US3599420A - Electromechanical timepiece - Google Patents

Electromechanical timepiece Download PDF

Info

Publication number
US3599420A
US3599420A US739117A US3599420DA US3599420A US 3599420 A US3599420 A US 3599420A US 739117 A US739117 A US 739117A US 3599420D A US3599420D A US 3599420DA US 3599420 A US3599420 A US 3599420A
Authority
US
United States
Prior art keywords
masses
resonator
springs
torsion
pawl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US739117A
Other languages
English (en)
Inventor
Henri Oguey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Electronique Horloger SA
Original Assignee
Centre Electronique Horloger SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Electronique Horloger SA filed Critical Centre Electronique Horloger SA
Application granted granted Critical
Publication of US3599420A publication Critical patent/US3599420A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • G04C3/10Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means
    • G04C3/101Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B27/00Mechanical devices for setting the time indicating means
    • G04B27/004Mechanical devices for setting the time indicating means having several simultaneous functions, e.g. stopping or starting the clockwork or the hands

Definitions

  • ELECTROMECHANICAL TIMEPIECE This invention is concerned with an electromechanical timepiece comprising a mechanical resonator constituted by two masses oscillating in opposite phase.
  • FIGS. I and 2 are schematic illustrations of prior art concepts for mounting such a timepiece
  • FIG. 3 is a schematic representation of a resonator mounting embodying this invention.
  • FIG. 4 is a modified schematic illustration of the embodiment of FIG. 3'
  • FIG. Si is a plan view of a device embodying the invention.
  • FIG. 6 is a sectional view taken along the line Vl-Vl of FIG. 5.
  • FIG. 7 is a partial view ofthe device of FIG. 5 and illustrates a modified driving pawl configuration
  • FIG. 8 is a partial plan view illustrating another modification of the device of FIG. 5.
  • FIG. I of the accompanying drawing shows a first means for fastening a resonator to its support which consists in Connecting the meeting point of springs k, and k at whose extremities are secured the oscillating masses m, and m,, to a casing having mass m and this in a rigid manner.
  • This resonator is theoretically insensitive to a variation of mass m when it is perfectly balanced, but it is not usable, because a slight flaw in balance renders its natural frequency dependent upon mass m, which is not workable for a portable timepiece resonator.
  • FIG. 2 shows another way of connecting the resonator to a support of mass m by means of a support spring k,.
  • the effect of this spring is to stabilize the natural frequency when the balancing is not perfect and when mass m varies.
  • the resonators actually used in horology are ofthis type, in particular of the tuning fork type whose branches correspond to springs k, and k, and the leg to spring 1: It is however impossible to make two such vibrating elements whose natural frequency is exactly identical.
  • the frequency ratio of the resonator that is the natural frequency which the resonator would have if mass m: was zero and of the frequency of the support, that is to say the natural frequency which the system of the resonator and its support would have if the two masses m and m were rigidly connected one to the other and if mass m; were infinite, is one of the important factors in the stability of frequency.
  • the free frequency can be high without modifying the frequency of the support by means of an additional spring connecting directly masses m, and m,, according to an arrangement which has already been proposed and in conformity with FIG. 3 of the accompanying drawing.
  • the increase in the frequency stability can also be justified mathematically by a decrease in the amplitude of oscillation of the support.
  • the resonator according to FIG. 3 additionally offers the following advantages: the condition of equilibrium causes the interplay of elements m,, m,, k, and 1:, while the natural frequency still depends upon spring k This offers the possibility of first adjusting the equilibrium by means of one of these four first parameters and then of modifying the frequency by means of spring k, without modifying the equilibrium.
  • the three springs k,, k, and k meet in a common point.
  • the mass associated to this point modifies the behavior of the resonator relative to its ideal behavior. In particular, this mass renders balancing more delicate.
  • Nothing of the sort occurs in the resonator of FIG. 3 for which the extremity of each spring terminates in a useful mass.
