US3601394A - Sheet retaining apparatus - Google Patents

Sheet retaining apparatus Download PDF

Info

Publication number
US3601394A
US3601394A US838907A US3601394DA US3601394A US 3601394 A US3601394 A US 3601394A US 838907 A US838907 A US 838907A US 3601394D A US3601394D A US 3601394DA US 3601394 A US3601394 A US 3601394A
Authority
US
United States
Prior art keywords
stack
sheet
sheets
tray
tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US838907A
Inventor
John M Lang
Charles J Kubasta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Application granted granted Critical
Publication of US3601394A publication Critical patent/US3601394A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/65Apparatus which relate to the handling of copy material
    • G03G15/6502Supplying of sheet copy material; Cassettes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H1/00Supports or magazines for piles from which articles are to be separated
    • B65H1/04Supports or magazines for piles from which articles are to be separated adapted to support articles substantially horizontally, e.g. for separation from top of pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/02Separating articles from piles using friction forces between articles and separator
    • B65H3/06Rollers or like rotary separators
    • B65H3/0669Driving devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/46Supplementary devices or measures to assist separation or prevent double feed
    • B65H3/54Pressing or holding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H9/00Registering, e.g. orientating, articles; Devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H9/00Registering, e.g. orientating, articles; Devices therefor
    • B65H9/08Holding devices, e.g. finger, needle, suction, for retaining articles in registered position

