US3594691A - Method and means for connecting cable shielding - Google Patents

Method and means for connecting cable shielding Download PDF

Info

Publication number
US3594691A
US3594691A US848804A US3594691DA US3594691A US 3594691 A US3594691 A US 3594691A US 848804 A US848804 A US 848804A US 3594691D A US3594691D A US 3594691DA US 3594691 A US3594691 A US 3594691A
Authority
US
United States
Prior art keywords
prongs
cables
shielding
connectors
jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US848804A
Inventor
Ronald G Neal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel USA Holding Corp
Original Assignee
Anaconda Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anaconda Wire and Cable Co filed Critical Anaconda Wire and Cable Co
Application granted granted Critical
Publication of US3594691A publication Critical patent/US3594691A/en
Assigned to ANACONDA-ERICSSON INC., A CORP. OF reassignment ANACONDA-ERICSSON INC., A CORP. OF ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ANACONDA COMPANY, THE A CORP. OF DE
Assigned to ALCATEL NA, INC., A CORP OF DE. reassignment ALCATEL NA, INC., A CORP OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ERICSSON, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R9/00Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
    • H01R9/03Connectors arranged to contact a plurality of the conductors of a multiconductor cable, e.g. tapping connections
    • H01R9/05Connectors arranged to contact a plurality of the conductors of a multiconductor cable, e.g. tapping connections for coaxial cables
    • H01R9/0503Connection between two cable ends

Definitions

  • ABSTRACT A metal strip connector with a convex pronged 513-5211628, 629, 4 1 1 3 surface is inserted under the shielding of a cable, pulled for- 94 ward to cause the prongs to pierce the shielding and the free end folded back over the jacket and bound down, thus locking [56] References cued the prongs in their piercing position. The extreme free end of UNITED STATES PATENTS the connector is formed into a loop that is pressed onto the 2,099,950 1 1/1937 Whitehead et al 339/97 X flexible conductor of a harness.
  • prongs project outwardly and are METHOD AND MEANS FOR CONNECTING CABLE SI'IIELDING BACKGROUND OF THE INVENTION
  • cables such as that described in US. Pat. No. 3,459,877, assigned to the present assignee, in which the shielding bonds firmly to the jacket.
  • the outer surface of the shielding is not available for making electrical connections, and conventional means for assuring shielding continuity when cables are joined cannot be employed.
  • electrical connection to the cable shielding should be made, that it should have high electrical conductivity, be easy, inexpensive, and fast to install, and have long life and positive reliability during this life. It is highly desirable that connections should be made without special tools, other than those carried normally by telephone installation crews.
  • My connector comprises a metal strip with a substantial curved portion extending from one end of the strip. This portion is curved across its short dimension and a fiat portion of the strip extends from the curved portion. A plurality of pointed toward the flat portion which comprises a closed conductor-receiving loop at the end remote from the curved portion.
  • a bonding harness of my invention comprises a length of insulated conductor with bared portions at each end and one of the strip connectors of my invention compressed onto each of the ends of the conductor.
  • FIG. I shows a perspective view of a strip connector of my invention.
  • FIG. 2 shows a view, from the curved end, of the connector of FIG. 1.
  • FIG. 3 shows a perspective view of a harness of my invention.
  • FIGS. 4a4f show the steps of a method of my invention.
