US3601009A - Pneumatically driven small diameter piston structure - Google Patents
Pneumatically driven small diameter piston structure Download PDFInfo
- Publication number
- US3601009A US3601009A US835003A US3601009DA US3601009A US 3601009 A US3601009 A US 3601009A US 835003 A US835003 A US 835003A US 3601009D A US3601009D A US 3601009DA US 3601009 A US3601009 A US 3601009A
- Authority
- US
- United States
- Prior art keywords
- piston
- free
- inch
- full diameter
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000002093 peripheral effect Effects 0.000 claims abstract description 8
- 230000001939 inductive effect Effects 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/32—Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
- G01N3/36—Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by pneumatic or hydraulic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/003—Generation of the force
- G01N2203/0042—Pneumatic or hydraulic means
- G01N2203/0044—Pneumatic means
Definitions
- ABSTRACT There is provided an improved structure for a [52] U.S.Cl 91/234 Small diameter piston used in a pneumatically driven free [5 I] CL 21/02 piston vibration-inducing device. Such devices are subject to [50] Field of Search 91/234 or variation in frequency. s is controlled or 56] References Cited eliminated in such pistons by including means for restricting the p1ston surface area at m1n1mum clearance from the UNITED STATES PATENTS cylinder wall, e.g. the provision of a peripheral groove or 542,498 7/1895 Rinsche 91/234 recess.
- a particular problem with changes in frequency of vibration occasioned by surging is that the system which is being driven, e.g. a vibratory parts-feeding bowl, acts as a multiplier or amplifier of the discontinuities introduced by changes in frequency. This is of particular importance in the handling of miniaturized parts.
- Devices capable of feeding miniaturized parts by vibratory means utilize small diameter free-piston vibration-inducing devices, for example those having a diameter less than 0.75 inch.
- a surge may cause an amplitude variation in the device being driven by as much as 3 to times the tolerances acceptable by the tooling in the apparatus.
- This variation may cause a part to bypass tooling which might otherwise reject the part, thereby allowing a misoriented or otherwise rejectable part to enter the system.
- Such a part proceeding in the system frequently causes difficulty farther down the line.
- Such malfunctions must be minimized or eliminated insofar as possible.
- FIG. 1 is a cross-sectional view of a free-piston vibration-inducing device of the type shown in the aforesaid U.S. Pat. No. 2,861,548 and having a piston therein modified in accordance with the present invention.
- FIG. 2 is a side elevation of a typical piston modified in accordance with the present invention.
- FIG. 1 there'is here shown in cross section a typical free-piston vibration-inducing device adapted to be operated by a compressed gas, e.g. compressed air.
- This device consists of a casing or housing 10 having an inlet 12 for the compressed gas and exhaust ports 14 and 16.
- Inlet 12 is centrally located with respect to the free with internal ducts 26 and 28 extending in an axial direction and opening through the ends 30 and 32 of piston 24, respectively.
- Internal duct 26 communicates with radially extending duct 34 leading to the peripheral surface of the piston 24.
- radial duct 36 communicates between the peripheral surface of the piston 24 and internal duct 28.
- Piston 24 is, geometrically speaking, configured generally as a right cylinder and is provided with end lands 38 and 40, and a centrally located intermediate land 42. End lands 38 and 40, and intermediate land 42, are at "full diameter, for example, in an illustrative embodiment, 0.4904 inch $00004 inch. Intermediate each of the end lands 38 and 40, and the central or intermediate land 42, respectively, there are provided recesses or grooves 44 and 46, respectively. The recesses or grooves 44 and 46 are ground to an CD. of 0.486 10.002 inch. In this example, therefore, it will be seen that the depth of the recess is of the order of from 0.0010 inch to 0.0034 inch.
- the ends of the piston 24 are conveniently provided with bosses 48 and 50 for best design and prevention of damage to the piston in event of impacting against the closure plugs 20 and 22, for example.
- the width of the end lands in I the illustrative embodiment is 0.05 inch.
- the width of the recesses 44 and 46 measured in an axial direction in the illustrative embodiment is 0.20 inch.
- the central or intermediate land 42 in the illustrative embodiment is 0.45 inch.
- the center line of each radial duct 34 and 36 is 0.609 inch from the more remote end, and the diameter of the radial ducts and the axial ducts is desirably 0.094 inch.
- the overall length of piston 24 in the illustrative embodiment is 1 1/32 inch.
- the foregoing dimensions relate to a 0.5-inch piston which has been found substantially free of surging.
- a 0.5-inch diameter piston is operated under the same conditions but having a right cylindrical structure such as shown in US. Pat. No. 2,861,548 with air containing moisture or oil, surging is experienced from time to time.
