each of which taper inwards funnellike from the side edge of the pocket.
- those edges 4 of the pockets which define its end faces include with the planes E, E an angle 5 of less than 90.
- the pockets are wedgelike in shape as seen from the side.
- the gaps between two successive pockets are similarly wedge-shaped. This makes it easier to fit the pockets into one another in the overlap zone, while the structural units lying one above the other assume relative to one another exactly the position shown in FIG. 2 in which a connecting element can be inserted into the openings A lying one behind the other.
- the opening A also remains intact for the insertion of a thinner connecting element of somewhat smaller internal cross section in cases where structural units arched around an axis extending transversely of the corrugations are overlapped.
- the downwardly directed pockets 2f project beyond the apex of the corrugations 3. Those portions projecting furthest outwards, both of the upwardly directed pockets 2e and of the downwardly directed pockets 2f, form flat V-shaped flutes 6 which, compared with FIG. d, again produce a substantially funnellike cross-sectional form in the longitudinal openings A surrounded by the pockets.
- the panellike structural units shown in FIGS. 1 to 4 can be 7 installed not only flat but also, as shown in FIGS. 5 and 6,
- a structural unit I may be arched around an axis parallel to the a direction of the rows of pockets, as shown in FIG. 5, or around an axis extending transversely of the rows of pockets, as shown in FIG. 6.
- the corrugations provided between the rows of pockets allow bending in both the aforementioned directions.
- FIG. 7 is a section through a tunnel lined with the structural unit according to the invention.
- units are initially joined together in an arrangement substantially corresponding to the required internal cross section of the tunnel.
- the generally irregular gap left between the rock and the unit I is filled with pneumatically applied or lean-mixed concrete 7.
- the concrete 7 also fills the spaces behind the pockets 2b, projecting towards the center of the tunnel, between the corrugations 3.
- that surface of the lining facing the tunnel is coated with a sealing material 8 applied by spraying or any other suitable method.
- the material h penetrates into those spaces which, on the tunnel side, extend up to the backs of the pockets 2a.
- FIG. 8 is a section through a joint between two overlapping structural units.
- the pockets 2a, 2b and 2c, 2d lie on one another and fit in one another.
- the two units are held precisely in their positions relative to one another.
- the two elements are prevented from being separated from one another by means of a mandrel or rodlike connecting element 9 which acts as a lock and which at one end is bent round substantially at a right angle.
- a mandrel or rodlike connecting element 9 which acts as a lock and which at one end is bent round substantially at a right angle.
- two pockets 2b and 2d have been hollowed out in the embodiment shown in the proximity of the joint between the two structural units. In this way, free zones are formed at the points denoted by the reference I0 from which the connecting element 9 can be introduced.
- FIG. 9 is a plan view ofajoint.
- the concave depressions or troughs which, as mentioned earlier on, are arranged at and are at their most pronounced at the tops of the pockets 2a-f, have the advantage that the surface facing the tunnel is uneven and promotes particularly firm adhesion of the sealing material.
- bridges have to be formed between the areas in which the material 8 penetrates into the gaps between the outwardly directed pockets.
- the so-called bridge is thinnest at its center.
- the tunnel or gallery in the course of construction is denoted by the reference 11.
- the front end of the ad vance known as the workface, from which another round is completed with the next drilling and blasting operation, is shown at 12.
- Erection arches 13 are erected at suitable intervals apart in the tunnel, extending into the immediate proximi ty of the workface 12.
- the external outline 13 of the erection arches 13 corresponds substantially to the internal cross section of the completed tunnel.
- the front erection arch 14 whose outer profile substantially corresponds to the excavation line of the tunnel, is provided with frontal formwork 24 which will be described in detail further on.
- the panellike structural units 1 are placed on the outsides of the arches.
- the units ll form a permanent formwork which at the same time acts as reinforcement for the completed concrete lining.
- the panellike units I are again provided with pockets directed to both sides, radiating from the center plane of the unit and accordingly may be overlapped with and fastened to one another both along their longitudinal sides and along their narrow sides.
- the rear ends of the units 1, as seen in the direction of progress, are arranged on the front ends of the units of the already completed concreting 7 in the zone 21 so that a firm bond is obtained between the successively prepared lining sections.
- a substantially dovetaillike recess 24a is formed in the end face of the finished concreting 7, whose function is also to provide a firm link to the following new concreting section.
- the lining extending into the immediate proximity of the workface forms a strong, reliable support for the tunnel, even when the concrete is still liquid, which is already installed before the ground pressure begins to exert its influence. Installation does not interfere with the boring operations at the workface 12.
- the arrangement consisting of erection arches, structural units and concrete backfilling is so strong that it is able to withstand explosive blasts.
- FIG. 10 diagrammatically illustrates a lining produced by the process according to the invention.
- substantially the following procedure is adopted in practrce:
- a quick-setting binder When driving the first meter of a tunnel, a quick-setting binder may be added to the concrete so that drilling and blasting may be continued straightaway. As soon as an adequate safety zone has been established inside the mountain, addition of the quick-setting binder may be stopped.
- the other erection arches are set at intervals of l to 2 meters apart, depending upon the ground pressure. Larger intervals between the arches are not recommended for economic reasons, because otherwise panellike structural units of considerable thickness would have to be used.
- erection arches for example may be used. In this way, it is possible to obtain a permanently supported tunnel section 20 meters long in which the lining withstands any vibration during blasting until the concrete jacket has set. After a tunnel section of this kind has been completed, the erection arches are dismantled at the rear and reinstalled at the front.
- the lining may remain up to -12 meters behind the workface and may be installed by a second working party.
- the erection arches must be installed up to a point immediately behind the workface and must be keyed in such a way that lateral displacement under the effect of the explosives is impossible.
- the erection arches which in the embodiment shown are of l-profile, are of such dimensions that they are able to absorb the stresses occurring without distortion, and can be used and reused.
- the sealing compound is normally applied by spraying.
- the two erection arches are erected true to profile and anchored. They are erected as described above. Installation of the panellike structural units and introduction of the concrete are also carried out as described above.
- the interval between the arches may amount to between 0.6 and 2.0 meters.
- a quick-setting binder should be added to the concrete in cases where the. concreting in sections is repeated at time intervals of less than 10 hours.
- the rear arch is removed and reinstalled in front of the other arch.
- the panellike structural units are joined to those already concreted in after they have been placed on the outer flange of the previous arch. More concrete is then introduced.
- the sealing compound should be applied at some distance from the workface, although it is also possible to apply the compound directly after the lean-mixed concrete has been introduced.
- ground pressure allows, between 6 and 8 erection arches may be used and the operation carried out substantially on the lines described earlier on.
- a layer of gunite may be applied either over the entire or only over the endangered part of the workfac'e before the erection arches are set up.
- roof bolts may also be fitted for safety before the erection arches are set up.
- the lining according to the invention is shown in the righthand part of FIG. 11. the left-hand part of which is a section through the lining after concreting.
- the panellike structural units 1 lie on the outer flange 13a of the erection arch 13 before concreting.
- the pockets 2a, 2b arranged in rows extend transversely of the tunnel axis in the embodiment shown.