  • This resonator is easier to balance and the choice of springs makes it possible to unite an approximate tolerance of balance with a great stability of frequency while reducing the number of adjustment to a minimum.
  • FIG. 4 shows a modification of the resonator of FIG. 3 which obtains the same results, but in which springs k and k, are placed on either side of masses m and m,, support m, assuming the shape of an elongated frame.
  • the resonator being secured to the support at two points spaced from one another, there results for the same frequency a better rigidity of the system in directions of deformation which are not desired than in the resonator with leg of the type of FIG. 2.
  • the elimination of parasitic resonances is easy and the sensitivity to impacts is less.
  • suspending springs k and k are made of a material whose modulus of elasticity has a positive tempera ture coefficient, and if connecting spring k is formed of a different material whose modulus of elasticity has a negative temperature coefficient (or vice versa), it is possible to select the value of the return coefficients of the springs in such a way that the temperature coefficient of the natural frequency of the resonator cancels.
  • Springs k, and k varying in the same way with the temperature, the equilibrium will not be sensitive to temperature variations. The possibility of making simultaneously the frequency and the equilibrium insensitive to temperature does not exist in this form in the resonator of FIG. 2 for which it is necessary to resort to other solutions such as a single material thermocompensated or springs formed each of two different materials.
  • the present invention precisely has for its object an electromechanical timepiece comprising a mechanical torsion resonator comprising two extended masses oscillating in upposite phases around a common axis and taking advantage of the above mentioned features.
  • This timepiece is characterized by the fact that the torsion axis of the resonator is at least approximately parallel to the plate and that the oscillating masses are connected by a first torsion spring and connected each to a common support by a second and a third spring respectively.
  • the wrist watch shown in the drawing comprises a torsion resonator comprising two extended masses formed of two branches 2 and 3 each connecting an active mass 4 and S to a counterweight 6 and 7 respectively and three elastic parts, that is to say a central torsion blade 8 and two lateral torsion blades 9 and 10 secured to two uprights 11 and 12 fast on support 1, which is secured to plate 34 by a screw 35 and three positioning washers 36.
  • the electrical upkeep of the resonator includes a battery 13 and its connections 14 and 15, an electronic modulus 16 containing the electrical circuit for the upkeep of the resonator and welded to two intermediate plates 17 and I8, a coil 19 plunging in the magnetic field of movable magnets 4 and 5 and of their magnetic circuits 20 and 2l.
  • the pawls comprise two driving pawls 22 and 23 fixed on counterweights 6 a nd 7 by means of adjustable supports 24 and 25 and driving in counter phase a wheel 26, the first wheel of the wheel work being represented by wheels 28, 29 and 30 and by the shafts for the second hand 31, minutes 32 and hours 33.
  • the setting mechanism is schematically shown by return wheel 37, field pinion 38, stem 39 and button 40.
  • the center of gravity of the resonator is located on axis 50 which is simultaneously the common rotational axis of the oscillating masses for the ideal case. Owing to the equilibrium of the system, the masses oscillate in opposite phase with an amplitude such that the total kinetic moment of the system is zero.
  • the equilibrium condition being perfectly realized, owing to the tolerances along the moments of inertia of the masses and of the return coefficient of springs 9 and 10, there results a reaction on the support which is all the greater as springs 9 and 10 are more rigid relative to spring 8.
  • the return coefficient ofa torsion spring is inversely proportional to its length and depends upon its width and thickness.
  • the moments of inertia of the two masses are selected so as to be equal and each of about a tenth of that of the plate.
  • the three springs have the same thickness and the same width and the length of spring 9 is equal to that of spring 10 and equal to half of that of spring 8.
  • the choice of dimensions of these springs is also favorable from another point of view: the maximum of the shearing stresses is the same for the three springs.
  • the resonator including arms 2 and 3 supporting the masses, the three springs 8, 9 and i0, uprights l1 and 12 and support 1 is of a single piece, without connections, of a material of good elastic quality and having very stable properties. As a result the stability of the frequency is excellent.