Definitions

  • ABSTRACT An automatically repositionable stack retainer is herein disclosed for supporting a stack of cut sheets of support material as the sheets are separated and fed one at a time from the stack.
  • the retainer consists of a body having a tab pivotally mounted thereon, the tab being normally biased in a position to operatively engage the stack.
  • An automatic elevating mechanism is provided to automatically raise the retainer when new sheets are added to the stack. The retainer is supported in the elevating mechanism so that the pivotable tab swings out of stack engagement as the retainer is elevated.
  • SHEET as ur 10 PATENTEU M824 l9 Please, SHEET 09 0F 10 PATENTEI] M824 I971 sum 10 [1F 10 SHEET RETAINING APPARATUS
  • This invention relates to sheet-feeding mechanism and, in particular, to apparatus for retaining sheets in proper stack feeding alignment as the topmost sheet in the stack is separated and forwarded therefrom.
  • this invention relates to automatically repositionable sheet retaining member for supporting a stack of cut sheets against movement as individual sheets are separated and forwarded from the top of the stack.
  • This mechanism is particularly well suited, for use in automatic machines, as for example, automatic Xerographic reproducing apparatus.
  • a further object of this invention is to improve top sheetfeeding apparatus'used in automatic machines for storing and holding cut sheets of support material between automatic processing stations.
  • a still further object of this invention is to eliminate the need for manually repositioning sheet-retaining apparatus when fresh sheets are added to a supply stack.
  • an automatically repositionable stackretaining member adapted to engage the top of a stack of cut sheets to prevent movement of the stack as individual sheets are separated and forwarded therefrom
  • the apparatus includes a lifting arm pivotally supported at one end below the level of the stack and arranged to move througha vertical plane substantially parallel to the front margin of the stack, a body member rotatably supported in the free end of the lifting arm, and a stack engaging tab pivotally mounted in said body, means to bias the tab member in a normally horizontal position wherein the tab is capable of operatively engaging the top sheet in the stack, and means to raise the lifting arm wherein the tab is elevated momentarily above the top level of the stack.
  • FIG. 1 is a schematic side elevation of an automatic xerographic reproducing machine for producing duplexed copies employing the apparatus of the present invention
  • FIG. 2 is an enlarged partial side elevation of the sheethandling mechanism employed in the xerographic reproducing machine shown in FIG. 1 with parts broken away to better illustrate the construction thereof;
  • FIG. 3 is a top view showing the sheet-feeding mechanism associated with the upper supply tray illustrated in FIG. 2, and further showing the sheet separating and forwarding apparatus associated therewith;
  • FIG. 4 is a perspective view in partial section with pieces broken away showing the lower supply tray and its associated sheet separating and forwarding apparatus and also showing the sheet-registering apparatus employed in the automatic machine illustrated in FIG-1;
  • FIG. 5 is a perspective view showing the control mechanism and linkage for conditioning the upper supply tray to receive and restack sheets when the reproducing machine illustrated in FIG. 1 is a duplex-mode of operation;
  • FIG. 6 is a partial side elevation of the control mechanism and linkage illustrated in FIG. 5 showing crank arm mechanism in a latched condition
  • FIG. 7 is a perspective view in partial section with parts broken away to clearly illustrate the sheet-jogging apparatus for restacking sheets forwarded into the upper tray;
  • FIG 8 is a partial front elevation in section illustrating the right-hand side jogger assembly of the paper-restacking apparatus shown in FIG 7;
  • FIG 9 is a perspective view illustrating the front edge-retaining members and the retainer positioning and control linkage associated with upper supply tray;
  • FIG. 10 is a front elevation of the upper supply tray displaced horizontally from the sheet-feeding position illustrated in FIG. 9 showing the right-hand comer retainer in a raised position;
  • FIG. 11 is an enlarged partial front elevation of the lefthand corner retainer and lifting arm shown in FIG. 9;
  • FIG. 12 is a right-hand side elevation of the retaining members illustrated in FIG. 11 with portions broken away showing the retainer resting in contact with the top of the sheet stack;
  • FIG. 13 is a side elevation of the retainer illustrated in FIG. 12 showing the lifting arm raising the retainer above the level of the stack;
  • FIG. 14 is a partial side view showing the cam and switching apparatus to control the movement of the upper and lower feed rolls
  • FIG. 15 is a partial side view showing the crank arm mechanism illustrated in FIG. 6 in an unlatched condition
  • FIG. 16 is a partial side view of the feed rolls illustrated in FIG. 9 showing the sheetsensing mechanism associated therewith.
  • the apparatus of the present invention is shown herein embodied in an automatic xerographic reproducing machine capable of producing either simplexed or duplexed copies from a wide variety of originals such as copy sheets, books, or three dimensional forms.
  • the present invention is particularly well suited for use in automatic xerography
  • the sheet-feeding apparatus herein disclosed is equally well adapted for use in any number of devices in which cut sheets of material are stored in a stack and the individual sheets then separated and forwarded to a subsequent processing station. It should become apparent from the discussion below that this apparatus is not necessarily limited to its application to the particular embodiment shown herein.
  • the automatic xerographic apparatus illustrated in FIG. 1 includes a photosensitive plate including a photoconductive layer 10 that is placed over a conductive backing.
  • the plate is formed in the shape of a drum 1 l and the drum mounted upon a shaft 12 that is joumaled for rotation in the machine frame.
  • the xerographic drum is rotated in the direction indicated so as, to pass sequentially through a series of xerographic processing stations.
  • the photosensitive drum and the xerographic processing apparatus are driven at predetermined speeds relative to each other from a single drive system (not shown) and the operations thereof coordinated in order to produce proper cooperation of the various processing mechanisms.
  • the original object to be reproduced is placed upon a transparent horizontally supported platen l4 and the original scanned by means of a moving optical-scanning system to produce a flowing light image of the original.
  • the scanning system includes an elongated horizontal extended aperture lamp l5 and a movable lens element 18.
  • the lamp and lens element moves in coordination across the object supported upon the platen to focus successive incremental bands of illumination reflected from the object onto the moving drum surface at synchronous speeds therewith.
  • the optical path is folded by means of a pair of image mirrors 19 and 20 interposed between the lens and the drum surface and arranged to place the image on the drum at exposure station B.
  • the drum Prior to the imaging of the drum surface, the drum is first uniformly charged by means of a corona generator 13 positioned in charging station A. Under the influence of the flowing light image, the uniformly charged photoconductive surface is selectively dissipated in the nonimaged areas to form what is commonly known as a latent electrostatic image.
  • TI-Ie developing station primarily is comprised of a developer housing 22 adapted to ends of a supply of two-component developer material 21 therein.
  • the developer material is transported by means of a bucket system 23 from the bottom of the developer housing to an elevated position where the material is delivered into the active development zone.
  • TI-le developer material is caused to flow downwardly in contact with the upwardly moving drum surface under closely controlled conditions wherein charged toner particles are attracted from the developer mix into the image areas on the plate surface thus making the image visible.
  • the moving drum surface next transports the developed xerographic image to a transfer station D. Cut sheets of final support material are also moved into the transfer station from sheet registering apparatus 24 in synchronous relation with the image on the drum surface.
  • the backside of the copy sheet is sprayed with an ion discharge from a transfer corotron 25 inducing on the sheet a charge having a polarity and magnitude sufficient to attract the toner material from the drum surface to the final support material. This induced charge also electrostatically tacks the final support material to the drum surface.
  • a stripper finger 28 is positioned downstream from the transfer corotron. The finger is arranged to move between the drum surface and the copy sheet and lifts the sheet from the drum surface. The stripped sheet is directed along a predetermined path of travel into contact with a stationary vacuum transport 29.
  • the copy sheet which has been removed from the drum surface after the transfer operation, is moved along stationary transport 29 into fusing station F.
  • the fuser 33 is basically made up of an upper fuser roll 34 and a lower fuser roll 35 mounted in operative relation to each other and arranged to coact so as to support a sheet of material in pressure-driving contact therebetween.
  • the outer surface of the lower roll is heated by means of a horizontally supported radiant heat source 38 positioned in close proximity to the roll surface adjacent to the point at which the roll contacts the image-bearing support material. As the heated roll is rotated in the direction indicated, the heated surface of the lower roll is pressed into intimate contact with the image face of the support sheet. Mechanical and heat energy transported from the roll surface to the support sheet to permanently bond the toner particles to the support material.
  • the fixed copy sheet Upon leaving the fuser, the fixed copy sheet is passed through a curvilinear sheet guide system, generally referred to as 39, into cooperating advancing rolls 40 and 41.
  • the advancing rolls forward the sheetsthrough a linear sheet guide system 42 into a second pair of advancing rolls 43 and 44.
  • the simplexed copy sheet is either forwarded into catch tray 51 or into upper supply tray 52 by means of a movable sheet'guide 45.
  • movable sheet guide 45, and it associated advancing rolls are prepositioned by the machine logic system to direct'the individual sheets into the desired paper tray.
  • FIGS. 2-16 there is shown the sheet-handling apparatus of the present invention which enables a conventional xerographic machine to produce either simplexed or duplexed copies.
  • the mechanism to accomplish this unique result includes two substantially vertically aligned supply trays 52, 53 arranged to advance copy sheets into the xerographic transfer station D and a circular sheet path adapted to operatively connect the lower supply tray 53 to the upper supply tray 52.
  • a movable sheet guide, generally referred to as 45 is placed in the sheet path and is positionable, depending on the mode of machine operation selected, to direct xerographically processed sheets of material either into a final collecting station or into the upper supply tray 52.
  • the movable sheetguide 45 is positioned as shown by the solid lines in FIG. 1 in a position to direct copy sheets into catch tray 51.
  • the movable guide When duplexed copies are to be produced, the movable guide ismoved to the position shown in FIG. 2 and the upper tray conditioned to accept and restack simplexed copy sheets.
  • the upper tray is further conditioned to separate and forward sheets seriatim through the xerographic processing station once again where asecond image is placed on the backside of the sheet.
  • the conditioning of the sheet-handling equipment to accept and recirculate simplexed .copy has generally been a manual operation.
  • the apparatus of the present invention now makes it possible to automatically hold and then reprocess the copy sheets between copy runs.
  • the individual supply trays 52, 53 are movably supported between the machine frames 91, 92 upon a set of rails 104 (FIG. 2) and are capable of being moved in a horizontal direction between a first operative position and a second loading position. In the operative position, the sheet trays are supported adjacent to the sheet-registering apparatus 24 wherein sheets forwarded from either tray are directed into a pair of sheet-registering rolls which align the sheets prior to them being forwarded into the transfer station.
  • both the upper supply tray and the lower supply tray are of similar construction.
  • the trays include a horizontal support platform 56 having a dependent, downwardly turned, vertical aligned front flange '54, a stationary side margin guide 59 and a movable side margin guide 58.
  • the stationary margin guide is rigidly affixed to the support platform and has a vertically extended leg thereon.
  • the movable guide similarly has a vertical leg complimentary to that of the stationary side margin guide and is adapted to cooperate therewith to guide individual sheets forwarded from the trays along a predetermined path of travel into the sheet registering apparatus 24.
  • the movableside margin guide is slidably carried upon the support platform and arranged to move laterally thereon making it possible to accommodate sheets of varying lengths upon the platform.
  • the tray is provided with an indexing scale 55 for laterally positioning the movable side margin guide.
  • AN L-shaped rear retaining member is affixed to each of the vertical legs of the side margin guides.
  • the two rear retaining members associated with eachsupply tray cooperate to longitudinally position the-stack upon the support platform.
  • the members are basically formed of an angular plate including a rear wall 60 and a flange 61 adapted to overlay in parallel relation the vertical legs of the side margin guide members.