- the space between the rock and the structural units 1 is filled with concrete 7.
- the concrete penetrates into the gaps behind the pockets directed towards the tunnel.
- a sealing layer 8 is applied, preferably by spraying, to the surface facing the tunnel, the sealing compound bonds with the concrete by virtue of the fact that it penetrates from the tunnel side into the spaces behind the pockets directed towards the rock.
- FIG. 12 is a section through FIG. 11 on the line XIIXII showing how the freshly installed unit 1' is joined to the unit 1 concreted in during the previous working stage. Concreting and hence tunnel driving progresses from right to left in FIG. 12. The units are laid one on top of the other in zone 21 with their adjoining edges so that the pockets directed to both sides from the center plane of the elements engage in one another. In doing so, they leave free an opening in which a connecting rod 9 holding the adjacent elements together is inserted. The front end of the last unit 1 to be concreted in must project beyond the end of the concrete 7 in order to be able to make the connection.
- FIG. 13 Another structural unit 1' is joined to the last element 1 to be concreted in the manner described above, except that the overlap of the front unit 1' over the rear unit 1 is made so large that the front unit with the overlapping portion 1511 can be bent up to the rock adjoining the tunnel excavation line.
- a holding wire 15b may be fastened between the portion 15a of the front unit 1' and the unit 1 adjoining it in a direction opposite to that in which the tunnel is being driven.
- FIG. 14 illustrates an embodiment of the invention in which the units 1 and 1 are backfilled with round gravel 23, grit, pervious or aerated concrete, rather than with concrete.
- This type of lining is used for those parts of the tunnel at which water has to be removed.
- the structural units are installed in the same way as described above.
- An adequately thick watertight layer 8, for example of gunite, is applied on the tunnel side. Every 5 to 8 meters an expansion joint is provided which is preferably sealed with flexible jointing tape.
- the water issuing from the rock flows through cavities present in the gravel 23 and the like to'the bottom of the tunnel where suitable outletsare provided to prevent accumulation and hence the build up of pressure. If the water is to be displaced behind the structural units, cement may be injected into the back filling 23.
- FIG. 15 Another method of sealing the cavity to be concreted at its front end, is shown in FIG. 15.
- the sealing means is in the form of an erection arch which forms a frontal formwork.
- the frontal formwork consists of a boxlike projection attached to that side facing the cavity to be concreted which extends over the entire length of the arch.
- the box forming the frontal formwork consists of a wedgelike projection 24 which extends out from the outer flange 13a of the arch l3 and which is closed by a web 25 parallel to the inner flange 13b of the erection arch.
- the web 25 is at a distance from the flange 13b wide enough to allow insertion of a structural unit 1.
- a cavity 26 is formed, accommodating the front end of the last element to be installed. This end remains free during concreting as shown in FIG. 15.
- the wedgelike projection 24 of the frontal formwork leaves a corresponding recess in the end face of the completed concrete section into which the concrete of the next concreting section penetrates so that a substantially dovetaillike union is established between the concrete initially introduced and the concrete subsequently introduced.
- FIG. 16 illustrates a joint between two arch sections forming one erection arch.
- I-Iinged flaps 28a and 28b are secured to the inner flanges 13b of the arches.
- a bolt 27 which forms the hinge spindle is pushed through the coincident openings in the hinged flaps 18a and 18b and suitably secured in position.
- Transverse flanges 29a and 29b are secured to the adjoining end faces of the arch sections between the outer flange 13a and the inner flange 13b. These transverse flanges have openings through which a set bolt 30 extends. In the shank of the bolt there is a transverse opening whose function is to accommodate a wedge 31. By introducing the bolt 30 and knocking in the wedge 31, a firm connection is established between the arch sections.
- the front erection arches 13 are installed as guide arches for lances 32 moved hydraulically forwards which strengthen the walls of the tunnel. This means that the outer flange 13a is located at such a distance from the rock surrounding the excavation line that the lances 32 lie tight against the rock.
- the web depth of the guide arches corresponds to the thickness of the lining to be installed.
- the lances 32 are introduced. As will explained further on, the lances form a jacket which surrounds the tunnel. They are moved forwards by a pneumatic cylinder 33 which, through its extendable piston rod 34, engages the lance to be pushed forward and at its opposite end is supported by a guide arch.
- the pump and the supply vessel for the pressure liquid for feeding the cylinder 33 is shown at 35.
- FIG. 18 is an illustration corresponding substantially to FIG. 1 1.
- the panellike units 1 are placed on the inner flange 13b while the lances 32 are supported by the outer flanges 13a.
- the cavity between the flanges and the lining units is filled with concrete 7 in the manner described above. Accordingly, the rear ends of the lances are situated in the concrete.
- FIGS. 17 and 18 The arrangement shown in FIGS. 17 and 18 is again shown in FIG. 19 in a section on the line XVIII-XVIII of FIG. 18.
- the cavity to be concreted is in this case closed by blocks or boards 13c adapted to the shape of the arches, being arranged between the lances 32 and the units 1.
- the lance 32 are in the form of panellike of platelike hollow bodies which are two to three times longer than the intervals between the arches l3. Situated on each narrow side there is a guide 37 open at both ends which is accessible from outside through a longitudinal slot 36 and in which a slide 38 of substantially T-form cross section attached to the adjacent lance engages.
- the guides 37 and the slots 36 are made so large by comparison with the slides that the lances 32 can be adapted to the tunnel profile (cf. FIG. 18). A certain amount of lateral movement is guaranteed at the same time.
- the lances 32 are provided on that side facing the tunnel with toothlike ribs 39 with which, as shown in FIG. 20, the hydraulic cylinder 33 engages, being provided with corresponding claws 41 at the end of its extendable piston rod 34.
- the cylinder 33 is supported by one of the arches 13, preferably that arch provided with frontal formwork adjoining the last section to be concreted at its front end.
- the cylinder 33 which as shown in FIG. 17 is provided with a pressure-medium pump, is always attached to that lance 32 which is to be moved forward. By virtue of the fact that the lances are individually moved forward, there is no need for an expensive hydraulic installation. Since the lances are never joined withthe concrete, they are ground smooth on the outside.
- Each lance 32 is provided with a point 40 which is concave towards the tunnel side.
- the particular lining section may be concreted after the point of the lance has been moved forward by approximately 1 meter.
- the panellike structural units are placed on the inner flange 13b of the arches and are assembled from the ground towards the ridge. At the same time, the concrete is introduced between the units and the lances and compacted by vibration.
- the frontal formwork ensures clean processing of the concrete.
- a socket is preferably arranged on the arch provided with frontal formwork, to which a hose delivering the concrete under pressure may be attached.
- formwork for the foundations has to be set up at a distance from the system strengthening the walls of the trench, consisting of vertical pilot beams'and arris timbers, after the trench has been excavated.
- the trench must be considerably larger than the ground plan of the completed building.
- FIG. 24 the ground around the edge of the trench is denoted by the reference B.
- Double-T vertical pilot beams are driven in around the edge of the trench at suitable intervals which may be considerably larger than in cases where arris timbers are used.