  • a strip connector indicated generally by the numeral 10
  • the curvature of the portion 13 which is curved across the dimension 11 can best be seen in FIG. 2.
  • a double row of sharp pointed prongs 16 have been stamped into the portion 13 to project outwardly,
  • the flat portion 14 constitutes a substantial fraction of the total dimension 12 extending from line 17 which marks the end of the curvature and a slight upward bend in the strip.
  • the portion 14 terminates in a closed loop 18 large enough to receive a conducting strand.
  • an end 19 of the loop 18 is folded around under an underface 21 of the connector 10, I have found that when a full loop 18 is formed no soldered seam to close the loop 18 is required although the loop can be soldered or brazed, at extra cost within the scope of my invention.
  • Each of the prongs l6 terminates in a sharp point 23 directed outwardly and generally in the direction of the flat portion 14.
  • a supply of the connectors 10 are prepared, and a harness, indicated generally by the numeral 25 (FIG. 3), is formed by pressing one of the connectors 10 to each end of an insulated stranded conductor 24 from which insulation 26 has been stripped from each end to expose bared conductor lengths 27, 28.
  • the size of the metal strands forming the lengths 27, 28 is such that they fit easily into the loops 18 of the connectors but substantially fill these loops so that good and permanent electrical connections can be made by pressing the loops down upon the strands. This can be done with conventional tools.
  • the metal used for connectors 10 must take a permanent deformation without cracking or becoming brittle and I have found that brass. which may be cadmium plated, is particularly suitable. Solder is not needed for the compressed connection since the compression of the closed loop 18 assures a good compression fit.
  • the cable for which my connection is particularly adapted can be seen in FIG. 4d to be comprised of a plurality of insulated conductors 29 within an overall jacket 31 to which is internally bonded a shielding layer 32 of aluminum, copper or other suitable metal or combination. Because of the bonding of the shielding 32 to the jacket 31 to the outer surface of the shielding is not readily available for electrical contact.
  • the jackets 31 and attached shielding 32 are stripped back to expose lengths 36, 37 of the conductors 29 (FIG. 4b). Thence the conductors 29 of the two cables are spliced in a known manner (FIG. 40), and (FIG.
  • the portions 14 are then bound down over the cables by means of a plurality of turns 39 of adhesive tape as shown in FIG. 4/.
  • a conventional splice enclosure can be applied over the entire splice or the whole connection can be taped in a conventional manner, not shown.
  • a connection between two cables each comprising a plurality of insulated conductors, an overall jacket, and a metallic shielding layer bonded to said jacket, comprising:
  • A. means splicing the conductors of one of said cables to the respective conductors of the other of said cables,
  • At least two connectors comprising metal strips, each comprising a plurality of prongs distributed over at least a substantial portion of said strip, said portion, comprising said prongs of one of said strips, being inserted directly under said shielding layer of one of said cables, and said portion, comprising said prongs of another of strips, being inserted directly under said shielding layer of the other of said cables, said prongs piercing said shielding layers and making electrical contact therewith, portions of said strips being folded back over said jackets so as to grip the combined shielding layer and jacket of each of sat cables between the folded portions of said strips,