  • Each of the side margin guides is provided with a stud, (not shown) which protrudes through a horizontally slotted hole in the flange 61 of the rear retaining member 64 and is engaged by a thumb nut 62 whereby each rear retaining member may be adjusted and tightened against the side margin guide.
  • a sheet separating and feeding means consisting of a pair of driven feed rollers 86 supported in a selfaligning manner within floating bearings secured to a shaft 87.
  • the shaft 87 is secured in bearing blocks 90 mounted in the front or free ends of two support arms 88.
  • the opposite ends of thesupport arms are similarly secured to a drive shaft 89 and the drive shaft journaled for rotation in the machine frames 91, 92 above and to the rear of the individual supply trays permitting the feed rollers to rest freely in contact with the uppermost sheet in the stack.
  • each feed roller is operatively connected to the drive shaft 89 by means of a clutch and pulley arrangement.
  • the prescribed sheet-feeding motion is translated to the rollers through the clutch and pulley arrangement in proper timed relation with an image on the drum surface wherein the advanced sheets and the image arrive at the transfer station at the same time.
  • the upper supply tray 52 and the lower supply tray 53 are provided with similar electromagnetic clutches CL-l and CL- 2, respectively.
  • the clutches include a drive unit 96 pinned to the drive shaft 89 and a driven unit 95 which is rotatably supported upon the drive shaft in a roller bearing provided (not shown).
  • a timing pulley 83 is locked to the driven end of the clutch and is operatively connected to a second drive pulley 93, which is pinned to shaft 87, by means ofa timing belt 82.
  • elevating means to raise the feed rollers above the top level of the trays.
  • a camming arm 116 having an offset 117 thereon, is rotatably supported between the machine frames 91 and 92.
  • the offset 117 is arranged to pass through an elongated aperture 118 in both the support arms 88 of the feed roll assemblies.
  • One end of the camming arm passes through the machine frame 91 and has a crank arm 119 secured thereto.
  • Rotation of a crank in a clockwise direction as shown in FIG 3 causes the offset 117 to move upwardly raising the feed roller support arms and thus elevating the entire feed roller assembly to a level sufficient to allow the supply tray to be operatively repositioned in a horizontal'direction.
  • each of the support platforms adjacent to the sheet-registering apparatus is unobstructed so that an uninterrupted path of travel is provided along which individual sheets of support material, which have been separated from the individual stacks, can be forwarded into the registering means.
  • Each retaining member 70 includes a main body 74 about which is rotatably mounted a hinged tab 75. As illustrated in FIGS. 13. the tab is pivotally mounted in the body upon a pivot rod 79.
  • a torsion spring 81 is wound about the rod and normally biases the tab against a stop 80 afiixed to the body of the member to hold the tab in a horizontally extended position substantially perpendicular to the body of the retainer.
  • each of the two retaining members associated with the individual trays is carried within the free end of a lifting arm 72 with the opposite end of the lifting arm rotatably supported below the level of the support platform upon a pivot pin 73 affixed to plan 54.
  • the lifting arms are arranged to swing the retaining members through a vertical plane substantially parallel to the front margin of the individual stacks.
  • a second set of actuator arms is also rotatably supported below the level of the platform in flange 54.
  • the actuator arms are supported upon pivots 124 so that the arms, in a free or natural position, rest in contact with stops 124 as illustrated in FIG. 10.
  • Each actuator arm has a substantially horizontal dependent flange at the opposite end thereof adapted to operatively engage a pin affixed to lifting arm 72.
  • the trays In operation, when'fresh sheets are added to the trays, the trays are moved to a loading position and fresh sheets of support material simply aligned in the tray against the side and rear guides directly on top of the front edgeretaining members.
  • the retaining members When the tray is moved from the loading position toward the operative position in the direction indicated in FIG. 10, the retaining members will be automatically positioned in operative engagement with the topmost sheet in the stack in the position illustrated in FIG. 12.
  • a camming member 128 (FIG. 10) is supported in a housing 129 and the housing affixed to frame 91.
  • the camming member is supported in a position wherein the camming member engages the bottom surface 130 of the actuator arms 122 as the tray is moved between positions.
  • the camming member is freely supported so as to swing downwardly in a clockwise direction from its normal home position when the tray is moved to the loading position. However, the member is incapable of swinging in the opposite direction and therefore engages surface 130 when the tray is returned to the operative position as indicated in FIG. 10.
  • THE bottom surface of the actuator arms are cam profiles which impart a prescribed motion to the lifting arms causing the lifting arms to first elevate the retaining members 70 above the level of the stack and then return the members in a downward direction. The prescribed motion is translated from the actuator arms to the lifting arms through means of flange 121 swinging upwardly into contact with pin 120.
  • Each retaining member 70 is journaled for rotation in the free end of the associated lifting arm 72 upon a pin 71.
  • the retaining members 70 are designed so that their respective centers of gravity are located at a point wherein the freely supported member normally assumes a position with the tab normally extended in a horizontal position as shown in FIG. 11.
  • the fresh sheets therefore impede the upward movement of the tab when the lifting arms are elevated causing the hinged tabs to swing downwardly about the up wardly moving body 74.
  • the tabs continue to swing downwardly until they are removed from beneath the stack as shown in FIG. 13. Further elevation of the lifting arms moves the tabs upwardly in contact with the front margin of the stack until such time as the top of the stack is cleared.
  • the biasing spring acting in conjunction with the downwardly pulling weighted end 75 of the tab forces the tab to move rapidly back into its normal horizontally extended position.
  • the extended tabs engage the top sheet on the stack as shown in FIG. 12.
  • the actuator arms are allowed to continue to swing down until they come to rest once again against stops 124 so that the retaining members, and their associated lifting arms, hang in a suspended manner upon the stack to support the stack in sheet-feeding alignment.
  • the topmost sheet-in the stack is first separated from the main body of the stack by forming a separating buckle in the sheet and the sheet then forwarded to subsequent sheet handling means within sheet-registering apparatus 24.
  • the feed rollers 86 are rotated in a direction to cause the leading edge of the topmost sheet in the stack to be moved rearwardly from beneath the front edge retaining members 7 0.
  • trailing edge of the sheet is held stationary by the rear Walls 60 in rear retaining members 64 so that a separating buckle is formed longitudinally across sheet.
  • the suspended frontretaining members 70, and their respective lifting arms, at this time drop down into supporting engagement with the main body of the stack.
  • Drive shafts 89 associated with the two feed roller assemblies 85, are driven from a main programmer shaft 101 rotatably supported in the sheet-registering apparatus 24 (FIG. 3).
  • the programmer shaft is, in turn, driven in timed relation with the xerographic drum by means of the main machine drive (not shown) to coordinate sheet advancement with the processing of an image on the drum surface wherein the image and the copy sheet move into transfer station D in synchronous timed relation.
  • a pair of sheet feeding control cams 105, 106 are locked to the programmer shaft and operate through their associated cam follower linkage mechanisms to turn drive shafts 89 to separating and forwarding sheet from the trays into the sheet registering apparatus.
  • the sheets forwarded from the upper tray into the register stop rolls 138, 139 move along a path of travel considerably longer than that followed by sheets forwarded from the lower tray. Consequently, in order that sheets supplied from the upper tray reach the transfer station at the same time as the image on the drum surface, the upper tray separating and forwarding operations must be initiated prior in time than those of the lower tray during any given copying cycle.
  • the upper tray control cam 106 therefore, is advanced in relation to the lower tray control cam, upon the programmer shaft in the direction of rotation, a distance corresponding functionally to this difference in sheet travel time.
  • the upper feed roller control cam 106 translates the prescribed sheet feeding motion to the upper tray drive shaft by means of cam follower arm 111 and link 113 acting through segmented gear 114 and pinion 115. Similarly, identical motion is translated, later in time, to the lower tray drive shaft from the lower feed roll control 105 by means of cam follower 107 and link 109 acting through segmented gear 110 and pinion 108.
  • a prescribed motion is translated to the upper and the lower feed roller drive shafts 89 through their respective control cam systems which turns the drive shaft first in one direction for one-half a cycle and then in the opposite direction for the second half of the cycle.
  • the drive shafts are locked to the main drive system and continually turned in timed relation with the drum surface when the machine is in operation. Trough means of a clutching arrangement, only a portion of the shafts total motion, however, is imparted to the feed rollers during each paper forwarding cycle.
  • the desired mode of operation is first selected causing a signal to be sent to the machine control logic 139 (FIG 14), The signal is passed to the appropriate gate and either one of the two trays readied to feed sheets. However, before the signal is passed to the preselected tray clutch, an enabling signal must be received by the gate from a clutch timing switch. Tn energization of the individual clutches CL-I or CL-2, associated with the upper and lower trays, is controlled by means of a pair of limit switches SW-I and SW-2, respectively, which are actuated by timing cam segments 134 and 135 secured to the drum shaft 12.
  • the timing cam segments are arranged to hold the selected clutch energized for a period during each sheet-feeding cycle wherein the feed rollers perform the hereintofore described separating and forwarding functions.
  • THe appropriate clutch is energized as the feed roll drive shaft approaches the midpoint of its prescribed motion, that is, the point at which the direction of shaft rotation is reversed.
  • the timing is such as to cause the feed rollers to pull the uppermost sheet on the stack from beneath the retaining members 70 but insufficient to push the sheet from beneath the feed rollers thus forming a separating buckle in the sheet.
  • the clutch is held energized through the midpoint of the cycle. As the direction of feed roller rotation is reversed the separated sheet is forwarded by the rollers into subsequent sheet-advancing means associated with the sheet-registering apparatus.
  • the limit switch contact is broken and the clutch deenergized.
  • the feed rollers are idled and allow the trailing edge of the sheet to be pulled from thereunder by the subsequent sheet-advancing means.
  • the clutch remains idle until such time as another sheet-feeding cycle is initiated.
  • a sheet-registering apparatus 24 including two pairs of register stop rolls 138 and 139 arranged to momentarily interrupt the advancement of individual sheets fed from either the top tray or the lower tray.
  • the upper roll 138 has a stop face therein adapted to project downwardly into the sheet path of travel and interrupt the leading edge of a sheet moving therealong.
  • the sheet is driven into the two stop faces for a period of time sufficient to insure proper registration and then lower pinch rolls 139 are cammed into fraction driving contact with rolls 138 and the registered sheet rapidly accelerated to machine speed.
  • a second pair of drive rolls 160 (FIG.
  • cam 143 positions the stop face in a condition to interrupt and register a sheet being guided towards the transfer station.
  • pinch roll 139 is cammed upwardly towards the stop roll 138 to exert a driving pressure upon the sheet.
  • the camming of the pinch roll is controlled by a second cam 153 acting through follower arm 154 and link 155 secured to rocker shaft 162.
  • the stop rolls 138 accelerate the sheet to the desired velocity in less than one complete rotation of the roll.
  • the advancing function is then taken over by a set of drive rolls secured to constantly turning shaft 148 and the stop rolls idled.
  • a second set of pinch rolls are cammed to drive the moving sheet into pressure contact with the drive rolls by means ofa cam 156 (FIG. 1) acting through cam follower 157 and link 158 secured to a second rocker shaft 163.
  • duplex To duplex, the operator first insures that the upper tray is emptied of all copy sheets, a first original is placed upon the copyboard prior to the duplex mode of operation selected. Selection of the duplex mode of operation causes a solenoid SOL-1 (FIG. 5, 6) to be energized pulling down link 210. The downward motion of the link causes the lever arm to be rotated about stud 199 forcing flexible member 203 into biasing contact with a crank arm 204.
  • the crank arm 204 is provided with an arcuate shaped elongated hole 205 having a notch (not shown) machined in the bottom wall thereof.
  • a dependent arm 207 on the cam follower carried a drive pin 206 which is arranged to pass through the elongatedslotted hole provided in the crank arm.