- panellike structural units 1 are secured to the inner flanges of the pilot beams 42.
- clamps 45 are used for fastening. It is also possible, however, to arrange the platelike units behind that flange of the pilot beams 42 which faces the trench.
- the panellike structural units comprise pockets 2a and 2b arranged one behind the other in straight rows at certain intervals.
- a corrugation 3 is arranged between two parallel rows of pockets 2a and 2b. In the embodiment shown in FIGS. 24 and 25, the rows of pockets and hence the corrugations too, extend horizontally.
- the pockets form an internal cross section which tapers inwards from both end faces. This cross-sectional form is obtained by arching the pockets in their transverse direction. At the same time, openings A elongated between two adjacent pockets are formed as seen from the front, cf. FIG. 26.
- the panellike structural units 1 can be laid one on top of the other with their edges, as shown in FIG. 24 at 21. At the same time, openings into which rodlike connecting elements 8 can be inserted are left free in the longitudinal direction of the rows of pockets.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Lining And Supports For Tunnels (AREA)
Abstract
A corrugated, load-bearing, panellike structural unit which is especially adapted to line tunnels, to strengthen trenches, to form carriageways, etc., is disclosed herein. Additionally, improved methods and apparatus for building tunnels, trenches, roadways, etc., with the aforementioned corrugated structural units are disclosed herein.
Description
United States Paten lnventor Jean 11'. Bernold Walenstadt, Switzerland Appl. No. 798,747 Filed Feb. 12, 1969 Patented Aug. 3 1, 197 1 Assignee Hans Walter Pfeifier a part interest STRUCTURAL UNITS, SUITABLE F OR USE KN REINFORCING CONCRETE 8 Claims, 29 Drawing Figs.
U.S. C1 52/673, 61/45 Int. Cl 1504c 2/42 Fleld of Search 52/670,
[56] References Cited UNITED STATES PATENTS 875,155 12/1907 Clark 52/623 X 1,372,741 3/1921 Dickinson. 52/671 1,621,664 3/1927 Gersman 52/671 1,704,608 3/1929 Humphris 52/671 FORElGN PATENTS 257,901 10/1967 Austria 52/672 Primary Examiner-Dennis L. Taylor Attorney-Mandeville and Schweitzer ABSTRACT: A corrugated, load-bearing, panellike structural unit which is especially adapted to line tunnels, to strengthen trenches, to form carriageways, etc., is disclosed herein. Additionally, improved methods and apparatus for building tun- I nels, trenches, roadways, etc., with the aforementioned corrugated structural units are disclosed herein.
PATENTEU AUBB] I971 sum 01 OF M love/liar: JEAN P. BER/V040 Anne/var; 5 L
PATENTEDAUB31 1971 36019215- mm 02 0F 1 In wen/or JEAN P- Btnu cp ArroxueYi PATENTH] M1831 I971 SHEET 03 HF 14 lnyenlorx Jaw P BERNOLO Bu z g -t,
Amm'ers PATENTED Ausal :sm 3 m 945 SHEET Us BF 14 Fig. 10
lnven/ar: 16AM P. Btknbup AnvmsYS PATENIED M1831 191: 13 01 945 war 090?]4 29b J30 28h fig. [6
lawn/or.-
j P Bemow BY: mgmqai Anon/er;
PATENTED M831 1971 3 601 945 SHEET 10 CF 14 In wen/or. Jen: R Bmumo Ek: whmq AMMEYS PATENTED M831 l9?! sum 1 0F 1 11 van [0r 36w F Begum 1 ",5 Ammnevs STRUCTURAL UNITS, SUITABLE FOR USE IN REINFORCING CONCRETE This invention relates to a panellike structural unit which is suitable for use as permanent formwork and as a means of reinforcement in concrete construction, for example, for lining tunnels, for making exposed ground safe and for building carriageways.
An object of this invention is to provide a structural unit which is readily mated with similar units.
According to the present invention, there is provided a panellike structural unit particularly for use as permanent formwork and reinforcement in concrete constructions, said unit being formed with corrugations, at least one crest of which is depressed at intervals to form a row of pockets for receiving a connecting element extending longitudinally of the corrugations, whereby overlapping units are connectable, the pockets each decreasing in width, considered longitudinally of the corrugations, with increase in depth of the pocket.
When the edges of two units are overlapped, the pockets (formed both by the depressed portions and the potions of the crest intermediate the depressed portions) of the units mate together.
By virtue of the wedge form given to the pockets, the units mate readily both when the units are flat, and when they are deformed to construct an arch during tunnel construction.
lnterengagement of the units in the overlap zone is additionally facilitated by the fact that the pockets are arched to reduce their width, for example being of U- or V-form cross section.
According to another advantageous aspect of the invention, the edges defining the pockets merge substantially along a straight line with the troughs adjacent the crest or crests in which the pockets are formed. This simplifies manufacture of the unit because it is possible to use a tool simpler than that used for conventional units. At the same time, flexural strength is increased, thus enabling the units to be installed with greater unsupported lengths.
A particularly favorable cross-sectional form for the corrugations is obtained where the sides of the troughs include between them an angle of about 90, because in this way the corrugations lie tightly adjacent one another in the overlap zone and offer particularly high resistance to pressure and tension.
The panellike structural unit according to the invention may be used to line tunnels and galleries. in this case, the unit acts as permanent formwork which is backfilled with concrete and optionally covered with a sealing compound on that side facing the tunnel.
In concrete construction, it is common practice to use permanent formwork consisting essentially of a framework of supporting elements and rods, wire netting or full-length panels secured between them.
However, tunnels and galleries have to be lined under circumstances differing from those encountered in normal concrete construction, such as the ground pressure whose effeet is largely governed by the nature of the surrounding rock, and for which appropriate allowance has to be made.
This aspect of the invention is based on the recognition that ideal progress on tunnel driving can only be made when the concrete vault is installed simultaneously with the advance in the tunnel profile. In any mountain, except in quicksand where the water pressure is a critical factor, a subterranean cavity or hollow can remain open for a certain period of time without any need for support, ie without any signs of detectable ground pressure occurring and putting strain upon any lining installed. The relaxation zones around the cavity are gradually formed and over a period of time are propagated further and further into the rock because the pressure takes some time to develop because as a rule the mountain only undergoes plastic deformation some time after relaxation has been absorbed by the lining.
Accordingly, it is a further object of the invention to provide a process by means of which a concrete lining of the requisite thickness can be erected in this relatively short period of time before ground pressure is applied, in order thus to facilitate considerably faster and more economic tunnel driving. I
According to a feature of the invention, this object is achieved by installing erection arches whose external outline corresponds substantially to the internal cross section of the lined tunnel or gallery to be constructed, right up to the working face after blasting and removal of the debris, sealing off the cavity to be concreted at its front end by frontal formwork, and placing the panellike units provided by this invention on the erection arches in alignment with the previously installed units, and backfilling the space between the units and the tunnel with concrete, which is preferably vibrated, up to the tunnel apex. In this way, it is possible to produce a lining which is strong enough to withstand the ground pressure as soon as it begins to occur so that extremely fast: progress can be made. Experience has shown that ground pressure actually begins to exert its effect when the freshly installed concrete lining is completed and has acquired the requisite bearing strength. The minimum period which can be expected in any rock and within which the lining has to be installed, is beaten without any difficulty during installation of the lining.