- the reduction of the area at minimum clearance from the cylinder wall may be achieved by forming a plurality of recesses whereby the piston will contain a larger number of lands than shown in FIG. 2.
- helical grooves such as would be provided by cutting thread grooves in the surface would achieve the same result.
- any suitable means of reducing the surface area at minimum clearance from the internal surface of the cylinder in housing may be utilized to obviate the problem of surging in pneumatically driven free-piston vibration-inducing devices.
- a pneumatic free-piston vibration-inducing device including a cylinder closed at each end and a free generally right cylindrically shaped piston oscillatable therein wherein the ratio of the circumference to the cross-sectional area of the piston at full diameter is greater than 4, means in said piston for distributing gas under pressure to the ends of said piston from spaced intermediate peripheral points, gas inlet means coacting with said gas distributing means, and gas exhaust means extending through said cylinder, the improvement which comprises a piston including axially spaced recesses adjacent each end of said piston for restricting the piston surface area at minimum clearance from the cylinder wall, the depth of each recess being of the order of 0.0010 inch to 0.0034 inch.
- a pneumatic, free-piston vibration-inducing device including a cylinder closed at each end and a free generally cylindrically shaped piston oscillatable therein wherein the ratio of the circumference to the cross-sectional area of the portion of full diameter is greater than 4, means in said piston for distributing gas under pressure to the ends of said piston from spaced intermediate peripheral points, gas inlet means, and gas exhaust means, the improvement which comprises a piston characterized by a full diameter central portion, a full diameter land adjacent each end of the piston, and a portion intermediate each end land and said central portion having a diameter less than the full diameter of said piston by from 0.0020 inch to 0.0068 inch.
Landscapes
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
- Reciprocating Pumps (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US83500369A | 1969-06-20 | 1969-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3601009A true US3601009A (en) | 1971-08-24 |
Family
ID=25268324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US835003A Expired - Lifetime US3601009A (en) | 1969-06-20 | 1969-06-20 | Pneumatically driven small diameter piston structure |
Country Status (4)
Country | Link |
---|---|
US (1) | US3601009A (enrdf_load_stackoverflow) |
JP (1) | JPS5035693B1 (enrdf_load_stackoverflow) |
DE (1) | DE1938561A1 (enrdf_load_stackoverflow) |
GB (1) | GB1264635A (enrdf_load_stackoverflow) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3895561A (en) * | 1972-08-19 | 1975-07-22 | Jan Frederik Felderhof | Fluid activated vibratory device |
US3896701A (en) * | 1973-09-17 | 1975-07-29 | Cleveland Vibrator Co | Impactor-vibrator |
US4156576A (en) * | 1976-05-07 | 1979-05-29 | Alain Clavel | Pneumatically controlled tamper |
US4240326A (en) * | 1976-02-23 | 1980-12-23 | Koehring Gmbh - Bomag Division | Hydraulic vibration exciter and method of cooling thereof |
US5513962A (en) * | 1994-05-09 | 1996-05-07 | Lubecon Systems, Inc. | Pneumatically actuated lubricant pump |
US20090272255A1 (en) * | 2008-05-01 | 2009-11-05 | Hansen Robert A | Vibrator |
US20100251885A1 (en) * | 2007-08-29 | 2010-10-07 | Stone Jeffrey W | Gas system for firearms |
US9347719B1 (en) | 2014-01-13 | 2016-05-24 | Ra Brands, L.L.C. | Replaceable feed ramp |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3151026A1 (de) * | 1981-12-23 | 1983-07-07 | Agrichema Handelsgesellschaft für Chemikalien, Industrieerzeugnisse und landwirtschaftlichen Bedarf mbH, 6501 Budenheim | Luftstossgeraet |
EP2086695A1 (en) * | 2006-11-07 | 2009-08-12 | Vincenzo Ruggero | Pneumatic linear unidirectional volumetric vibrator |
US7530301B2 (en) * | 2006-12-12 | 2009-05-12 | Dynamic Air Inc | Self starting vibrator |