  • solenoid SOL-l. is continually held energized and continues to exert a downward pressure on the lever arm 202.
  • the arm is initially prevented from swinging to a full down position by a stop pin- 222 affixed'in the lower portion of plate 220. Further movement of the crank arm, however, forces the stop pin 222 to be moved out of interference with the extended portion 196 of lever arm 202 allowing the solenoid to pull the lever arm to a full down position.
  • This initial rotation of plate 220 to a latch position conditions the upper trayto accept and restack sheetssupplied from the lower tray which have been xerographically' processed to produce an image on one side thereof.
  • First'movablc guide 45 (H6. 2), positioned in the circular sheet path, is pulled downwardly to direct sheetsfed along the sheet path directly into the upper tray.
  • the upper supply tray feed rollers are elevated out of the sheet feed path to permit sheets to be expelled fromthe movable guide directly into an upper tray in an unobstructed manner.
  • the movable guide 45 is pivotally mounted about a shaft 50 (FIG. 2) and normallyheld in an up position by spring 192. The movable guide is driven from the normally up position to a down position by means of actuator link 228.
  • upper sheet guide 194 of the sheet registering apparatus is provided with a hinge I95 and is normally held in an up position by means of a spring 192.
  • a the movable guide member 45 moves down into the duplexing position, extended section19l on the guide contacts the top of the hinged guide member moving the guide out of the way so that the-transport feed rolls 48and 49 can be placed in a positionto advance sheets from the movable transport into the upper tray.
  • camming rod "6 passes through machine frame 92 and the extended end thereof secured in eccentric link 240.
  • the extreme end of the eccentric link is journaled in the top portion of a second 8- shaped link 241 and the opposite end of the S-shaped link journaled for rotation in movable plate 220 upon the pin provided-A the crank arm is driven through its first reciprocating cycle, latching plate 220 is held in a latched condition against pin 222 and the S-shaped link 24! is pulled to a down position.
  • the front joggers 245 are secured to a'shaft 248 and the shaft rotatably supported in the machine frame (not shown) below the level and a bit forward of the-open end of the upper supply tray 52.
  • the shaft is coupledto the crank arm 204 by means of an extension spring 251 pinned to the crank arm. Extension of the crank arm during any reciprocating cycle causes the spring to pull a coupling 250 in aclockwise direction rotating shaft 248 in a counterclockwise direction;
  • the front joggers'are thus raised from a near horizontal position below the level of the tray to a sheet engaging vertical position as shown in FIG.
  • the front joggers are permitted to be moved by thecrank arm a greater distance than required to move the sheet into contact with the rear wall 60.
  • the pressure imparted by the cam system is regulated by the dampening action of the spring so that the spring is deformed before any damaging forces are transmitted to the copy sheets.
  • the rear end of the crank arm 204 is operatively connected to a bail 255 which is journaled between the machine frames upon shaft 258 and which extends horizontally beneath the upper supply tray 52.
  • the left-hand end of the bail shaft is affixed to a link 256 and the link rotatablysecured in the crank arm 206 wherein the bail swings upwardly as the crank moves to its fully extended position.
  • two vertically extended rods 259 slidably supported within individual housings 260.
  • the housings are mounted adjacent to the side margin guides in the cutouts provided upon the supply tray platform 56.
  • the vertically extended rod is arranged to pass through both the housing and the support platform and rides freely in contact with the bail carried beneath the tray platform.
  • FIG. 8 illustrates the internal arrangement of the rod within the individual housings 260.
  • the rod is supported within the housing frame and has an inverted truncated member 261 affixed to the center portion thereof.
  • a compression spring 262 is secured between the top of the housing and on the truncated member and acts to hold the vertical rod in biasing contact with the bail 255.
  • a flexible bar 263 is locked at one end to the housing by means of a clamp 264 (FIG. 7) and carries a vertically extended side margin jogger 246 on the free end thereof. The flexible bar rides in contact with the truncated member and is flexedinwardly towards the side margin of the upper supply stack as the rod is raised by the bail.
  • the two side joggers are adapted to move in concert into contact with the sheets to position the sheets therebetween in proper sheet feeding alignment.
  • the restacking force is transmitted through a flexible member which prevents sheet damaging forces from being imparted from the drive mechanism to the copy sheets.
  • the programmer shaft moves through one complete revolution for each xerographic'processing cycle and each sheet-feeding cycle.
  • the crank is also controlled by the'programmer shaft motion so that one reciprocating cycle of the crank is produced for each rotation of the programmer shaft. Because the motion of the individual joggers is physically linked to'the crank arm the joggers will act to align each individual sheet fed into the upper tray during duplexing operations thus insuring that the resultant stack is properly maintained in a condition wherein sheets are able to be once again fed through the xerographic processing stations.
  • cam 213 Upon completion of the restacking operation, cam 213 is permitted bythe machine logic to' make at least one more complete revolution.
  • a second solenoid SOL-2 is energized pulling the floating arm 271 (H6. 9) inwardly towards the solenoid body.
  • a universal member 272, passing through the floating arm, is rotatably mounted in a fixed position on vertical shaft 273. As can be seen, when the solenoid is energized the universal member is pulled in a counterclockwise direction towards the solenoid.
  • One end of the follower arm 208 is provided with a flange 274 which is moved downwardly as the follower traces the low side of the cam profile.
  • the universal member 271 When the flange is in the low position, the universal member 271 is able to be pulled over the flange by the solenoid. As the follower starts back in an upward direction during a subsequent rise portion of the cam cyclefthe flange is brought into contact with the bottom of the universal member. Further upper movements of the flange causes the universal to push against a fixed bushing 275 secured to shaft 273 lifting the shaft.
  • the bottom of the vertical shaft 273 is pinned to a link 278 which, in turn, is pivoted about a stub shaft 279.
  • the stub shaft is held in a stationary position in mounted block 280 which is secured to the machine frame.
  • the other end, or top of the i vertical shaft 273 is pinned to an actuator arm 283 and the arm rockably supported by stub shaft 284 secured in mounting block 285.
  • actuator arm 283 is swung in a clockwise direction as shown in FIG. 9 forcing a dowel pin 288 secured thereto into contact with a horizontal slide member 290 slidably supported in the upper tray.
  • Slide member is slidably mounted in the downwardly turned front flange 56 of the upper tray platform below the level of the stack and is adapted t'o'reciprocate in a horizontal direction.
  • the slide 290 is biased into contact with dowel 288 secured inarm 283 by means of an extension spring 307.
  • a pin 309 is staked to the upper tray platform flange and passes through a slotted hole 308 provided in the slide.
  • a second pin 310 is similarly staked to the slide member and the extension spring supported therebetween in a working position so as to urge the slide member against dowel 288.
  • a the cam 213 passes the rise portion of the cycle and returns toward the low portion thereof, the slide returns to its home position. At this time, the retaining members carried by the lifting arms are brought into engagement with the top of the stack proprietary to sheet-feeding operations.
  • a manual slide actuator 315 is provided at the opposite side of each tray which is affixed to the slide. If for some reason the retainer fails to engage the stack properly, the operator simply pulls the actuator laterally to recycle the retainers into proper alignment.
  • both solenoids SOL-1 and SOL-2 are deenergized. Deenergization of solenoid SOL-1 allows pin 206 to once again ride in contact with the top surface of slotted hole 205 in the crank arm. At this time arm 202 is moved upwardly unlatching movable plate 220 and the plate allowed to return once again to its normal home position thus placing the upper feed roll assembly in contact with the top of the stack and returning the movable sheet guides to the up position wherein sheets are capable of being fed from the upper tray through the circular paper feed directly into catch tray 51 (FIG. 1). At this time, the operator places a second original on the copyboard and starts the upper tray sheet feed operations. The simplex sheets are passed through the registration system and the xerographic processing stations wherein a duplexed image is placed on the backside thereof and the duplexed copy exhausted exterior the machine in catch tray 51.
  • a limit switch LS-3 is carried on one of the upper tray feed roll support members 88 and has a sensing arm 310 thereon capable of riding in contact with the top of the stack.
  • the actuator arm 312 is allowed to fall through opening 311 in the upper tray platform sending a signal to the logic system that the duplexing operations are completed. This signal is then used to program the mechanical drive system to terminate the machine operations.
  • Automatically repositionable apparatus for retaining a stack of cut sheets in alignment as sheets are separated and forwarded therefrom including a vertically aligned support body,
  • an extended tab having one end rotatably mounted upon said pivot pin and being arranged to swing downwardly from a first horizontally extended position to a second position substantially parallel to said body
  • mechanical biasing means including a torsion spring wound about said pivot pin in working condition with the end coils of said spring acting upon the body and the tab respectively to urge said tab into said first position
  • a stop affixed to said body and being engageable by said tab when in said first position wherein said tab is prevented from swinging beyond said first position and means to move said body along a path of travel substantially parallel to the front margin of the stack.
  • Apparatus to retain a stack of cut sheets of support material in sheet-feeding alignment as individual sheets are separated and forwarded therefrom said apparatus including a lifting arm pivotally mounted at one end below the stack and arranged to move in a plane substantially parallel to the front margin of the stack,
  • a body member mounted to rotate freely in the free end of said lifting arm wherein said body member remains in constant alignment in relation with the front margin of the stack as the lifting arm moves through said plane
  • a stack-engaging member mounted upon said body in a position to engage the uppermost sheet in said stack to support said stack in alignment as sheets are separated and forwarded therefrom.
  • said stack-engaging member comprises an extended tab being movably mounted on said body member and being arranged to swing downwardly from a first stack-engaging position perpendicular to said plane and a second nonengaging position substantially parallel to said plane.
  • the apparatus of claim 4 having further means to momentarily elevate the free end of said lifting arm above the level of said stack.
  • Apparatus to support a stack of cut sheets in sheet-feeding alignment as individual sheets are separated and forwarded from the top thereof said apparatus including a horizontal support tray having vertically extended side and rear margin guides being arranged to support a stack of cut sheets therebetween, said support tray being movable between an operative position and a loading position,
  • a vertically aligned body member mounted to rotate freely inthe free ends of each of said lifting arms wherein said body member remains in constant alignment in relation to the front margin of the stack as the lifting arms move in said plane
  • a stack-retaining tab movably supported in each of said body members and being capable of being urged downwardly from a normally maintained first stack-engaging position wherein said tab is extended substantially perpendicular to said plane towards a second position wherein said tab is substantially parallel to said plane,
  • actuating means to operatively engage said lifting arms and guide said lifting arms through a prescribed path of travel wherein the free ends of said arms are elevated momentarily above the level of the stack.
  • the apparatus of claim 6 further including means to activate said actuating means as said tray is moved from a loading position to an operative position wherein the lifting arms position said retaining tabs in engagement with the uppermost sheet in the stack.
  • the apparatus of claim 7 further including automatic control means to operatively engage and activate said actuating means to reposition said retaining tabs when the tray is in the operative position.
  • apparatus for supporting the stack in alignment including at least one lifting arm pivotally supported at one end in the tray below the level of the stack and being arranged to move in a plane substantially parallel to the front margin of the stack, said lifting arm supporting in the free end thereof a stack-retaining member or engaging the uppermost sheet in the stack and supporting the stack against movement,
  • a lever arm rotatably supported in a substantially horizontal position below the level of the stack and having means at one end thereof to operatively engage said lifting arm
  • control means to activate said drive means when new sheets are added to the stack wherein the retaining members are elevated to engage the newly added uppermost sheet in the stack.