By virtue of the process according to the invention, it is possible to produce a concrete lining adapted to the tunnel and which, having been vibrated, lies tight against the workface and prevents further disintegration of the rock through foreign influences such as air and water in particular. The lining which is load-bearing immediately it has been installed distributes the pressure of the weaker rock to stronger layers of rock and thus eliminates the danger zone directly behind the workface. At the same time, the units supported by the erection arcs and simultaneously acting as formwork and reinforcement, 'prevent the concrete jacket from cracking under the effect of blasting so that one disadvantage affecting making safe with pneumatically'applied concrete is eliminated.
The process according to the invention thus enables a concrete supporting structure to be erected in a single operation on the construction site itself, the ground pressures occuring being absorbed by a homogeneous structure of rockconcrete formwork and reinforcement of the erection arches without affecting progress in any way. In addition, the panellike structural units acting as formwork and reinforcement may be designed in such a way as to produce a firm bond between the concrete and a sealing compound sprayed on to that surface facing the tunnel.
In the event of tunneling in swelling ground, a temporary, movable sheetlike support, consisting of elongated, platelike lances two to three times longer than the interval between the arches, is with advantage used to make safe the roadway lying exposed between the workface and the lining. The lances are provided along their longitudinal sides with interengaging guides which permit bending around a. longitudinal axis and limited deviation from the longitudinal direction between two adjacent lances.
A particularly favorable and practical design for the mutually guiding lances is obtained by arranging on one longitudinal edge of the lance a guide channel open at both ends which is accessible from the edge through a longitudinal slot, and on the other longitudinal edge a slide member of T-form cross section which engages with clearance in the adjacent guide channel. Toothlike ribs with which a device for moving the lance forwards may be releasably engaged, may be provided on that side of the lance facing the tunnel. To prevent the lances, part of which is permanently situated in the concrete, from bonding with the concrete, they are preferably made fromsteel, being ground smooth on the outside. The lances are also fitted with a point which tapers conically at that end facing the tunnel.
The device for moving the lances forwards may consist of a pneumatic cylinder which, on the extendable rod of the 1 piston, has a claw for engaging in the toothlike ribs on the lances, and whose cylinder is arranged to be supported by the side face of an erection arch.
Panellike units may also be used for performing another function frequently required in building construction, namely to make safe exposed ground and rock. It has been found that this function can be performed in a unique advantageous manner by arranging the permanent formwork in front of and at a distance from the area to made safe and filling the space behind the formwork with concrete introduced through the formwork. It is particularly easy with an arrangement such as this to introduce the concrete by spraying it through at a right angle to the structural unit.
To strengthen a trench, the permanent formwork is secured to driven vertical pilot beams, backfilled and extended downwards in sections as excavation continues.
It is necessary to strengthen a tunnel surface and if it is intended to protect the formwork against corrosion, the spraythrough process referred to above may be applied, or alternatively a cement mortar containing a waterglass additive is initially sprayed on to that surface of the permanent formwork facing the tunnel, after which the space left between formwork and tunnel wall is filled with concrete.
The panellike structural units of the aforementioned type have excellent strength properties and are easy to store, transport and handle.
It has now been found that the aforementioned structural units may also be used for the construction of carriageways, for example runways at airports, roads for tank traffic, and also for soil consolidation. The process which the invention provides to this end comprises immersing the units in cold asphalt, laying them as sheetform reinforcement and covering them with the material forming the surface of the carriageway.
One embodiment of the process comprises covering the units with a mixed bitumen coating forming the surface of the carriageway. In' another embodiment of the invention, the units are covered with grit and stones which are then sprayed with bitumen and rolled, after which the surface is prepared by gritting and rolling.
The invention is described in detail by way of example only in the following with reference to the accompanying drawings, wherein:
'FIG'. 1 is a front elevation of two structural units overlapping at the point at which they are joined.
FIG. 2 is a partial section through the units shown in FIG. I on the line I-I.
FIG. 3 is a front elevation of a modified embodiment of the structural unit. I
FIG. 4 is a section through FIG. 3 on the line IlI-III.
FIG. 5 is a front elevation corresponding to FIG. I of a structural unit installed in an arched position, the arching running parallel to the rows of pockets.
FIG. 6 is a section through the unit shown in FIG. I which is arched about an axis extending transversely of the rows of pockets.
FIG. 7 is a partial section through a completed tunnel or gallery lining.
FIG. 8 is a longitudinal section through a joint between two overlapping structural units.
FIG. 9 is a plan view of the joint shown in FIG. 8.
FIG. 10 is a longitudinal section through a tunnel in the course of construction.
FIG. II shows a tunnel lining partly in section and partly as a front elevation.
FIG. 12 is a section through FIG. 11 on the line XII-XII.
FIG. 13 is a section corresponding to FIG. 12 through a frontal formwork closing a concreting section.
FIG. 14 shows the arrangement illustrated in FIG. 13 after the formwork has been backfilled with gravel.
FIG. 15 illustrates another possibility of producing frontal formwork.
FIG. 16 is a partial elevation of an erection arch of the kind used to line a tunnel.
FIG. 17 is a longitudinal section through a tunnel in the course of being lined, lances being used to support the swelling rock.
FIG. 18 illustrates a tunnel lining of the kind shown in FIG. 17 partly in section and partly in side elevation.
FIG. 19 is a section through FIG. 18 on the line XVIII XVIII.
FIG. 20 is a sectional view corresponding to FIG. 19 of another embodiment for frontal formwork in cases where lances are used.
FIG. 21 is a section through adjacent lances.
FIG. 22 is a plan view of a lance.
FIG. 23 is a side elevation of a lance.
FIG. 24 is a vertical partial section through a tunnel whose vertical wall consisting of soil has been made safe by the process according to the invention.
FIG. 25 is a plan view of FIG. 24.
FIG. 26 is a partial elevation of a structural unit provided with an injection socket.
FIG. 27 is a section through FIG. 26 on the line XXVI XXVI.
FIG. 28 is a vertical partial section through a carriageway constructed in accordance with the process of the invention, the section lying parallel to the longitudinal direction of the carriageway. 1
FIG. 29 is a vertical section corresponding to FIG. 28 through a modified embodiment of the invention.
FIG. 1 is a front elevation of two partly overlapping panellike structural units 1, 2 in which curved pockets are arranged in rows, radiating alternately from a central plane E, E. The upwardly curved pockets in the unit towards the bottom of the drawing are denoted by the reference 2a, whilst the downwardly directed pockets are denoted by the reference 2b. Similarly, the upper unit is provided with upwardly directed pockets 2c and downwardly directed pockets 2d. As shown in the Figure, the pockets 2a and 2b and the pockets 2c and 2d lying one behind the other form full-length openings A which even when two units are placed one on top of the other, as shown in the Figure, leave free an opening A for accommodating a rodlike connecting element. The pockets 2a and 2b and the pockets 2c and 2d each begin fiat on the center plane E and E and, as shown in FIG. 2, form troughs which are concave from the outsides and which are most pronounced at the tops of the pockets.