  • the resonator is secured to the plate by a single screw and finds support on this plate in three very close points, thus eliminating deformation ofthe plate.
  • the torsion couple of the resonator is practically not transmitted to the plate, whence a very small reaction to this support with these advantages; high quality factor, stable frequency and reduced energy consumption.
  • the entire resonator can be made by stamping followed by milling of the elastic parts.
  • the elastieityibf the-uphight's afsb has an influence on the natural frequencies fl and .r, but this influence is small and constant and changes neither the stability of the frequency nor the quality factor of the resonator.
  • each counterweight 6 and 7 is to move away as 5 much as possible the center of gravity of the corresponding extended mass, considered in its entirety, of the center of gravity of active mass 4, 5 respectively. It is advantageous that the mass of the counterweights be greater than that of the active masses in such a way that the kinetic energy ofthe movement be constituted in greater part by the kinetic energy of the active mass. It is thus that the best yield of electromechanical conversion is obtained.
  • the counterweights have two auxiliary purposes: the first is to'serve as supports to two driving pawls 22 and 23, the use of two driving frictionally screwdriver, pawls ofiering the advantage, relative to a system using a driving and a stop pawl, of allowing, for the same pitch of the teeth and the same consumption, the use of a wheel of greater diameter, a greater division ratio, a lesser movement of the pawl and a more regular movement of the gear.
  • the second function of the counterweights is the fine adjustment of the watch by means of cylinders 4i and 42. These are housed in cylindrical openings in the counterweights in which they can turn frictionally.
  • the sensitivity of the frequency of the resonator to various positions is very small. It is zero as a first approximation since the centers of gravity of the masses are immobile.
  • the effect of accelerated impact is to produce a deforma tion of the resonator.
  • This resonator is to be very rigid against all deformation caused by a linear acceleration of the watch. This is due to the fact that the torsion springs are held in two points which are relatively far from one another but relatively near the centers of gravity of the extended masses.
  • the direction which is most sensitive to accelerations is perpendicular to the plane of the watch.
  • the springs are subjected to a flexure in the direction of their greatest flexibility. But since they are short and the arm of the lever of the accelerated force of inertia is also short, the effect of the ac celerations is small. in practice, a watch bracelet is not subjected to considerable accelerations in this direction.
  • the sensitivity to impacts is measured also by the ratio between the main natural frequency and the frequencies of the parasitic oscillations.
  • the present resonator is characterized by high natural parasitic frequencies thus by a good resistance to accelerations.
  • the masses oscillate around an axis perpendicular to the plane of the watch their moment of inertia is great but the elastic parts have a great rigidity against bending in this direction.
  • the rigidity of the springs to bending is small, but the moment of inertia of the masses is very reduced.
  • the natural frequencies of these oscillations can be selected so as to be sufficiently high to ensure a good stability of the resonator.
  • the movement of the masses is essentially perpendicular to the main plane of the watch and takes place around an axis parallel to this plane.
  • the pawl gear has an axis perpendicular woe plan's storm water? are tseiersr aistrpe ngicuiar m 75 the oscillatory axis 50 ofthe resonator.
  • In ordert'hat e movement of the pawl takes place essentially in the plane of the pawl wheel, it is secured to the counterweight in such a way that its extremity is located at a certain distance from the oscillatory axis, as close as possible to the plane passing through the oscillatory axis and parallel to the axis of the pawl wheel.
  • the path of the pawl is equal to the path of the counterweight multiplied by the ratio of their respective distance to the oscillatory axis. This characteristic makes possible an adjustment of the path of the pawl by a simple modification in the position of the pawl wheel on its axis and vertical staggering of the pawl. The same conditions can be obtained in the case where the pawls are secured on the useful masses. This is true for both driving pawls.