Landscapes

  • Cable Accessories (AREA)
  • Multi-Conductor Connections (AREA)

Abstract

A metal strip connector with a convex pronged surface is inserted under the shielding of a cable, pulled forward to cause the prongs to pierce the shielding and the free end folded back over the jacket and bound down, thus locking the prongs in their piercing position. The extreme free end of the connector is formed into a loop that is pressed onto the flexible conductor of a harness.

Description

United States Patent 2] In ento OBB a 2,536,003 12/1950 Dupre 339/177 E X de Kalb, Ill. 3,194,877 7/1965 Collier. 1..1..... 339/95 X [21] Appl. No 848,804 3,278,880 /1966 Lewis et a1 U 174/94 X [22] Filed Aug.11, 1969 3,223,775 12/1965 Nugents... 339/96 X Patented July 20, 1971 3,458,649 7/1969 Channel 174/78 X [73] Assignee Anaconda Wire and Cable Company FOREIGN PATENTS 615,529 10/1926 France 339/223 [54] METHOD AND MEANS FOR CONNECTING CABLE 779,868 l/1935 France .l 339/100 SHIELDING 951,738 3/1964 Great Britain 339/95 5 Claims, 9 Drawing 8 Primary ExaminerMarvin A. Champion 52 us. Cl 339 29, Assimm Examiner-Terrell F Lewis 174/78, 174/88, 339/14, 339 95, 339 177, Attorney-Victor Volk 339/223 [51] Int. Cl H0lr 9/08, H01r 11/00, HOlr 15/12 Field of Search 339/29,
177, 95-97, 100, 223, 13, 14, 14 29/509, ABSTRACT: A metal strip connector with a convex pronged 513-5211628, 629, 4 1 1 3 surface is inserted under the shielding of a cable, pulled for- 94 ward to cause the prongs to pierce the shielding and the free end folded back over the jacket and bound down, thus locking [56] References cued the prongs in their piercing position. The extreme free end of UNITED STATES PATENTS the connector is formed into a loop that is pressed onto the 2,099,950 1 1/1937 Whitehead et al 339/97 X flexible conductor of a harness.
prongs project outwardly and are METHOD AND MEANS FOR CONNECTING CABLE SI'IIELDING BACKGROUND OF THE INVENTION In the telephone industry there has been recent widespread use of cables, such as that described in US. Pat. No. 3,459,877, assigned to the present assignee, in which the shielding bonds firmly to the jacket. This has the result that the outer surface of the shielding is not available for making electrical connections, and conventional means for assuring shielding continuity when cables are joined cannot be employed. It remains essential, however, that electrical connection to the cable shielding should be made, that it should have high electrical conductivity, be easy, inexpensive, and fast to install, and have long life and positive reliability during this life. It is highly desirable that connections should be made without special tools, other than those carried normally by telephone installation crews.
SUMMARY In my method for making an electrical connection to a cable shielding, I take the steps of preparing a metal strip connector that is curved across its short dimension for a substantial portion of its length from one end and has a plurality of prongs projecting outwardly of the curved portion with points directed toward the opposite end. Then I connect the end, facing the points of the prongs, of the strip connector to a conducting strand and, subsequently, insert the curved portion of the connector into the cable directly under the shielding. Thereafter I urge the connector longitudinally of the cable so that the prongs pierce the shielding, and thereafter 1 fold the connector strip back over the jacket, locking the prongs in their piercing position. Finally I fasten the folded portion down, most simply, with wrappings of adhesive tape. By my method two cables are joined by forming a splice between the cable conductors, fastening one of my strip connectors to each end of a conducting strand, inserting the curved, pronged ends of the connectors, one under the shielding of each cable, urging the connectors longitudinally so that the prongs pierce the shieldings, and folding the strips back and taping them down so as to lock the prongs in their piercing position.
My connector comprises a metal strip with a substantial curved portion extending from one end of the strip. This portion is curved across its short dimension and a fiat portion of the strip extends from the curved portion. A plurality of pointed toward the flat portion which comprises a closed conductor-receiving loop at the end remote from the curved portion. A bonding harness of my invention comprises a length of insulated conductor with bared portions at each end and one of the strip connectors of my invention compressed onto each of the ends of the conductor.
BRIEF DESCRIPTION OF THE DRAWING FIG. I shows a perspective view of a strip connector of my invention.
FIG. 2 shows a view, from the curved end, of the connector of FIG. 1.
FIG. 3 shows a perspective view of a harness of my invention.
FIGS. 4a4f show the steps of a method of my invention.
DESCRIPTION OF A PREFERRED EMBODIMENT Referring first to FIGS. 1 and 2 of the drawing, a strip connector, indicated generally by the numeral 10, has a short dimension 11 and a long dimension 12 which is divided into a curved portion 13 and a flat portion 14. The curvature of the portion 13 which is curved across the dimension 11 can best be seen in FIG. 2. A double row of sharp pointed prongs 16 have been stamped into the portion 13 to project outwardly,