Arranged between each of the rows of pockets 2a, 2b and 2c, 2d is a full- length corrugation 3, 3a which forms a recess directed to only one side of the unit, in the drawing downwards from the center plane E, E, and whose apex is substantially level with that portion of the pockets 2b and 2d which extends furthest downwards. The walls of the corrugations forming the arms of the V include an angle of about between them. The sidewalls of the corrugation each merge smoothly with the (in the drawing) upwardly directed pockets 2a, 2c. Since the structural units are identical in shape, the corrugations 3, 3a also interengage exactly in the overlap zone.
The design and relative positions of the pockets are shown in the sectional diagram in FIG. 2. In this case, the section is taken through those portions of the pockets 2a, 2b and 2c, 2d extending furthest outwards, i.e. through the region in which the concave arching of the pockets is at its most pronounced. Through the arching of the pockets, the pockets which lie one behind the other form openings which lie one behind the other substantially in the center plane of the unit and each of which taper inwards funnellike from the side edge of the pocket. As shown in FIG. 2, those edges 4 of the pockets which define its end faces include with the planes E, E an angle 5 of less than 90. As a result, the pockets are wedgelike in shape as seen from the side. The gaps between two successive pockets are similarly wedge-shaped. This makes it easier to fit the pockets into one another in the overlap zone, while the structural units lying one above the other assume relative to one another exactly the position shown in FIG. 2 in which a connecting element can be inserted into the openings A lying one behind the other. The opening A also remains intact for the insertion of a thinner connecting element of somewhat smaller internal cross section in cases where structural units arched around an axis extending transversely of the corrugations are overlapped.
In the panellike unit In shown in FIGS. 3 and 4, which is suitable for example for larger dimensions, the downwardly directed pockets 2f project beyond the apex of the corrugations 3. Those portions projecting furthest outwards, both of the upwardly directed pockets 2e and of the downwardly directed pockets 2f, form flat V-shaped flutes 6 which, compared with FIG. d, again produce a substantially funnellike cross-sectional form in the longitudinal openings A surrounded by the pockets.
The panellike structural units shown in FIGS. 1 to 4 can be 7 installed not only flat but also, as shown in FIGS. 5 and 6,
arched, for example for lining tunnels. For this purpose, a structural unit I may be arched around an axis parallel to the a direction of the rows of pockets, as shown in FIG. 5, or around an axis extending transversely of the rows of pockets, as shown in FIG. 6. The corrugations provided between the rows of pockets allow bending in both the aforementioned directions.
FIG. 7 is a section through a tunnel lined with the structural unit according to the invention. For this purpose, units are initially joined together in an arrangement substantially corresponding to the required internal cross section of the tunnel. The generally irregular gap left between the rock and the unit I is filled with pneumatically applied or lean-mixed concrete 7. At the same time, the concrete 7 also fills the spaces behind the pockets 2b, projecting towards the center of the tunnel, between the corrugations 3. In the embodiment shown, that surface of the lining facing the tunnel is coated with a sealing material 8 applied by spraying or any other suitable method. The material h penetrates into those spaces which, on the tunnel side, extend up to the backs of the pockets 2a. At the same time, a permanent, reliable bond can be obtained on those surfaces 8a on which the material 8 comes into contact with the concrete 7 The same effect is obtained even when the surface facing the tunnel is sprayed with concrete rather than with the material 8, or otherwise coated. In addition, the special design of the structural unit in any case guarantees an absolutely firm bond between the initially free-flowing coating material and the unit 1.
FIG. 8 is a section through a joint between two overlapping structural units. As already explained with reference to FIG. 1, the pockets 2a, 2b and 2c, 2d lie on one another and fit in one another. In this way, and through engagement of the corrugation 3a of the upper unit with the corrugation 3 of the unit beneath it, the two units are held precisely in their positions relative to one another. The two elements are prevented from being separated from one another by means of a mandrel or rodlike connecting element 9 which acts as a lock and which at one end is bent round substantially at a right angle. To enable the connecting element 9 to be inserted into the longitudinal opening, two pockets 2b and 2d have been hollowed out in the embodiment shown in the proximity of the joint between the two structural units. In this way, free zones are formed at the points denoted by the reference I0 from which the connecting element 9 can be introduced.
The same circumstances arise out of FIG. 9 which is a plan view ofajoint.
When used as illustrated in FIG. 7, the concave depressions or troughs which, as mentioned earlier on, are arranged at and are at their most pronounced at the tops of the pockets 2a-f, have the advantage that the surface facing the tunnel is uneven and promotes particularly firm adhesion of the sealing material. To ensure that the material 8 adheres firmly, bridges have to be formed between the areas in which the material 8 penetrates into the gaps between the outwardly directed pockets. In the case of pockets which are arched outwards at their apices, the so-called bridge is thinnest at its center. With pockets showing the aforementioned design, a considerably larger proportion of the composition used for sealing rebounds when it is sprayed on so that losses are inevitable and considerable expense involved in applying the composition.
Through the inwardly directed arching of the pockets at their apices, it is also possible to avoid cavities in the concrete which are particularly undesirable in the proximity of the sealing layer because they detrimentally affect the firm bond with this layer.
The process for lining tunnels and galleries is described in detail in the following.
In FIG. 10, the tunnel or gallery in the course of construction is denoted by the reference 11. The front end of the ad vance, known as the workface, from which another round is completed with the next drilling and blasting operation, is shown at 12. Erection arches 13 are erected at suitable intervals apart in the tunnel, extending into the immediate proximi ty of the workface 12. The external outline 13 of the erection arches 13 corresponds substantially to the internal cross section of the completed tunnel. The front erection arch 14 whose outer profile substantially corresponds to the excavation line of the tunnel, is provided with frontal formwork 24 which will be described in detail further on.
After the erection arches 13, 114 have been erected true to profile, the panellike structural units 1 are placed on the outsides of the arches. The units ll form a permanent formwork which at the same time acts as reinforcement for the completed concrete lining. In the embodiment shown, the panellike units I are again provided with pockets directed to both sides, radiating from the center plane of the unit and accordingly may be overlapped with and fastened to one another both along their longitudinal sides and along their narrow sides. The rear ends of the units 1, as seen in the direction of progress, are arranged on the front ends of the units of the already completed concreting 7 in the zone 21 so that a firm bond is obtained between the successively prepared lining sections. In addition, a substantially dovetaillike recess 24a is formed in the end face of the finished concreting 7, whose function is also to provide a firm link to the following new concreting section. When the panellike structural units are installed in the manner described, a cavity 20 is formed between them and the rock adjoining the tunnel excavation line, being filled with concrete following the installation of the units ll progressing in an upward direction. The concrete is consolidated by vibration. In order to fill the last cavity remaining, situated at the tunnel apex, concrete is forced through a socket 34 extending through the frontal formwork. For this purpose, a hose coming from a suitable concrete pump is attached to the socket 34.