  • the pawl work may cause errors in counting as the deformation of the springs is accompanied by a rotation of the counterweights around axes parallel to 53 the consequence of which is to vary the relative phase of the pawls. This rotation can practically be eliminated by placing the center of gravity of the extended masses near the middle point of springs 9 and 10.
  • intermediate supports 24 and 25 furnish means for adjusting the pressure and the phase of the pawls.
  • the gear work is not critical. According to the space left by the resonator, it is necessary that the gears pass above or below. In the construction shown, an opening 27 has been made in one of the arms of the resonator to allow the passage of a shaft.
  • FIG. 7 shows a modification of the pawl works comprising a driving pawl attached to counterweight 6 by means of an adjustable piece 102 while a return pawl 103 is secured to plate 34 through another adjustable piece 104.
  • counterweight 7 has a recess 105 which allows passage of the support of pawl 103.
  • the orientation of pawl 101 perpendicular to the axis of rotation 50 makes possible operation which is not sensitive to impacts.
  • FIG. 8 shows schematically a modified embodiment of the resonator in which the two lateral torsion springs 9 and 10 of FIG. 5 are replaced by flexure springs 81 and 82, the intermediate spring 80 operating by torsion in the same manner as spring 8 of the preceding example, the torsion axis being again designated by 50.
  • Springs 8i and 82 are connected on the one hand to support 83 and on the other hand to extended masses 84 and 85 in points located between the torsion axis 50 and the extremities of these extended masses.
  • the resonator operates in the same manner as the previously described resonator.
  • An electromechanical timepiece comprising a plate, a support on said plate, and a t'orsive mechanical resonator having two extended masses oscillating in opposite phase, said resonator having a torsion axis substantially parallel to said plate, a first torsion spring connecting said oscillating masses together and a second and third spring connecting each of said masses to said support wherein said first torsion spring has no interconnection with said support.
  • said second and third springs are flexion springs and are secured to said extended masses at points not located along said torsion axis.
  • Timepiece according to claim 4 wherein said elastic elements have a component of elasticity in a direction parallel to said torsion axis of said resonator.
  • a timepiece according to claim 4, wherein said second and third spring are torsion springs, and wherein said three torsion springs, said extended masses, and said elastic elements are made in one piece.
  • Electromechanical timepiece comprising a plate, a support on said plate, and a torsive mechanical resonator having two extended masses oscillating in opposite phase, said resonator having a torsion axis substantially parallel to said plate, a first torsion spring connecting said oscillating masses together and a second and third spring connecting each of said masses to said support, a first driving pawl secured on at least one of said oscillating masses, and a gear mounted with its axis perpendicular to said torsion axis of said resonator, said gear disposed adjacent said pawl for being driven by said pawl for advancing the time indicating means of said timepiece.
  • Timepiece according to claim 8 wherein said pawl has an active end, said end being located as close as possible to the plane passing through the axis of oscillation of said mass and parallel to the axis of said gear.
  • a timepiece according to claim 8 further comprising a second driving pawl, wherein said first and second pawls are mounted respectively on said two extending masses and are so positioned that they lie perpendicular to the plane of said gear passing through the contact points of said pawls and both cut the axis of oscillation of the said resonator, said second pawl disposed in driving relation to said gear.
  • Timepiece according to claim 8 wherein said driving pawl is secured at one point of one of said oscillating masses and the trajectory of said point with the tangent to said gear at its contact point with said pawl makes an angle greater than 45.
  • Timepiece according to claim 8 wherein said driving pawl is perpendicular to the movement of its point of attachment resulting from the linear acceleration directed in the direction of the greatest flexibility of said elastic elements of said resonator.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Clocks (AREA)
US739117A 1967-06-27 1968-06-21 Electromechanical timepiece Expired - Lifetime US3599420A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH911567A CH506108A (fr) 1967-06-27 1967-06-27 Pièce d'horlogerie électromécanique