Abstract

An automatically repositionable stack retainer is herein disclosed for supporting a stack of cut sheets of support material as the sheets are separated and fed one at a time from the stack. The retainer consists of a body having a tab pivotally mounted thereon, the tab being normally biased in a position to operatively engage the stack. An automatic elevating mechanism is provided to automatically raise the retainer when new sheets are added to the stack. The retainer is supported in the elevating mechanism so that the pivotable tab swings out of stack engagement as the retainer is elevated.

Description

nited States Patent {72] Inventors John M. Lang Williamson; Charles J. Kubasta, Rochester, both of, N.Y. [21] AppLNo. 838,907 [22] Filed July 3,1196%! [45] Patented Aug. 24,197] [73] Assignee Xerox Corporation Rochester, NY.
[54] SHEET RETAINING APPARATUS 4 10 Claims, 16 Drawing Figs.
[52] U.S.Cl 271/61, 27l/9 [5 1] int. Cl. B65h 1/04 [50] FieldofSeareh 271/61, 19,
Primary Examiner-Joseph Wegbreit Attorneys-Norman E. Schrader, James J. Ralabate and Michael Colitz, Jr.
ABSTRACT: An automatically repositionable stack retainer is herein disclosed for supporting a stack of cut sheets of support material as the sheets are separated and fed one at a time from the stack. The retainer consists of a body having a tab pivotally mounted thereon, the tab being normally biased in a position to operatively engage the stack. An automatic elevating mechanism is provided to automatically raise the retainer when new sheets are added to the stack. The retainer is supported in the elevating mechanism so that the pivotable tab swings out of stack engagement as the retainer is elevated.
mum] M24197: 3.601.394
I SHEET 01 0F 10 INVENTORS JOHN M. LANG CHARLES J. KUBASTA A T TORNEY PATENIEU Auc24 [an 3,601,394
' sum o3nr10 FIG. 8
PATENTEU m4 I971 3,601. 394
sum on HF 10 PATENTED AUG24|97I 3,601. 394
SHEET as ur 10 PATENTEU M824 l9?! SHEET 09 0F 10 PATENTEI] M824 I971 sum 10 [1F 10 SHEET RETAINING APPARATUS This invention relates to sheet-feeding mechanism and, in particular, to apparatus for retaining sheets in proper stack feeding alignment as the topmost sheet in the stack is separated and forwarded therefrom.
More specifically, this invention relates to automatically repositionable sheet retaining member for supporting a stack of cut sheets against movement as individual sheets are separated and forwarded from the top of the stack. This mechanism is particularly well suited, for use in automatic machines, as for example, automatic Xerographic reproducing apparatus.
When'feeding individual sheets of final support material from the top of a stack, it is extremely important to maintain the stack in proper sheet-feeding alignment in order to prevent the misfeeding of subsequent sheets. Many devices, such as gates, snubbers, and the like, capable of contacting the top of the stack in retaining engagement, are known and used in the art. However, most of these known devices suffer from the same serious disadvantage in that the sheet-retaining members must be manually repositioned when fresh sheets are added to the supply stack. I has been found that this manual operation is not only time consuming and subject to human errors, but also precludes this type of apparatus from being effectively employed in automatic devices where it is necessary to hold and store cut sheets of support material between automatic processing operations.
It is therefore a primary object of this invention to improve stack-retaining apparatus for use in a sheet-feeding deviceof the type wherein sheets are fed one at a time from the top of a stack.
A further object of this invention is to improve top sheetfeeding apparatus'used in automatic machines for storing and holding cut sheets of support material between automatic processing stations.
A still further object of this invention is to eliminate the need for manually repositioning sheet-retaining apparatus when fresh sheets are added to a supply stack.
These and other objects of the present invention are attained by means of an automatically repositionable stackretaining member adapted to engage the top of a stack of cut sheets to prevent movement of the stack as individual sheets are separated and forwarded therefrom, the apparatus includes a lifting arm pivotally supported at one end below the level of the stack and arranged to move througha vertical plane substantially parallel to the front margin of the stack, a body member rotatably supported in the free end of the lifting arm, and a stack engaging tab pivotally mounted in said body, means to bias the tab member in a normally horizontal position wherein the tab is capable of operatively engaging the top sheet in the stack, and means to raise the lifting arm wherein the tab is elevated momentarily above the top level of the stack.
For a better understanding of these and other objects of the present invention reference is had to the following detailed description of the invention to be read in connection with the accompanying drawings,wherein:
FIG. 1 is a schematic side elevation of an automatic xerographic reproducing machine for producing duplexed copies employing the apparatus of the present invention;
FIG. 2 is an enlarged partial side elevation of the sheethandling mechanism employed in the xerographic reproducing machine shown in FIG. 1 with parts broken away to better illustrate the construction thereof;
FIG. 3 is a top view showing the sheet-feeding mechanism associated with the upper supply tray illustrated in FIG. 2, and further showing the sheet separating and forwarding apparatus associated therewith;
FIG. 4 is a perspective view in partial section with pieces broken away showing the lower supply tray and its associated sheet separating and forwarding apparatus and also showing the sheet-registering apparatus employed in the automatic machine illustrated in FIG-1;
FIG. 5 is a perspective view showing the control mechanism and linkage for conditioning the upper supply tray to receive and restack sheets when the reproducing machine illustrated in FIG. 1 is a duplex-mode of operation;
FIG. 6 is a partial side elevation of the control mechanism and linkage illustrated in FIG. 5 showing crank arm mechanism in a latched condition;
FIG. 7 is a perspective view in partial section with parts broken away to clearly illustrate the sheet-jogging apparatus for restacking sheets forwarded into the upper tray;
FIG 8 is a partial front elevation in section illustrating the right-hand side jogger assembly of the paper-restacking apparatus shown in FIG 7;
FIG 9 is a perspective view illustrating the front edge-retaining members and the retainer positioning and control linkage associated with upper supply tray;
FIG. 10 is a front elevation of the upper supply tray displaced horizontally from the sheet-feeding position illustrated in FIG. 9 showing the right-hand comer retainer in a raised position;
FIG. 11 is an enlarged partial front elevation of the lefthand corner retainer and lifting arm shown in FIG. 9;
FIG. 12 is a right-hand side elevation of the retaining members illustrated in FIG. 11 with portions broken away showing the retainer resting in contact with the top of the sheet stack;
FIG. 13 is a side elevation of the retainer illustrated in FIG. 12 showing the lifting arm raising the retainer above the level of the stack;
FIG. 14 is a partial side view showing the cam and switching apparatus to control the movement of the upper and lower feed rolls;
FIG. 15 is a partial side view showing the crank arm mechanism illustrated in FIG. 6 in an unlatched condition;
FIG. 16 is a partial side view of the feed rolls illustrated in FIG. 9 showing the sheetsensing mechanism associated therewith.
As illustrated in FIG. 1, the apparatus of the present invention is shown herein embodied in an automatic xerographic reproducing machine capable of producing either simplexed or duplexed copies from a wide variety of originals such as copy sheets, books, or three dimensional forms. Although the present invention is particularly well suited for use in automatic xerography, the sheet-feeding apparatus herein disclosed is equally well adapted for use in any number of devices in which cut sheets of material are stored in a stack and the individual sheets then separated and forwarded to a subsequent processing station. It should become apparent from the discussion below that this apparatus is not necessarily limited to its application to the particular embodiment shown herein.
The automatic xerographic apparatus illustrated in FIG. 1 includes a photosensitive plate including a photoconductive layer 10 that is placed over a conductive backing. The plate is formed in the shape of a drum 1 l and the drum mounted upon a shaft 12 that is joumaled for rotation in the machine frame.
' Basically, the xerographic drum is rotated in the direction indicated so as, to pass sequentially through a series of xerographic processing stations. The photosensitive drum and the xerographic processing apparatus are driven at predetermined speeds relative to each other from a single drive system (not shown) and the operations thereof coordinated in order to produce proper cooperation of the various processing mechanisms.
The original object to be reproduced is placed upon a transparent horizontally supported platen l4 and the original scanned by means of a moving optical-scanning system to produce a flowing light image of the original. The scanning system includes an elongated horizontal extended aperture lamp l5 and a movable lens element 18. The lamp and lens element moves in coordination across the object supported upon the platen to focus successive incremental bands of illumination reflected from the object onto the moving drum surface at synchronous speeds therewith. The optical path is folded by means of a pair of image mirrors 19 and 20 interposed between the lens and the drum surface and arranged to place the image on the drum at exposure station B. Prior to the imaging of the drum surface, the drum is first uniformly charged by means of a corona generator 13 positioned in charging station A. Under the influence of the flowing light image, the uniformly charged photoconductive surface is selectively dissipated in the nonimaged areas to form what is commonly known as a latent electrostatic image.
The latent electrostatic image is carried on the drum surface from the exposure station into the developing station C. TI-Ie developing station primarily is comprised of a developer housing 22 adapted to ends of a supply of two-component developer material 21 therein. The developer material is transported by means of a bucket system 23 from the bottom of the developer housing to an elevated position where the material is delivered into the active development zone. TI-le developer material is caused to flow downwardly in contact with the upwardly moving drum surface under closely controlled conditions wherein charged toner particles are attracted from the developer mix into the image areas on the plate surface thus making the image visible.
The moving drum surface next transports the developed xerographic image to a transfer station D. Cut sheets of final support material are also moved into the transfer station from sheet registering apparatus 24 in synchronous relation with the image on the drum surface. In the transfer station, the backside of the copy sheet is sprayed with an ion discharge from a transfer corotron 25 inducing on the sheet a charge having a polarity and magnitude sufficient to attract the toner material from the drum surface to the final support material. This induced charge also electrostatically tacks the final support material to the drum surface. In order to remove the copy sheet from the drum surface, a stripper finger 28 is positioned downstream from the transfer corotron. The finger is arranged to move between the drum surface and the copy sheet and lifts the sheet from the drum surface. The stripped sheet is directed along a predetermined path of travel into contact with a stationary vacuum transport 29.
Although a preponderance of the toner material is transferred from the drum surface to the copy sheet during the transfer process, invariably some residual toner remains behind on the drum surface after transfer. This residual toner is transported on the drum surface into a cleaning station E where it is brought under the influence of cleaning corotron 30 adapted to neutralize the electrostatic charge tending to hold the residual toner to the drum surface. The neutralized toner is mechanically cleaned from the drum surface by means of a brush or the like and the toner collected within a housing 31. A conveyor moving in an endless loop through tubes 32 transport the collected residual toner back to the developer housing where it is deposited within the developer mix so that it can be once again reused in the xerographic developing process.
The copy sheet, which has been removed from the drum surface after the transfer operation, is moved along stationary transport 29 into fusing station F. The fuser 33 is basically made up of an upper fuser roll 34 and a lower fuser roll 35 mounted in operative relation to each other and arranged to coact so as to support a sheet of material in pressure-driving contact therebetween. The outer surface of the lower roll is heated by means of a horizontally supported radiant heat source 38 positioned in close proximity to the roll surface adjacent to the point at which the roll contacts the image-bearing support material. As the heated roll is rotated in the direction indicated, the heated surface of the lower roll is pressed into intimate contact with the image face of the support sheet. Mechanical and heat energy transported from the roll surface to the support sheet to permanently bond the toner particles to the support material.
Upon leaving the fuser, the fixed copy sheet is passed through a curvilinear sheet guide system, generally referred to as 39, into cooperating advancing rolls 40 and 41. The advancing rolls forward the sheetsthrough a linear sheet guide system 42 into a second pair of advancing rolls 43 and 44. At this point, depending on the mode of operation selected, the simplexed copy sheet is either forwarded into catch tray 51 or into upper supply tray 52 by means of a movable sheet'guide 45. As will be explained in greater detail below, movable sheet guide 45, and it associated advancing rolls, are prepositioned by the machine logic system to direct'the individual sheets into the desired paper tray.
It is believed that the foregoing description is sufficient for purposes of the present application to show the general operation of a xerographic reproducing machine embodying the teachings of the present invention.
Referring now specifically to FIGS. 2-16, there is shown the sheet-handling apparatus of the present invention which enables a conventional xerographic machine to produce either simplexed or duplexed copies. The mechanism to accomplish this unique result includes two substantially vertically aligned supply trays 52, 53 arranged to advance copy sheets into the xerographic transfer station D and a circular sheet path adapted to operatively connect the lower supply tray 53 to the upper supply tray 52. A movable sheet guide, generally referred to as 45, is placed in the sheet path and is positionable, depending on the mode of machine operation selected, to direct xerographically processed sheets of material either into a final collecting station or into the upper supply tray 52. In the simplex mode of operation, the movable sheetguide 45 is positioned as shown by the solid lines in FIG. 1 in a position to direct copy sheets into catch tray 51.
When duplexed copies are to be produced, the movable guide ismoved to the position shown in FIG. 2 and the upper tray conditioned to accept and restack simplexed copy sheets. The upper tray is further conditioned to separate and forward sheets seriatim through the xerographic processing station once again where asecond image is placed on the backside of the sheet. Heretofore, the conditioning of the sheet-handling equipment to accept and recirculate simplexed .copy has generally been a manual operation. However, as will be explained in greater detail below, the apparatus of the present invention now makes it possible to automatically hold and then reprocess the copy sheets between copy runs.
The individual supply trays 52, 53 are movably supported between the machine frames 91, 92 upon a set of rails 104 (FIG. 2) and are capable of being moved in a horizontal direction between a first operative position and a second loading position. In the operative position, the sheet trays are supported adjacent to the sheet-registering apparatus 24 wherein sheets forwarded from either tray are directed into a pair of sheet-registering rolls which align the sheets prior to them being forwarded into the transfer station. q
As illustrated in FIG. 2, both the upper supply tray and the lower supply tray are of similar construction. The trays include a horizontal support platform 56 having a dependent, downwardly turned, vertical aligned front flange '54, a stationary side margin guide 59 and a movable side margin guide 58. The stationary margin guide is rigidly affixed to the support platform and has a vertically extended leg thereon. The movable guide similarly has a vertical leg complimentary to that of the stationary side margin guide and is adapted to cooperate therewith to guide individual sheets forwarded from the trays along a predetermined path of travel into the sheet registering apparatus 24. The movableside margin guide is slidably carried upon the support platform and arranged to move laterally thereon making it possible to accommodate sheets of varying lengths upon the platform. To aid in the correctpositioning of a stack of final support sheets within the tray, the tray is provided with an indexing scale 55 for laterally positioning the movable side margin guide.
AN L-shaped rear retaining member is affixed to each of the vertical legs of the side margin guides. The two rear retaining members associated with eachsupply tray cooperate to longitudinally position the-stack upon the support platform.
The members are basically formed of an angular plate including a rear wall 60 and a flange 61 adapted to overlay in parallel relation the vertical legs of the side margin guide members. Each of the side margin guides is provided with a stud, (not shown) which protrudes through a horizontally slotted hole in the flange 61 of the rear retaining member 64 and is engaged by a thumb nut 62 whereby each rear retaining member may be adjusted and tightened against the side margin guide.