As apparent from the foregoing, the lining extending into the immediate proximity of the workface forms a strong, reliable support for the tunnel, even when the concrete is still liquid, which is already installed before the ground pressure begins to exert its influence. Installation does not interfere with the boring operations at the workface 12. The arrangement consisting of erection arches, structural units and concrete backfilling is so strong that it is able to withstand explosive blasts.
FIG. 10 diagrammatically illustrates a lining produced by the process according to the invention. With normal friable rock, substantially the following procedure is adopted in practrce:
On completion of blasting and debris clearance, two erection arches are erected true to profile and provided with iron spacer sections (not shown in the drawing). The panellike structural units are then arranged panel by panel in an upward direction on both sides of these arches to form a ring, and at the same time backfilled with concrete which is consolidated by vibration. The frontal formwork 24 facilitates clean processing of the concrete.
When driving the first meter of a tunnel, a quick-setting binder may be added to the concrete so that drilling and blasting may be continued straightaway. As soon as an adequate safety zone has been established inside the mountain, addition of the quick-setting binder may be stopped. The other erection arches are set at intervals of l to 2 meters apart, depending upon the ground pressure. Larger intervals between the arches are not recommended for economic reasons, because otherwise panellike structural units of considerable thickness would have to be used.
To drive a tunnel in normal rock, 21 erection arches for example may be used. In this way, it is possible to obtain a permanently supported tunnel section 20 meters long in which the lining withstands any vibration during blasting until the concrete jacket has set. After a tunnel section of this kind has been completed, the erection arches are dismantled at the rear and reinstalled at the front.
v If the rock allows, the lining may remain up to -12 meters behind the workface and may be installed by a second working party. However, the erection arches must be installed up to a point immediately behind the workface and must be keyed in such a way that lateral displacement under the effect of the explosives is impossible. The erection arches, which in the embodiment shown are of l-profile, are of such dimensions that they are able to absorb the stresses occurring without distortion, and can be used and reused. As soon as the erection arches towards the rear end of the lining have been removed, that surface of the panellike units facing the tunnel should be coated with a sealing compound. The sealing compound is normally applied by spraying.-
If the tunnel is being driven in highly friable rock, it is advisable to prepare the concrete lining with the aid of two erection arches and the requisite connecting elements. The profile of the arches is chosen in dependence upon the thickness of the concrete supporting structure which is in turn governed by the ground pressure. 1
On completion of blasting and debris clearance, the two erection arches are erected true to profile and anchored. They are erected as described above. Installation of the panellike structural units and introduction of the concrete are also carried out as described above. The interval between the arches may amount to between 0.6 and 2.0 meters.
A quick-setting binder should be added to the concrete in cases where the. concreting in sections is repeated at time intervals of less than 10 hours.
- After the second round, i.e. on completion'of the blasting operations and debris clearance, the rear arch is removed and reinstalled in front of the other arch. The panellike structural units are joined to those already concreted in after they have been placed on the outer flange of the previous arch. More concrete is then introduced. The sealing compound should be applied at some distance from the workface, although it is also possible to apply the compound directly after the lean-mixed concrete has been introduced.
If ground pressure allows, between 6 and 8 erection arches may be used and the operation carried out substantially on the lines described earlier on.
As a precautionary measure and for generally making safe, a layer of gunite may be applied either over the entire or only over the endangered part of the workfac'e before the erection arches are set up. In special cases, roof bolts may also be fitted for safety before the erection arches are set up.
The lining according to the invention is shown in the righthand part of FIG. 11. the left-hand part of which is a section through the lining after concreting. As shown in the Figure, the panellike structural units 1 lie on the outer flange 13a of the erection arch 13 before concreting. The pockets 2a, 2b arranged in rows extend transversely of the tunnel axis in the embodiment shown.
The space between the rock and the structural units 1 is filled with concrete 7. The concrete penetrates into the gaps behind the pockets directed towards the tunnel. When a sealing layer 8 is applied, preferably by spraying, to the surface facing the tunnel, the sealing compound bonds with the concrete by virtue of the fact that it penetrates from the tunnel side into the spaces behind the pockets directed towards the rock.
FIG. 12 is a section through FIG. 11 on the line XIIXII showing how the freshly installed unit 1' is joined to the unit 1 concreted in during the previous working stage. Concreting and hence tunnel driving progresses from right to left in FIG. 12. The units are laid one on top of the other in zone 21 with their adjoining edges so that the pockets directed to both sides from the center plane of the elements engage in one another. In doing so, they leave free an opening in which a connecting rod 9 holding the adjacent elements together is inserted. The front end of the last unit 1 to be concreted in must project beyond the end of the concrete 7 in order to be able to make the connection.
To prevent the concrete from flowing out frontwards from the space between the units 1,1' and the rock during concreting, a seal or closure must be provided at the front end of a concrete section. An embodiment serving this purpose is shown in FIG. 13. Another structural unit 1' is joined to the last element 1 to be concreted in the manner described above, except that the overlap of the front unit 1' over the rear unit 1 is made so large that the front unit with the overlapping portion 1511 can be bent up to the rock adjoining the tunnel excavation line. To prevent the concrete subsequently introduced behind the preceding unit 1 from pushing out the closure formed by the portion 15a, a holding wire 15b may be fastened between the portion 15a of the front unit 1' and the unit 1 adjoining it in a direction opposite to that in which the tunnel is being driven.
FIG. 14 illustrates an embodiment of the invention in which the units 1 and 1 are backfilled with round gravel 23, grit, pervious or aerated concrete, rather than with concrete. This type of lining is used for those parts of the tunnel at which water has to be removed.'The structural units are installed in the same way as described above. An adequately thick watertight layer 8, for example of gunite, is applied on the tunnel side. Every 5 to 8 meters an expansion joint is provided which is preferably sealed with flexible jointing tape. The water issuing from the rock flows through cavities present in the gravel 23 and the like to'the bottom of the tunnel where suitable outletsare provided to prevent accumulation and hence the build up of pressure. If the water is to be displaced behind the structural units, cement may be injected into the back filling 23.
Another method of sealing the cavity to be concreted at its front end, is shown in FIG. 15. The sealing means is in the form of an erection arch which forms a frontal formwork. The frontal formwork consists of a boxlike projection attached to that side facing the cavity to be concreted which extends over the entire length of the arch.
The box forming the frontal formwork consists of a wedgelike projection 24 which extends out from the outer flange 13a of the arch l3 and which is closed by a web 25 parallel to the inner flange 13b of the erection arch. The web 25 is at a distance from the flange 13b wide enough to allow insertion of a structural unit 1. In this way, a cavity 26 is formed, accommodating the front end of the last element to be installed. This end remains free during concreting as shown in FIG. 15. The wedgelike projection 24 of the frontal formwork leaves a corresponding recess in the end face of the completed concrete section into which the concrete of the next concreting section penetrates so that a substantially dovetaillike union is established between the concrete initially introduced and the concrete subsequently introduced. When the concrete is sufficiently hard, arches removed from the completed tunnel section are reinstalled, in accordance with the progress of the tunnel, so that the arch adjoining the front end of the new concreting section again has frontal formwork and through its outer flange 13a closely follows the tunnel excavation line.