KR101546056B1 (ko) * | 2013-08-09 | 2015-08-20 | 이경운 | 진동발생장치 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US542498A (en) * | 1895-07-09 | Frank c | ||
US615245A (en) * | 1898-12-06 | Impact-tool | ||
US760088A (en) * | 1902-08-04 | 1904-05-17 | American Vibrator Company | Pneumatic vibrator. |
US1535659A (en) * | 1921-02-18 | 1925-04-28 | Fog Ivar Kobke | Fluid-pressure engine |
US1599299A (en) * | 1926-09-07 | Vibrator | ||
FR759573A (fr) * | 1932-11-05 | 1934-02-05 | Perfectionnements aux vibrateurs pneumatiques | |
CH337157A (de) * | 1954-12-18 | 1959-03-15 | Mohr Rudolf Dr | Pressluftarbeitsgerät |
-
1969
- 1969-06-20 US US835003A patent/US3601009A/en not_active Expired - Lifetime
- 1969-07-11 GB GB1264635D patent/GB1264635A/en not_active Expired
- 1969-07-29 DE DE19691938561 patent/DE1938561A1/de active Pending
- 1969-10-25 JP JP44085154A patent/JPS5035693B1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US542498A (en) * | 1895-07-09 | Frank c | ||
US615245A (en) * | 1898-12-06 | Impact-tool | ||
US1599299A (en) * | 1926-09-07 | Vibrator | ||
US760088A (en) * | 1902-08-04 | 1904-05-17 | American Vibrator Company | Pneumatic vibrator. |
US1535659A (en) * | 1921-02-18 | 1925-04-28 | Fog Ivar Kobke | Fluid-pressure engine |
FR759573A (fr) * | 1932-11-05 | 1934-02-05 | Perfectionnements aux vibrateurs pneumatiques | |
CH337157A (de) * | 1954-12-18 | 1959-03-15 | Mohr Rudolf Dr | Pressluftarbeitsgerät |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3895561A (en) * | 1972-08-19 | 1975-07-22 | Jan Frederik Felderhof | Fluid activated vibratory device |
US3896701A (en) * | 1973-09-17 | 1975-07-29 | Cleveland Vibrator Co | Impactor-vibrator |
US4240326A (en) * | 1976-02-23 | 1980-12-23 | Koehring Gmbh - Bomag Division | Hydraulic vibration exciter and method of cooling thereof |
US4156576A (en) * | 1976-05-07 | 1979-05-29 | Alain Clavel | Pneumatically controlled tamper |
US5513962A (en) * | 1994-05-09 | 1996-05-07 | Lubecon Systems, Inc. | Pneumatically actuated lubricant pump |
US20100251885A1 (en) * | 2007-08-29 | 2010-10-07 | Stone Jeffrey W | Gas system for firearms |
US8250964B2 (en) * | 2007-08-29 | 2012-08-28 | Ra Brands, L.L.C. | Gas system for firearms |
US20090272255A1 (en) * | 2008-05-01 | 2009-11-05 | Hansen Robert A | Vibrator |
US7963207B2 (en) * | 2008-05-01 | 2011-06-21 | Dynamil Air Inc. | Vibrator |
US9347719B1 (en) | 2014-01-13 | 2016-05-24 | Ra Brands, L.L.C. | Replaceable feed ramp |
US9562730B2 (en) | 2014-01-13 | 2017-02-07 | Ra Brands, L.L.C. | Replaceable feed ramp |
Also Published As
Publication number | Publication date |
---|---|
GB1264635A (enrdf_load_stackoverflow) | 1972-02-23 |
JPS5035693B1 (enrdf_load_stackoverflow) | 1975-11-18 |
DE1938561A1 (de) | 1970-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3601009A (en) | Pneumatically driven small diameter piston structure | |
US4759387A (en) | Pulsation absorbing device | |
US3169375A (en) | Rotary engines or pumps | |
KR900702262A (ko) | 유압 펌프 | |
IT1261397B (it) | Ammortizzatore rotante | |
US2861548A (en) | Vibrator | |
BG103157A (en) | Improved rotary engine with axial pistons | |
US2819775A (en) | Vibration absorber | |
GB1472568A (en) | Pneumatic vibrator | |
US2728330A (en) | Rotary internal combustion engine | |
US2891775A (en) | Vibrator | |
US4905790A (en) | Suppressor of gas pressure fluctuation and noise | |
SU382797A1 (ru) | Пневматическое устройство ударного действия для образования скважин в грунте | |
US2690716A (en) | Rotary pump | |
SU948463A2 (ru) | Пневматический вибровозбудитель | |
US3814385A (en) | Regulator for pneumatic vibrator | |
US3090369A (en) | Internal combustion motor fuel injection system | |
US3791629A (en) | Vibrator roller | |
IL36171A (en) | Vibrator driven by compressed air | |
US3638914A (en) | Rotating pneumatic vibrator | |
US2988337A (en) | Vibrator | |
RU1831567C (ru) | Пневматический молоток с дроссельным воздухораспределением | |
GB1389068A (en) | Vibrator devices | |
US1677057A (en) | Air compressor for internal-combustion engines | |
US2834584A (en) | Pneumatic vibrators |