To feed sheets of final support material one at a time from each of the individual supply trays, there is provided a sheet separating and feeding means, generally referenced 85, consisting of a pair of driven feed rollers 86 supported in a selfaligning manner within floating bearings secured to a shaft 87. The shaft 87, in turn, is secured in bearing blocks 90 mounted in the front or free ends of two support arms 88. The opposite ends of thesupport arms are similarly secured to a drive shaft 89 and the drive shaft journaled for rotation in the machine frames 91, 92 above and to the rear of the individual supply trays permitting the feed rollers to rest freely in contact with the uppermost sheet in the stack.
As individual sheets are fed from the stacks, the freely mounted, self-adjusting, feed rolls drop down into contact with the next subsequent sheet in the stack. Each feed roller is operatively connected to the drive shaft 89 by means of a clutch and pulley arrangement. The prescribed sheet-feeding motion is translated to the rollers through the clutch and pulley arrangement in proper timed relation with an image on the drum surface wherein the advanced sheets and the image arrive at the transfer station at the same time. The upper supply tray 52 and the lower supply tray 53 are provided with similar electromagnetic clutches CL-l and CL- 2, respectively. The clutches include a drive unit 96 pinned to the drive shaft 89 and a driven unit 95 which is rotatably supported upon the drive shaft in a roller bearing provided (not shown). A timing pulley 83 is locked to the driven end of the clutch and is operatively connected to a second drive pulley 93, which is pinned to shaft 87, by means ofa timing belt 82.
To facilitate movement of either of the supply trays in a horizontal direction between their respective operative positions and loading positions, there is provided elevating means to raise the feed rollers above the top level of the trays. As shown, a camming arm 116, having an offset 117 thereon, is rotatably supported between the machine frames 91 and 92. The offset 117 is arranged to pass through an elongated aperture 118 in both the support arms 88 of the feed roll assemblies. One end of the camming arm passes through the machine frame 91 and has a crank arm 119 secured thereto. Rotation of a crank in a clockwise direction as shown in FIG 3 causes the offset 117 to move upwardly raising the feed roller support arms and thus elevating the entire feed roller assembly to a level sufficient to allow the supply tray to be operatively repositioned in a horizontal'direction.
As can be seen, the side of each of the support platforms adjacent to the sheet-registering apparatus is unobstructed so that an uninterrupted path of travel is provided along which individual sheets of support material, which have been separated from the individual stacks, can be forwarded into the registering means. To retain the front margins of the individual stacks in alignment during sheet separation and forwarding there is provided a pair of front margin sheet-retaining members 70. Each retaining member 70 includes a main body 74 about which is rotatably mounted a hinged tab 75. As illustrated in FIGS. 13. the tab is pivotally mounted in the body upon a pivot rod 79. A torsion spring 81 is wound about the rod and normally biases the tab against a stop 80 afiixed to the body of the member to hold the tab in a horizontally extended position substantially perpendicular to the body of the retainer.
As shown in FIG. 10, each of the two retaining members associated with the individual trays is carried within the free end of a lifting arm 72 with the opposite end of the lifting arm rotatably supported below the level of the support platform upon a pivot pin 73 affixed to plan 54. The lifting arms are arranged to swing the retaining members through a vertical plane substantially parallel to the front margin of the individual stacks. A second set of actuator arms is also rotatably supported below the level of the platform in flange 54. The actuator arms are supported upon pivots 124 so that the arms, in a free or natural position, rest in contact with stops 124 as illustrated in FIG. 10. Each actuator arm has a substantially horizontal dependent flange at the opposite end thereof adapted to operatively engage a pin affixed to lifting arm 72.
In operation, when'fresh sheets are added to the trays, the trays are moved to a loading position and fresh sheets of support material simply aligned in the tray against the side and rear guides directly on top of the front edgeretaining members. When the tray is moved from the loading position toward the operative position in the direction indicated in FIG. 10, the retaining members will be automatically positioned in operative engagement with the topmost sheet in the stack in the position illustrated in FIG. 12.
A camming member 128 (FIG. 10) is supported in a housing 129 and the housing affixed to frame 91. The camming member is supported in a position wherein the camming member engages the bottom surface 130 of the actuator arms 122 as the tray is moved between positions. The camming member is freely supported so as to swing downwardly in a clockwise direction from its normal home position when the tray is moved to the loading position. However, the member is incapable of swinging in the opposite direction and therefore engages surface 130 when the tray is returned to the operative position as indicated in FIG. 10. THE bottom surface of the actuator arms are cam profiles which impart a prescribed motion to the lifting arms causing the lifting arms to first elevate the retaining members 70 above the level of the stack and then return the members in a downward direction. The prescribed motion is translated from the actuator arms to the lifting arms through means of flange 121 swinging upwardly into contact with pin 120.
Each retaining member 70 is journaled for rotation in the free end of the associated lifting arm 72 upon a pin 71. The retaining members 70 are designed so that their respective centers of gravity are located at a point wherein the freely supported member normally assumes a position with the tab normally extended in a horizontal position as shown in FIG. 11. When new sheets are added to the supply stack the sheets rest on top of tabs 78. The fresh sheets therefore impede the upward movement of the tab when the lifting arms are elevated causing the hinged tabs to swing downwardly about the up wardly moving body 74. The tabs continue to swing downwardly until they are removed from beneath the stack as shown in FIG. 13. Further elevation of the lifting arms moves the tabs upwardly in contact with the front margin of the stack until such time as the top of the stack is cleared. At this time, the biasing spring acting in conjunction with the downwardly pulling weighted end 75 of the tab, forces the tab to move rapidly back into its normal horizontally extended position. As the lifting arms start downwardly through the prescribed path of motion, the extended tabs engage the top sheet on the stack as shown in FIG. 12. The actuator arms are allowed to continue to swing down until they come to rest once again against stops 124 so that the retaining members, and their associated lifting arms, hang in a suspended manner upon the stack to support the stack in sheet-feeding alignment.
In order to feed individual sheets from either of the two supply stacks, the topmost sheet-in the stack is first separated from the main body of the stack by forming a separating buckle in the sheet and the sheet then forwarded to subsequent sheet handling means within sheet-registering apparatus 24. At the beginning of each sheet-feeding cycle, the feed rollers 86 are rotated in a direction to cause the leading edge of the topmost sheet in the stack to be moved rearwardly from beneath the front edge retaining members 7 0. Then trailing edge of the sheet, however, is held stationary by the rear Walls 60 in rear retaining members 64 so that a separating buckle is formed longitudinally across sheet. The suspended frontretaining members 70, and their respective lifting arms, at this time drop down into supporting engagement with the main body of the stack. The direction of rotation of the feed rollers is then reversed and the now separated sheet driven over the top of the horizontally extended tabs 75 into sheet-registering apparatus 24. The rear surfaces of the extended tabs taper down in knife edge fashion so as to allow the forwarded sheets to pass easily thereover.
Drive shafts 89, associated with the two feed roller assemblies 85, are driven from a main programmer shaft 101 rotatably supported in the sheet-registering apparatus 24 (FIG. 3). The programmer shaft is, in turn, driven in timed relation with the xerographic drum by means of the main machine drive (not shown) to coordinate sheet advancement with the processing of an image on the drum surface wherein the image and the copy sheet move into transfer station D in synchronous timed relation.
A pair of sheet feeding control cams 105, 106 are locked to the programmer shaft and operate through their associated cam follower linkage mechanisms to turn drive shafts 89 to separating and forwarding sheet from the trays into the sheet registering apparatus. As can be seen, the sheets forwarded from the upper tray into the register stop rolls 138, 139 move along a path of travel considerably longer than that followed by sheets forwarded from the lower tray. Consequently, in order that sheets supplied from the upper tray reach the transfer station at the same time as the image on the drum surface, the upper tray separating and forwarding operations must be initiated prior in time than those of the lower tray during any given copying cycle. The upper tray control cam 106, therefore, is advanced in relation to the lower tray control cam, upon the programmer shaft in the direction of rotation, a distance corresponding functionally to this difference in sheet travel time.
As illustrated in FIGS. 2 and 4, the upper feed roller control cam 106 translates the prescribed sheet feeding motion to the upper tray drive shaft by means of cam follower arm 111 and link 113 acting through segmented gear 114 and pinion 115. Similarly, identical motion is translated, later in time, to the lower tray drive shaft from the lower feed roll control 105 by means of cam follower 107 and link 109 acting through segmented gear 110 and pinion 108.
For each complete revolution of the programmer shaft, a prescribed motion is translated to the upper and the lower feed roller drive shafts 89 through their respective control cam systems which turns the drive shaft first in one direction for one-half a cycle and then in the opposite direction for the second half of the cycle. The drive shafts are locked to the main drive system and continually turned in timed relation with the drum surface when the machine is in operation. Trough means of a clutching arrangement, only a portion of the shafts total motion, however, is imparted to the feed rollers during each paper forwarding cycle.
In practice, the desired mode of operation is first selected causing a signal to be sent to the machine control logic 139 (FIG 14), The signal is passed to the appropriate gate and either one of the two trays readied to feed sheets. However, before the signal is passed to the preselected tray clutch, an enabling signal must be received by the gate from a clutch timing switch. Tn energization of the individual clutches CL-I or CL-2, associated with the upper and lower trays, is controlled by means of a pair of limit switches SW-I and SW-2, respectively, which are actuated by timing cam segments 134 and 135 secured to the drum shaft 12. The timing cam segments are arranged to hold the selected clutch energized for a period during each sheet-feeding cycle wherein the feed rollers perform the hereintofore described separating and forwarding functions. THe appropriate clutch is energized as the feed roll drive shaft approaches the midpoint of its prescribed motion, that is, the point at which the direction of shaft rotation is reversed. The timing is such as to cause the feed rollers to pull the uppermost sheet on the stack from beneath the retaining members 70 but insufficient to push the sheet from beneath the feed rollers thus forming a separating buckle in the sheet. The clutch is held energized through the midpoint of the cycle. As the direction of feed roller rotation is reversed the separated sheet is forwarded by the rollers into subsequent sheet-advancing means associated with the sheet-registering apparatus. At this time, the limit switch contact is broken and the clutch deenergized. The feed rollers are idled and allow the trailing edge of the sheet to be pulled from thereunder by the subsequent sheet-advancing means. The clutch remains idle until such time as another sheet-feeding cycle is initiated.
Referring now specifically to FIGS. 2 and 4, there is illustrated a sheet-registering apparatus 24 including two pairs of register stop rolls 138 and 139 arranged to momentarily interrupt the advancement of individual sheets fed from either the top tray or the lower tray. The upper roll 138 has a stop face therein adapted to project downwardly into the sheet path of travel and interrupt the leading edge of a sheet moving therealong. The sheet is driven into the two stop faces for a period of time sufficient to insure proper registration and then lower pinch rolls 139 are cammed into fraction driving contact with rolls 138 and the registered sheet rapidly accelerated to machine speed. Upon reaching machine speed, a second pair of drive rolls 160 (FIG. 4) and their associated pinch rolls (not shown) take over the advancing function and deliver the sheet into transfer station D Here again the movement of the individual sheets is controlled by a series of cams secured to the programmer shaft 101. The motion of the register stop roll 138 is controlled by cam 143 (FIG. 4) which turns a drive shaft 148 through means of a cam follower 145 and a segmented gear 146 acting on pinion 147. Shaft 148 is jou rnaled in the side frames of the sheet-registering apparatus in parallel relation to the stop roll support shaft 149 and has a pair of drive pinions 150 secured thereto. Each of the stop rolls 138 is mounted for free rotation upon shaft 149 and has a dependent gear 151 thereon which meshes with the drive pinion 150.
In operation, cam 143 positions the stop face in a condition to interrupt and register a sheet being guided towards the transfer station. After registration, pinch roll 139 is cammed upwardly towards the stop roll 138 to exert a driving pressure upon the sheet. As shown in FIGS 1 and 2, the camming of the pinch roll is controlled by a second cam 153 acting through follower arm 154 and link 155 secured to rocker shaft 162. The stop rolls 138 accelerate the sheet to the desired velocity in less than one complete rotation of the roll. When machine velocity is reached, the advancing function is then taken over by a set of drive rolls secured to constantly turning shaft 148 and the stop rolls idled. A second set of pinch rolls are cammed to drive the moving sheet into pressure contact with the drive rolls by means ofa cam 156 (FIG. 1) acting through cam follower 157 and link 158 secured to a second rocker shaft 163. When the trailing edge of the sheet has cleared the stop rolls, the stop rolls are once again placed in as condition to intercept the next subsequent sheet being guided into the transfer station.
While sheets fed from the lower tray are advanced directly into the register stop rolls, the sheet fed from the upper tray being at a more remote location must be delivered first into a constantly moving set of supplementary drive rolls 140 and 141 which further advance the sheet along the guided path of travel shown in FIG 2 into the registration station.
To duplex, the operator first insures that the upper tray is emptied of all copy sheets, a first original is placed upon the copyboard prior to the duplex mode of operation selected. Selection of the duplex mode of operation causes a solenoid SOL-1 (FIG. 5, 6) to be energized pulling down link 210. The downward motion of the link causes the lever arm to be rotated about stud 199 forcing flexible member 203 into biasing contact with a crank arm 204. The crank arm 204 is provided with an arcuate shaped elongated hole 205 having a notch (not shown) machined in the bottom wall thereof. A dependent arm 207 on the cam follower carried a drive pin 206 which is arranged to pass through the elongatedslotted hole provided in the crank arm. Normally the pin will ride freely j along the top surface of the slotted hole 205 wherein the crank arm remains relatively stationary as the follower arm is rocked by the continually rotating cam 213. However, as flexible member 203 is forced upwardly by the energized solenoid SOL-1, pin 206 is forced to ride along the bottom surface of the slotted hole. Pin 206 falls into the notch provided in the pressure exerted by flexible arm 203. Further motion of the cam is then translated directly to the crank arm through the follower arm 208, which is biased in a continuous contact with the cam face by spring 198, causing the crank to reciprocate back and forth in substantially a horizontal direction.
- lower surface of the slotted hole and is held therein ,by the Y I forward, that is, to theright, toward a fully extended position, 1
the movable plate is rotated in a clockwise direction. During this period, solenoid SOL-l. is continually held energized and continues to exert a downward pressure on the lever arm 202. As illustrated in. FIG. 15, the arm, however, is initially prevented from swinging to a full down position by a stop pin- 222 affixed'in the lower portion of plate 220. Further movement of the crank arm, however, forces the stop pin 222 to be moved out of interference with the extended portion 196 of lever arm 202 allowing the solenoid to pull the lever arm to a full down position. Now, as the crank arm starts back from its fully extendedposition, the stop pin 222 moves into contact with, the vertical surface 223 on the extended arm 1% to latch movable plate 220 in a stationary position as illustrated in FIG. 6. The plate will remain in this latched position as long as solenoid SOL-l is held energized.