Publications (1)

Publication Number Publication Date
US3599420A true US3599420A (en) 1971-08-17

Family

ID=4348478

Family Applications (1)

Application Number Title Priority Date Filing Date
US739117A Expired - Lifetime US3599420A (en) 1967-06-27 1968-06-21 Electromechanical timepiece

Country Status (4)

Country Link
US (1) US3599420A (enrdf_load_stackoverflow)
CH (2) CH911567A4 (enrdf_load_stackoverflow)
DE (1) DE1773695B1 (enrdf_load_stackoverflow)
FR (1) FR1572693A (enrdf_load_stackoverflow)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736740A (en) * 1971-10-22 1973-06-05 Novox Inc Electromagnetic timing mechanism
US3782101A (en) * 1970-09-29 1974-01-01 D Horlogeric Le Coultre & Cie Timepieces with torsion resonators

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170278A (en) * 1961-09-18 1965-02-23 Foerderung Forschung Gmbh Flexural vibrator for normal-frequency oscillators, especially in time-measuring appliances

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL302058A (enrdf_load_stackoverflow) * 1958-11-21
US3080538A (en) * 1959-02-19 1963-03-05 Collins Radio Co Center clamped torsional resonator having bearing supported ends
FR1412391A (fr) * 1964-02-03 1965-10-01 Jaz Sa Diapason de torsion
FR86904E (fr) * 1964-06-02 1966-05-06 Perfectionnements aux petits appareils magnétoélectriques régularisés par des combinaisons d'organes vibrants
CH1017064A4 (enrdf_load_stackoverflow) * 1964-08-04 1967-12-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170278A (en) * 1961-09-18 1965-02-23 Foerderung Forschung Gmbh Flexural vibrator for normal-frequency oscillators, especially in time-measuring appliances

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782101A (en) * 1970-09-29 1974-01-01 D Horlogeric Le Coultre & Cie Timepieces with torsion resonators
US3736740A (en) * 1971-10-22 1973-06-05 Novox Inc Electromagnetic timing mechanism

Also Published As

Publication number Publication date
CH911567A4 (enrdf_load_stackoverflow) 1970-10-30
FR1572693A (enrdf_load_stackoverflow) 1969-06-27
DE1773695B1 (de) 1971-04-22
CH506108A (fr) 1970-10-30

Similar Documents

Publication Publication Date Title
US20220171336A1 (en) Spiral spring for horological resonator mechanism provided with rigidity-adjustment means
US3462939A (en) Mechanical vibrator for timepiece
JP7238085B2 (ja) 剛性を調整するための手段を備えた可撓性ガイドを有する計時器用発振器機構
CN110389519B (zh) 钟表谐振器机构、钟表振荡器机构、钟表机芯和手表
US20180372150A1 (en) Mechanism for adjusting an average speed in a timepiece movement and timepiece movement
JP5961753B2 (ja) 時計用脱進装置
CN101470402B (zh) 具有高振荡频率调节设备的钟表机芯
US3599420A (en) Electromechanical timepiece
US3316708A (en) Mechanical resonator for normal frequency oscillators in time measuring device
US3469389A (en) Electromechanical vibrator assembly for a timepiece
US3201932A (en) Vibratory frequency standard for a timekeeping device
US3528308A (en) Mechanical resonator of rotation
US3548585A (en) Flexion-type symmetrical oscillator
US3192701A (en) Vibratory motion converter for an electric timepiece
US3447311A (en) Electronic timepiece
US3448304A (en) Vibrator device
US3053041A (en) Vibration-resistant escapements
US3167905A (en) Motion transformers for electronically controlled timepiece
US3546500A (en) Elastic resonator for timekeeping instruments
US3428879A (en) Oscillator device for timepiece mechanisms
US3351788A (en) Apparatus for mechanically converting the oscillating movement of an electro-mechanical oscillator
US3237461A (en) Motion-transmitting system in a timepiece
US3782101A (en) Timepieces with torsion resonators
JP7707267B2 (ja) 特に計時器用回転モーターのための、圧電ダブルrcc共振器
US3162006A (en) Tuning fork for electronic timepiece