FIG. 16 illustrates a joint between two arch sections forming one erection arch. I-Iinged flaps 28a and 28b are secured to the inner flanges 13b of the arches. A bolt 27 which forms the hinge spindle is pushed through the coincident openings in the hinged flaps 18a and 18b and suitably secured in position.
When the tunnel is driven in swelling rock, and the tunnels walls have to be strengthened up to the workface, the
procedure described in the following with reference to FIGS. 17 to 23 may be adopted. As shown in FIG. 17, the front erection arches 13 are installed as guide arches for lances 32 moved hydraulically forwards which strengthen the walls of the tunnel. This means that the outer flange 13a is located at such a distance from the rock surrounding the excavation line that the lances 32 lie tight against the rock. The web depth of the guide arches corresponds to the thickness of the lining to be installed.
After the arches have been installed true to profile and anchored, the lances 32 are introduced. As will explained further on, the lances form a jacket which surrounds the tunnel. They are moved forwards by a pneumatic cylinder 33 which, through its extendable piston rod 34, engages the lance to be pushed forward and at its opposite end is supported by a guide arch. The pump and the supply vessel for the pressure liquid for feeding the cylinder 33 is shown at 35.
FIG. 18 is an illustration corresponding substantially to FIG. 1 1. As shown in the Figure, the panellike units 1 are placed on the inner flange 13b while the lances 32 are supported by the outer flanges 13a. The cavity between the flanges and the lining units is filled with concrete 7 in the manner described above. Accordingly, the rear ends of the lances are situated in the concrete.
The arrangement shown in FIGS. 17 and 18 is again shown in FIG. 19 in a section on the line XVIII-XVIII of FIG. 18. The cavity to be concreted is in this case closed by blocks or boards 13c adapted to the shape of the arches, being arranged between the lances 32 and the units 1.
In cases where an arch corresponding to FIG. with frontal formwork is used, the arrangement shown in FIG. 20 is obtained. The lances again lie on the outer flanges 13a of the arches 13, while the front end of the unit I, initially to be kept free from the concrete, engages in the cavity 26 of the frontal formwork 24, 25.- When the lances are moved forwards, a cavity 7a in which concrete is injected is formed between the concrete 7 and the rock.
As shown in FIG. 21, the lance 32 are in the form of panellike of platelike hollow bodies which are two to three times longer than the intervals between the arches l3. Situated on each narrow side there is a guide 37 open at both ends which is accessible from outside through a longitudinal slot 36 and in which a slide 38 of substantially T-form cross section attached to the adjacent lance engages. The guides 37 and the slots 36 are made so large by comparison with the slides that the lances 32 can be adapted to the tunnel profile (cf. FIG. 18). A certain amount of lateral movement is guaranteed at the same time.
As shown in FIG. 22, the lances 32 are provided on that side facing the tunnel with toothlike ribs 39 with which, as shown in FIG. 20, the hydraulic cylinder 33 engages, being provided with corresponding claws 41 at the end of its extendable piston rod 34. The cylinder 33 is supported by one of the arches 13, preferably that arch provided with frontal formwork adjoining the last section to be concreted at its front end. The cylinder 33 which as shown in FIG. 17 is provided with a pressure-medium pump, is always attached to that lance 32 which is to be moved forward. By virtue of the fact that the lances are individually moved forward, there is no need for an expensive hydraulic installation. Since the lances are never joined withthe concrete, they are ground smooth on the outside. Each lance 32 is provided with a point 40 which is concave towards the tunnel side.
The particular lining section may be concreted after the point of the lance has been moved forward by approximately 1 meter. The panellike structural units are placed on the inner flange 13b of the arches and are assembled from the ground towards the ridge. At the same time, the concrete is introduced between the units and the lances and compacted by vibration. The frontal formwork ensures clean processing of the concrete.
In order to be able to inject concrete into the highest part of the cavity formed behind the units, a socket is preferably arranged on the arch provided with frontal formwork, to which a hose delivering the concrete under pressure may be attached.
The strengthening of the tunnel section preceding the completed lining section by the lances is extremely adaptable and may be carried out with minimum auxiliary forces. The use of the new panellike structural element for making safe exposed ground and rock and the process applied to this end is described in the following with reference to FIGS. 24 to 27.
Hitherto, it has been common practice to safeguard the sidewalls of a trench against collapse by initially driving in double-T vertical pilot beams before the beginning of excavation. As excavation progresses, arris timbers are placed between the vertical pilot beams. Since the arris timbers should not exceed a certain length with a view to transportation and handling, the vertical pilot beams also have to be arranged at correspondingly intervals. In many cases, the arris timbers cannot be recovered, so that they remain the the ground, rot and cause subsidence.
In conventional methods of construction, formwork for the foundations has to be set up at a distance from the system strengthening the walls of the trench, consisting of vertical pilot beams'and arris timbers, after the trench has been excavated. By virtue of the fact that enough space for the laborers must be available between the strengthening system for the walls of the trench and the formwork for the building, the trench must be considerably larger than the ground plan of the completed building. After the foundations have been laid, this space has to be refilled so that the excavated material accumulating here frequently has to be carried away in two shifts. This naturally involves considerable expense, particularly in the case of buildings works in large towns where limited space is available for the building site.
This disadvantages can be obviated by the process according to the invention. In FIG. 24, the ground around the edge of the trench is denoted by the reference B. Double-T vertical pilot beams are driven in around the edge of the trench at suitable intervals which may be considerably larger than in cases where arris timbers are used. As excavation progresses, panellike structural units 1 are secured to the inner flanges of the pilot beams 42. As shown in FIGS. 24 and 25, clamps 45 are used for fastening. It is also possible, however, to arrange the platelike units behind that flange of the pilot beams 42 which faces the trench.
The panellike structural units comprise pockets 2a and 2b arranged one behind the other in straight rows at certain intervals. A corrugation 3 is arranged between two parallel rows of pockets 2a and 2b. In the embodiment shown in FIGS. 24 and 25, the rows of pockets and hence the corrugations too, extend horizontally.
The pockets form an internal cross section which tapers inwards from both end faces. This cross-sectional form is obtained by arching the pockets in their transverse direction. At the same time, openings A elongated between two adjacent pockets are formed as seen from the front, cf. FIG. 26.
By virtue of their special design, the panellike structural units 1 can be laid one on top of the other with their edges, as shown in FIG. 24 at 21. At the same time, openings into which rodlike connecting elements 8 can be inserted are left free in the longitudinal direction of the rows of pockets.
As the trench progresses, permanent formwork is obtained in this way through the units lat a distance from the walladjoining the trench at which the ground is exposed.