This initial rotation of plate 220 to a latch position conditions the upper trayto accept and restack sheetssupplied from the lower tray which have been xerographically' processed to produce an image on one side thereof. First'movablc guide 45 (H6. 2), positioned in the circular sheet path, is pulled downwardly to direct sheetsfed along the sheet path directly into the upper tray. Secondly, the upper supply tray feed rollers are elevated out of the sheet feed path to permit sheets to be expelled fromthe movable guide directly into an upper tray in an unobstructed manner. The movable guide 45 is pivotally mounted about a shaft 50 (FIG. 2) and normallyheld in an up position by spring 192. The movable guide is driven from the normally up position to a down position by means of actuator link 228. One end of the link is freely supported in the mova ble guide 45 upon shaft 187 (FIG 5) while the opposite end of the link is mounted upon stop pin 222 which is staked in rotatable plate 220. Pin 222 extends rearwardly through a hole provided in machine frame 92 and is-slidably received within a slotted hole 227 in the actuator link. Aadjustment screw.229, which is mounted in a vertical flange 230 on the driven end of the link, limits the length of the path of travel along which pin 222 may slide within hole 227. A the plate 220 is moved in a clockwise direction as explained above, stop pin 222 engages adjustment screw- 227 pulling the link 228 towards the rear of the upper tray. This rearward motion of thelink, in turn, pulls themovable guide to afull down position so that it is now in a condition to feed sheets directly into tray 53. I
A illustrated in FIG 2, upper sheet guide 194 of the sheet registering apparatus is provided with a hinge I95 and is normally held in an up position by means of a spring 192. A the movable guide member 45 moves down into the duplexing position, extended section19l on the guide contacts the top of the hinged guide member moving the guide out of the way so that the-transport feed rolls 48and 49 can be placed in a positionto advance sheets from the movable transport into the upper tray.
When plate 222 is moved to the latched position by solenoid SOL-1 further mechanism is activated to elevate the upper tray feed roller assembly. As seen in FIG; 5 camming rod "6 passes through machine frame 92 and the extended end thereof secured in eccentric link 240. The extreme end of the eccentric link, is journaled in the top portion of a second 8- shaped link 241 and the opposite end of the S-shaped link journaled for rotation in movable plate 220 upon the pin provided-A the crank arm is driven through its first reciprocating cycle, latching plate 220 is held in a latched condition against pin 222 and the S-shaped link 24! is pulled to a down position. This downward motion of the link causes camming rod 116 to be rotated in a direction raising offset 117 to an elevated position thus forcing the feed roller assembly above the top level of the upper tray. Therefore, during the first full reciprocating cycle of the crank arm 204, the movable guide 45 is moved to a down position and the upper feed rolls are elevated to allow sheets forwarded along the circular path of travel to be fed into the upper tray.
' Sheets forwarded from the lower tray are registered in the register stop rolls and then passed through transfer station D to the xerographic processing stations where a first image is placed upon the copy sheet. The copy sheet advanced by means of the heretofore described sheet-advancing rolls into the upper supply tray. Delivering a simplex sheet tothe upper I .The sheet restacking apparatus associated with the upper supply tray 52 is shown in greater detail in FIGS 7 and 8. The restacking fundamentally consists of two front margin aligning members or joggers 245 and two side margin joggers generally referred to as 257, both of which are driven by means of crank arm 204. When a simplexed sheet has been delivered into the 'upper supply tray, the front joggers are moved upwardly into contact with the front margin of the sheet forcing the sheet into registration with the backwall 60 of the supply tray.
Simultaneously, two side joggers move into contact with the 7 side margin of the sheet to laterally align the sheet with the tray. v The front joggers 245 are secured to a'shaft 248 and the shaft rotatably supported in the machine frame (not shown) below the level and a bit forward of the-open end of the upper supply tray 52. The shaft is coupledto the crank arm 204 by means of an extension spring 251 pinned to the crank arm. Extension of the crank arm during any reciprocating cycle causes the spring to pull a coupling 250 in aclockwise direction rotating shaft 248 in a counterclockwise direction; The front joggers'are thus raised from a near horizontal position below the level of the tray to a sheet engaging vertical position as shown in FIG. 7 to force the sheets rearwardly into registration against the backwall 60 of the tray. in orderto insure that each sheet is registered against the back of the tray, the front joggers are permitted to be moved by thecrank arm a greater distance than required to move the sheet into contact with the rear wall 60. As can be seen, however, the pressure imparted by the cam system is regulated by the dampening action of the spring so that the spring is deformed before any damaging forces are transmitted to the copy sheets.
The rear end of the crank arm 204 is operatively connected to a bail 255 which is journaled between the machine frames upon shaft 258 and which extends horizontally beneath the upper supply tray 52. As shown in FIG 7, the left-hand end of the bail shaft is affixed to a link 256 and the link rotatablysecured in the crank arm 206 wherein the bail swings upwardly as the crank moves to its fully extended position. Riding in contact with the top surface of the bail are two vertically extended rods 259 slidably supported within individual housings 260. The housings are mounted adjacent to the side margin guides in the cutouts provided upon the supply tray platform 56. The vertically extended rod is arranged to pass through both the housing and the support platform and rides freely in contact with the bail carried beneath the tray platform.
FIG. 8 illustrates the internal arrangement of the rod within the individual housings 260. The rod is supported within the housing frame and has an inverted truncated member 261 affixed to the center portion thereof. A compression spring 262 is secured between the top of the housing and on the truncated member and acts to hold the vertical rod in biasing contact with the bail 255. A flexible bar 263 is locked at one end to the housing by means of a clamp 264 (FIG. 7) and carries a vertically extended side margin jogger 246 on the free end thereof. The flexible bar rides in contact with the truncated member and is flexedinwardly towards the side margin of the upper supply stack as the rod is raised by the bail. The two side joggers are adapted to move in concert into contact with the sheets to position the sheets therebetween in proper sheet feeding alignment. Here again, the restacking force is transmitted through a flexible member which prevents sheet damaging forces from being imparted from the drive mechanism to the copy sheets.
ln practice, the programmer shaft moves through one complete revolution for each xerographic'processing cycle and each sheet-feeding cycle. The crank is also controlled by the'programmer shaft motion so that one reciprocating cycle of the crank is produced for each rotation of the programmer shaft. Because the motion of the individual joggers is physically linked to'the crank arm the joggers will act to align each individual sheet fed into the upper tray during duplexing operations thus insuring that the resultant stack is properly maintained in a condition wherein sheets are able to be once again fed through the xerographic processing stations.
When the upper tray is cleared prior to duplexing the retaining members are automatically repositioned in the bottom of the upper tray. The simplexed sheets delivered into the tray are simply restacked directly above the extended tabs.
Upon completion of the restacking operation, cam 213 is permitted bythe machine logic to' make at least one more complete revolution. As the cam follower passes the low point in its motion; a second solenoid SOL-2 is energized pulling the floating arm 271 (H6. 9) inwardly towards the solenoid body. A universal member 272, passing through the floating arm, is rotatably mounted in a fixed position on vertical shaft 273. As can be seen, when the solenoid is energized the universal member is pulled in a counterclockwise direction towards the solenoid. One end of the follower arm 208 is provided with a flange 274 which is moved downwardly as the follower traces the low side of the cam profile. Whenthe flange is in the low position, the universal member 271 is able to be pulled over the flange by the solenoid. As the follower starts back in an upward direction during a subsequent rise portion of the cam cyclefthe flange is brought into contact with the bottom of the universal member. Further upper movements of the flange causes the universal to push against a fixed bushing 275 secured to shaft 273 lifting the shaft.
The bottom of the vertical shaft 273 is pinned to a link 278 which, in turn, is pivoted about a stub shaft 279. The stub shaft is held in a stationary position in mounted block 280 which is secured to the machine frame. The other end, or top of the i vertical shaft 273 is pinned to an actuator arm 283 and the arm rockably supported by stub shaft 284 secured in mounting block 285. As the shaft is raised, actuator arm 283 is swung in a clockwise direction as shown in FIG. 9 forcing a dowel pin 288 secured thereto into contact with a horizontal slide member 290 slidably supported in the upper tray.
Slide member is slidably mounted in the downwardly turned front flange 56 of the upper tray platform below the level of the stack and is adapted t'o'reciprocate in a horizontal direction. When the tray is'in anoperative position; the slide 290 is biased into contact with dowel 288 secured inarm 283 by means of an extension spring 307. A pin 309 is staked to the upper tray platform flange and passes through a slotted hole 308 provided in the slide. A second pin 310 is similarly staked to the slide member and the extension spring supported therebetween in a working position so as to urge the slide member against dowel 288.
As previously described two actuator arms 122 are supported in the front of the upper tray and nonnally rest against stops 124 affixed to slide member 290. AS can be seen, as shaft 273 moves upwardly, dowel pin 288 is forced against slide 290 causing the slide to move in a horizontal direction against the biasing force of spring 307. As the slide moves in the horizontal direction, stops 124 are moved over the cam surfaces 316 of the actuator arms 122 causing the anns to swing in a clockwise direction. Slide 290 is moved far enough in a horizontal direction to displace pin 124 sufficiently to cause the lifting arms to raise retaining member .70 as described above to an elevation above the top level of the tray. A the cam 213 passes the rise portion of the cycle and returns toward the low portion thereof, the slide returns to its home position. At this time, the retaining members carried by the lifting arms are brought into engagement with the top of the stack proprietary to sheet-feeding operations. A manual slide actuator 315 is provided at the opposite side of each tray which is affixed to the slide. If for some reason the retainer fails to engage the stack properly, the operator simply pulls the actuator laterally to recycle the retainers into proper alignment.
At the completion of the automatic restacking and retainer positioning operation, both solenoids SOL-1 and SOL-2 are deenergized. Deenergization of solenoid SOL-1 allows pin 206 to once again ride in contact with the top surface of slotted hole 205 in the crank arm. At this time arm 202 is moved upwardly unlatching movable plate 220 and the plate allowed to return once again to its normal home position thus placing the upper feed roll assembly in contact with the top of the stack and returning the movable sheet guides to the up position wherein sheets are capable of being fed from the upper tray through the circular paper feed directly into catch tray 51 (FIG. 1). At this time, the operator places a second original on the copyboard and starts the upper tray sheet feed operations. The simplex sheets are passed through the registration system and the xerographic processing stations wherein a duplexed image is placed on the backside thereof and the duplexed copy exhausted exterior the machine in catch tray 51.
A limit switch LS-3 is carried on one of the upper tray feed roll support members 88 and has a sensing arm 310 thereon capable of riding in contact with the top of the stack. When the last simplexed sheet is fed from the upper tray the actuator arm 312 is allowed to fall through opening 311 in the upper tray platform sending a signal to the logic system that the duplexing operations are completed. This signal is then used to program the mechanical drive system to terminate the machine operations.
While this invention has been disclosed with references to the structure described herein, it is not to be confined to the details as set forth, and this application is" to cover all modifications and changes which may come with the scope of the following claims.
1. Automatically repositionable apparatus for retaining a stack of cut sheets in alignment as sheets are separated and forwarded therefrom including a vertically aligned support body,
a pivot pin mounted in said body,
an extended tab having one end rotatably mounted upon said pivot pin and being arranged to swing downwardly from a first horizontally extended position to a second position substantially parallel to said body,
mechanical biasing means including a torsion spring wound about said pivot pin in working condition with the end coils of said spring acting upon the body and the tab respectively to urge said tab into said first position,
a stop affixed to said body and being engageable by said tab when in said first position wherein said tab is prevented from swinging beyond said first position and means to move said body along a path of travel substantially parallel to the front margin of the stack.
2. Apparatus to retain a stack of cut sheets of support material in sheet-feeding alignment as individual sheets are separated and forwarded therefrom, said apparatus including a lifting arm pivotally mounted at one end below the stack and arranged to move in a plane substantially parallel to the front margin of the stack,
a body member mounted to rotate freely in the free end of said lifting arm wherein said body member remains in constant alignment in relation with the front margin of the stack as the lifting arm moves through said plane,
a stack-engaging member mounted upon said body in a position to engage the uppermost sheet in said stack to support said stack in alignment as sheets are separated and forwarded therefrom.
3. The apparatus of claim 2 wherein said stack-engaging member comprises an extended tab being movably mounted on said body member and being arranged to swing downwardly from a first stack-engaging position perpendicular to said plane and a second nonengaging position substantially parallel to said plane.
4. The apparatus of claim 3 further including mechanical biasing means to urge said extended tab toward said first positron.
5. The apparatus of claim 4 having further means to momentarily elevate the free end of said lifting arm above the level of said stack.
6 Apparatus to support a stack of cut sheets in sheet-feeding alignment as individual sheets are separated and forwarded from the top thereof, said apparatus including a horizontal support tray having vertically extended side and rear margin guides being arranged to support a stack of cut sheets therebetween, said support tray being movable between an operative position and a loading position,
a plurality of lifting arms journaled for rotation at one end in said support tray below the level of the stack and being arranged to move in a plane substantially parallel to the front margin of the stack,
a vertically aligned body member mounted to rotate freely inthe free ends of each of said lifting arms wherein said body member remains in constant alignment in relation to the front margin of the stack as the lifting arms move in said plane,
a stack-retaining tab movably supported in each of said body members and being capable of being urged downwardly from a normally maintained first stack-engaging position wherein said tab is extended substantially perpendicular to said plane towards a second position wherein said tab is substantially parallel to said plane,
actuating means to operatively engage said lifting arms and guide said lifting arms through a prescribed path of travel wherein the free ends of said arms are elevated momentarily above the level of the stack.
7. The apparatus of claim 6 further including means to activate said actuating means as said tray is moved from a loading position to an operative position wherein the lifting arms position said retaining tabs in engagement with the uppermost sheet in the stack.
8. The apparatus of claim 7 further including automatic control means to operatively engage and activate said actuating means to reposition said retaining tabs when the tray is in the operative position.
9. in a supply tray for supporting a stack of cut sheets of material as the sheets are fed one by one from said stack, apparatus for supporting the stack in alignment including at least one lifting arm pivotally supported at one end in the tray below the level of the stack and being arranged to move in a plane substantially parallel to the front margin of the stack, said lifting arm supporting in the free end thereof a stack-retaining member or engaging the uppermost sheet in the stack and supporting the stack against movement,
a lever arm rotatably supported in a substantially horizontal position below the level of the stack and having means at one end thereof to operatively engage said lifting arm,
drive means to operatively engage the opposite end of said lever arm and move said lever arm through a prescribed path of travel wherein the free end of the lifting arm is momentarily elevated above the level of said stack to place the retaining member in engagement with the uppermost sheet therein.
10. The apparatus of claim 9 further including control means to activate said drive means when new sheets are added to the stack wherein the retaining members are elevated to engage the newly added uppermost sheet in the stack.