The space formed in this way is filled in accordance with the process of the invention by spraying concrete against the formwork through a spray nozzle $7. If, as provided in ac-
Claims (8)
1. A structural panel unit particularly adapted for use as permanent formwork and reinforcement in concrete constructions, said panel unit including a. a series oF parallel, longitudinal corrugations, the walls of which define crests lying in upper planes and troughs lying in lower planes; b. a series of bandlike pocket forming elements derived from portions of said crests between pairs of transverse cuts in said crests at predetermined intervals along said corrugations; c. said bandlike pocket forming elements being of nonuniform width and being depressed from the plane of said crests into a pocket forming plane bridging said corrugation; d. a series of longitudinally extending pockets having spaced upper wall portions defined by said crests and lower wall portions spaced alternately of said crests defined by said bandlike elements; e. said pocket forming elements being narrowest at the longitudinal centerline of said pockets and widest at the opposite sides of said pockets f. said panel, in longitudinal elevation, thereby having rows of alternating wedge-shaped crest portions and wedge-shaped pocket forming elements separated by wedge-shaped gaps; g. whereby said panel is readily matable with another panel of identical configuration by nesting therewith, said nested panels forming composite longitudinal pockets, the upper walls of which are defined only by said crest portions of the underlying nested panel and the lower walls of which are defined only by said pocket forming elements of said overlying panel.
2. A structural panel unit as claimed in claim 1, wherein each band is arched in its cross section to produce the reduction in width at its center.
3. A structural panel unit as claimed in claim 1, wherein the edges defining the bands substantially merge into the troughs adjacent the crests in which the bands are formed.
4. A structural panel unit as claimed in claim 1, wherein the troughs adjacent the crests in which the pockets are formed include an angle of substantially 90*.
5. A structural panel unit as claimed in claim 1, wherein the apices of the troughs lie in substantially the same plane as the apices of the depressed bandlike pocket forming elements.
6. A structural panel unit as claimed in claim 1, wherein the apices of the troughs lie in a plane nearer to the panel median plane than the plane in which the apices of the depressed portions lie.
7. A structural panel unit as claimed in claim 1, wherein two or more adjacent bands are omitted to allow insertion of a rodlike connecting element through nested panel units.
8. A panel unit according to claim 1, in which a. said crest and said pocket forming elements are arch-shaped.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US79874769A | 1969-02-12 | 1969-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3601945A true US3601945A (en) | 1971-08-31 |
Family
ID=25174162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US798747A Expired - Lifetime US3601945A (en) | 1969-02-12 | 1969-02-12 | Structural units, suitable for use in reinforcing concrete |
Country Status (1)
Country | Link |
---|---|
US (1) | US3601945A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4334394A (en) * | 1979-06-05 | 1982-06-15 | Idc Chemie Ag | Insulated outer coating of walls of building structures |
WO1992003622A1 (en) * | 1990-08-21 | 1992-03-05 | Gesertek Oy | Method for fabricating steel-reinforced concrete structures |
EP1267035A1 (en) * | 2001-06-15 | 2002-12-18 | Valplast AG | Method for constructing underground waterproof tunnels with a concrete inner shell |
CN110206565A (en) * | 2019-06-03 | 2019-09-06 | 北京安禹建设有限公司 | A kind of novel pipe shed and its installation method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US875155A (en) * | 1906-06-26 | 1907-12-31 | Norris Elmore Clark | Expanded metal. |
US1372741A (en) * | 1920-06-02 | 1921-03-29 | Youngstown Pressed Steel Compa | Expanded-metal lath |
US1621664A (en) * | 1923-06-01 | 1927-03-22 | Harvey M Gersman | Expanded sheet metal |
US1704608A (en) * | 1927-04-27 | 1929-03-05 | Humphris Frank | Perforated or expanded sheet metal |
AT257901B (en) * | 1964-07-24 | 1967-10-25 | Waldemar Klein | Panel-shaped component |
-
1969
- 1969-02-12 US US798747A patent/US3601945A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US875155A (en) * | 1906-06-26 | 1907-12-31 | Norris Elmore Clark | Expanded metal. |
US1372741A (en) * | 1920-06-02 | 1921-03-29 | Youngstown Pressed Steel Compa | Expanded-metal lath |
US1621664A (en) * | 1923-06-01 | 1927-03-22 | Harvey M Gersman | Expanded sheet metal |
US1704608A (en) * | 1927-04-27 | 1929-03-05 | Humphris Frank | Perforated or expanded sheet metal |
AT257901B (en) * | 1964-07-24 | 1967-10-25 | Waldemar Klein | Panel-shaped component |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4334394A (en) * | 1979-06-05 | 1982-06-15 | Idc Chemie Ag | Insulated outer coating of walls of building structures |
WO1992003622A1 (en) * | 1990-08-21 | 1992-03-05 | Gesertek Oy | Method for fabricating steel-reinforced concrete structures |
EP1267035A1 (en) * | 2001-06-15 | 2002-12-18 | Valplast AG | Method for constructing underground waterproof tunnels with a concrete inner shell |
CN110206565A (en) * | 2019-06-03 | 2019-09-06 | 北京安禹建设有限公司 | A kind of novel pipe shed and its installation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107849917B (en) | Tunnel construction method using advance support and lag support and device suitable for same | |
KR100866162B1 (en) | Chair-type self-supported earth retaining wall constructing method | |
CN108661655B (en) | Large-section U-shaped earth pressure balance shield tunnel construction method based on U-shaped shield machine | |
CN110130927A (en) | A kind of carbonaceous slate serious deformation control construction method | |
CN111022071B (en) | Construction method for full-section lining of medium-slightly weathered granite section drilling-blasting tunnel | |
CN111677520B (en) | Construction method for excavating station structure by tunnel-first station-later station pipe curtain hole-pile method | |
CN109838240B (en) | River-crossing tunnel arch cover covering and digging construction method | |
CN106014443A (en) | Method for preventing roadway floor heaving and wall sliding of gob-side entry retaining | |
CN112145203A (en) | Full-face advancing type sectional grouting construction method and overlapped tunnel construction method | |
CN107165641B (en) | High inclination-angle ladder way opposite direction excavating construction method in thin layer breaking up hard rock stratum | |
US20200263542A1 (en) | Underground support system and method | |
CN112177635A (en) | Construction method of step multiple advanced small guide pipe and construction method of overlapped tunnel | |
US3855801A (en) | Tunnel structure | |
US3751929A (en) | Method of supporting exposed ground or rock | |
WO2021237912A1 (en) | Subsidence-restricted stoping method for false mined-out layer support formed in combination with waste rock | |
CN109209484B (en) | Auxiliary working face withdrawing method for withdrawing channel combined with paste prefabricated block | |
KR100800028B1 (en) | Method for constructing a tunnel using front jacking construction method | |
JP3631908B2 (en) | How to expand roads, highways or railway tunnels without blocking traffic | |
CN108979711B (en) | The tailing-filled dehydration enclosing wall of one kind and its construction method | |
KR100947627B1 (en) | The grouting structure of tunnel and tunnel construction method using the same | |
US3601945A (en) | Structural units, suitable for use in reinforcing concrete | |
KR101440258B1 (en) | Messer construction method with grouting means | |
CN112065412A (en) | Shield air-pushing construction method for closed section of mine tunnel and guide platform used by shield air-pushing construction method | |
CN210768799U (en) | Main body structure construction system at intersection of main line tunnel and construction transverse channel | |
CN112145183A (en) | Construction method for upward excavation of shallow-buried weak surrounding rock steep slope tunnel |