Claims (10)

1. Automatically repositionable apparatus for retaining a stack of cut sheets in alignment as sheets are separated and forwarded therefrom including a vertically aligned support body, a pivot pin mounted in said body, an extended tab having one end rotatably mounted upon said pivot pin and being arranged to swing downwardly from a first horizontally extended position to a second position substantially parallel to said body, mechanical biasing means including a torsion spring wound about said pivot pin in working condition with the end coils of said spring acting upon the body and the tab respectively to urge said tab into said first position, a stop affixed to said body and being engageable by said tab when in said first position wherein said tab is prevented from swinging beyond said first position and means to move said body along a path of travel substantially parallel to the front margin of the stack.
2. Apparatus to retain a stack of cut sheets of support material in sheet-feeding alignment as individual sheets are separated and forwarded therefrom, said apparatus including a lifting arm pivotally mounted at one end below the stack and arranged to move in a plane substantially parallel to the front margin of the stack, a body member mounted to rotate freely in the free end of said lifting arm wherein said body member remains in constant alignment in relation with the front margin of the stack as the lifting arm moves through said plane, a stack-engaging member mounted upon said body in a position to engage the uppermost sheet in said stack to support said stack in alignment as sheets are separated and forwarded therefrom.
3. The apparatus of claim 2 wherein said stack-engaging member comprises an extended tab being movably mounted on said body member and being arranged to swing downwardly from a first stack-engaging position perpendicular to said plane and a second nonengaging position substantially parallel to said plane.
4. The apparatus of claim 3 further including mechanical biasing means to urge said extended tab toward said first position.
5. The apparatus of claim 4 having further means to momentarily elevate the free end of said lifting arm above the level of said stack.
6. Apparatus to support a stack of cut sheets in sheet-feeding alignment as individual sheets are separated and forwarded from the top thereof, said apparatus including a horizontal support tray having vertically extended side and rear margin guides being arranged to support a stack of cut sheets therebetween, said support tray being movable between an operative position and a loading position, a plurality of lifting arms journaled for rotation at one end in said support tray below the level of the stack and being arranged to move in a plane substantially parallel to the front margin of the stack, a vertically aligned body member mounted to rotate freely in the free ends of each of said lifting arms wherein said body member remains in constant alignment in relation to the front margin of the stack as the lifting arms move in said plane, a stack-retaining tab movably supported in each of said body members and being capable of being urged downwardly from a normally maintained first stack-engaging position wherein said tab is extended substantially perpendicular to said plane towards a second position wherein said tab is substantially parallel to said plane, actuating means to operatively engage said lifting arms and guide said lifting arms through a prescribed path of travel wherein the free ends of said arms are elevated momentarily above the level of the stack.
7. The apparatus of claim 6 further including means to activate said actuating means as said tray is moved from a loading position to an operative position wherein the lifting arms position said retaining tabs in engagement with the uppermost sheet in the stack.
8. The apparatus of claim 7 further including automatic control means to operatively engage and activate said actuating means to reposition said retaining tabs when the tray is in the operative position.
9. In a supply tray for supporting a stack of cut sheets of material as the sheets are fed one by one from said stack, apparatus for supporting the stack in alignment including at least one lifting arm pivotally supported at one end in the tray below the level of the stack and being arranged to move in a plane substantially parallel to the front margin of the stack, said lifting arm supporting in the free end thereof a stack-retaining member for engaging the uppermost sheet in the stack and supporting the stack against movement, a leveR arm rotatably supported in a substantially horizontal position below the level of the stack and having means at one end thereof to operatively engage said lifting arm, drive means to operatively engage the opposite end of said lever arm and move said lever arm through a prescribed path of travel wherein the free end of the lifting arm is momentarily elevated above the level of said stack to place the retaining member in engagement with the uppermost sheet therein.
10. The apparatus of claim 9 further including control means to activate said drive means when new sheets are added to the stack wherein the retaining members are elevated to engage the newly added uppermost sheet in the stack.
US838907A 1969-07-03 1969-07-03 Sheet retaining apparatus Expired - Lifetime US3601394A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83890769A 1969-07-03 1969-07-03

Publications (1)

Publication Number Publication Date
US3601394A true US3601394A (en) 1971-08-24

Family

ID=25278363

Family Applications (1)

Application Number Title Priority Date Filing Date
US838907A Expired - Lifetime US3601394A (en) 1969-07-03 1969-07-03 Sheet retaining apparatus

Country Status (15)

Country Link
US (1) US3601394A (en)
JP (1) JPS5017128B1 (en)
AR (1) AR195262A1 (en)
BE (1) BE752940A (en)
CA (1) CA966521A (en)
CH (1) CH547747A (en)
CS (1) CS164276B2 (en)
DE (1) DE2032892C3 (en)
ES (1) ES381385A1 (en)
FR (1) FR2050476B1 (en)
GB (1) GB1312304A (en)
NL (1) NL7009863A (en)
PL (1) PL82760B1 (en)
SE (1) SE361648B (en)
SU (1) SU493985A3 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881717A (en) * 1973-10-01 1975-05-06 Grable Printing Co Paper sheet dispenser
US3920238A (en) * 1972-10-16 1975-11-18 Canon Kk Copy medium feed device
US3936042A (en) * 1973-11-19 1976-02-03 Rank Xerox Ltd. Sheet feeding devices
EP0845429A1 (en) * 1996-09-18 1998-06-03 Hewlett-Packard Company Automatic sheet feeding mechanism
US20060261537A1 (en) * 2005-05-20 2006-11-23 Hewlett-Packard Development Company Lp Sheet handling
US20070273084A1 (en) * 2005-03-01 2007-11-29 Chu Tzy W Sheet media input system
CN109855400A (en) * 2019-03-20 2019-06-07 深圳市信宇人科技股份有限公司 Warehouse style flexibility rapid draing mould group and drying system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012104249A1 (en) * 2012-05-16 2013-11-21 Carl Freudenberg Kg Device for pressing a thread against a spool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2070903A (en) * 1934-02-26 1937-02-16 Jay F Horst Sheet feed control mechanism
US3239212A (en) * 1964-03-16 1966-03-08 Heyer Inc Feed table
US3403903A (en) * 1967-04-17 1968-10-01 Jesse W. Crail Torsion bar sheet separator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2070903A (en) * 1934-02-26 1937-02-16 Jay F Horst Sheet feed control mechanism
US3239212A (en) * 1964-03-16 1966-03-08 Heyer Inc Feed table
US3403903A (en) * 1967-04-17 1968-10-01 Jesse W. Crail Torsion bar sheet separator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920238A (en) * 1972-10-16 1975-11-18 Canon Kk Copy medium feed device
US3881717A (en) * 1973-10-01 1975-05-06 Grable Printing Co Paper sheet dispenser
US3936042A (en) * 1973-11-19 1976-02-03 Rank Xerox Ltd. Sheet feeding devices
EP0845429A1 (en) * 1996-09-18 1998-06-03 Hewlett-Packard Company Automatic sheet feeding mechanism
US5882004A (en) * 1996-09-18 1999-03-16 Hewlett-Packard Co. Automatic sheet feeding mechanism
US20070273084A1 (en) * 2005-03-01 2007-11-29 Chu Tzy W Sheet media input system
US7828285B2 (en) * 2005-03-01 2010-11-09 Hewlett-Packard Development Company, L.P. Sheet media input system
US20060261537A1 (en) * 2005-05-20 2006-11-23 Hewlett-Packard Development Company Lp Sheet handling
US7942403B2 (en) * 2005-05-20 2011-05-17 Hewlett-Packard Development Company, L.P. Sheet lifting with corner projections
CN109855400A (en) * 2019-03-20 2019-06-07 深圳市信宇人科技股份有限公司 Warehouse style flexibility rapid draing mould group and drying system

Also Published As

Publication number Publication date
DE2032892B2 (en) 1978-07-20
PL82760B1 (en) 1975-10-31
FR2050476B1 (en) 1973-02-02
BE752940A (en) 1971-01-04
SE361648B (en) 1973-11-12
AR195262A1 (en) 1973-09-28
JPS5017128B1 (en) 1975-06-18
CH547747A (en) 1974-04-11
FR2050476A1 (en) 1971-04-02
NL7009863A (en) 1971-01-05
DE2032892A1 (en) 1971-03-04
DE2032892C3 (en) 1979-05-03
GB1312304A (en) 1973-04-04
CS164276B2 (en) 1975-11-07
ES381385A1 (en) 1972-12-01
SU493985A3 (en) 1975-11-28
CA966521A (en) 1975-04-22

Similar Documents

Publication Publication Date Title
US3645615A (en) Copying apparatus
US3719266A (en) Sheet stacking apparatus
US4176945A (en) Sheet feeding apparatus for use with copier/duplicators or the like
US3942785A (en) Self-actuating sheet inverter reverser
US4169674A (en) Recirculating sheet feeder
US4487506A (en) Reversing roll inverter with bypass capability
US3848868A (en) Sheet sorting apparatus
EP0075398B1 (en) A belt alignment apparatus
US3627312A (en) Restacking apparatus
US3851872A (en) Sorting apparatus for collating simplex and duplex copies
US4947214A (en) Transfer apparatus
JPS599053B2 (en) double-sided copying device
US4172655A (en) Shingle sheet stacking for duplex copying
JPH0521229B2 (en)
US3601392A (en) Sheet registering apparatus
US4368973A (en) Recirculating document feeder
US4365889A (en) Document handling unit
US3833911A (en) Reproduction system and method with simplex and duplex modes of operation
US3601394A (en) Sheet retaining apparatus
US3917256A (en) Dual purpose sheet handling apparatus
US4487407A (en) Trail edge copy registration system
NL8103336A (en) APPARATUS FOR SUPPLY AND DISPOSAL OF ORIGINALS AT A COPIER.
US3343450A (en) Automatic document skew adjustment for duplicating machines
US3517923A (en) Sheet registration apparatus
US5048817A (en) Dynamic edge guide for side registration systems