i.e., away from the center of radius of the curvature, in the portion 13. The flat portion 14 constitutes a substantial fraction of the total dimension 12 extending from line 17 which marks the end of the curvature and a slight upward bend in the strip. The portion 14 terminates in a closed loop 18 large enough to receive a conducting strand. importantly, an end 19 of the loop 18 is folded around under an underface 21 of the connector 10, I have found that when a full loop 18 is formed no soldered seam to close the loop 18 is required although the loop can be soldered or brazed, at extra cost within the scope of my invention.
Each of the prongs l6 terminates in a sharp point 23 directed outwardly and generally in the direction of the flat portion 14.
In the practice of the method of my invention a supply of the connectors 10 are prepared, and a harness, indicated generally by the numeral 25 (FIG. 3), is formed by pressing one of the connectors 10 to each end of an insulated stranded conductor 24 from which insulation 26 has been stripped from each end to expose bared conductor lengths 27, 28. The size of the metal strands forming the lengths 27, 28 is such that they fit easily into the loops 18 of the connectors but substantially fill these loops so that good and permanent electrical connections can be made by pressing the loops down upon the strands. This can be done with conventional tools. The metal used for connectors 10 must take a permanent deformation without cracking or becoming brittle and I have found that brass. which may be cadmium plated, is particularly suitable. Solder is not needed for the compressed connection since the compression of the closed loop 18 assures a good compression fit.
The cable for which my connection is particularly adapted can be seen in FIG. 4d to be comprised of a plurality of insulated conductors 29 within an overall jacket 31 to which is internally bonded a shielding layer 32 of aluminum, copper or other suitable metal or combination. Because of the bonding of the shielding 32 to the jacket 31 to the outer surface of the shielding is not readily available for electrical contact. To make a connection between two cables 33, 34 (FIG. 4a), in the method of my invention, the jackets 31 and attached shielding 32 are stripped back to expose lengths 36, 37 of the conductors 29 (FIG. 4b). Thence the conductors 29 of the two cables are spliced in a known manner (FIG. 40), and (FIG. 4d) the curved ends of the connectors 10 which have been pressed onto the conductor 24 are inserted under the shieldings 32 of the cables 33, 34 with the curve of the connector more or less matching the curvature of the cable jacket. As shown in FIGS. 4d and 4e the conductors 29 are surrounded by an inner sheath 38, and when the connectors 10 are inserted they are easily inserted by hand between this sheath and the shielding 32, up to the line 17. The connectors are then pulled by hand (FIG. 4e) toward each other to force the prongs 16 to pierce the shielding 32 which they do because of the outward and backward direction of the points 23. The flat portion 14 of the connectors is then folded back (as shown in FIG. 4f) over the jackets 31 of both the cables 33 and 34 and pressed firmly down upon the jacket surfaces. This folding has the effect of locking the prongs 16 in their piercing position with their points 23 in the stock of the jacket 31. In order to bite firmly into the shielding the prongs 16 must not only be sufficiently long but must be undercut to provide an area 22 under the points 23 for the accommodation of shielding material and jacket stock when the connector is pulled forward to cause the piercing action. The insertion of the connector under the shielding should be far enough so that, after the shielding has been pierced, a cut edge 35 (FIG. 4d) of the shielding 32 and jacket 31 is in contact with the flat portion 14 of the connector with the result that the connector will bend easily and firmly against the edge 35 to efiect the locking action.
The portions 14 are then bound down over the cables by means of a plurality of turns 39 of adhesive tape as shown in FIG. 4/. In open locations a conventional splice enclosure can be applied over the entire splice or the whole connection can be taped in a conventional manner, not shown.
Although, my method, connector and harness have particular advantages as described, where the cable shielding is bonded to the'jacket, their use is not limited to such cables but has been successfully applied to cables where the shielding is not bonded to the jacket, and although I have shown the application of my invention to a cable with an inner sheath 38, the presence of such a sheath is by no means necessary for the successful attachment of my connector so long as it can be inserted between the core and the shielding.
I claim:
1. The method of making an electrical connection to the shielding of a cable comprising the steps of:
A. preparing a metal strip connector curved across its short dimension for a substantial portion of its length from one end thereof, and having a plurality of prongs projecting outwardly of the curved portion with points directed toward the opposite end,
B. mechanically and electrically connecting the end, facing said prongs, of said strip connector, to a conducting strand,
C. inserting said curved portion of said connector into said cable directly under said shielding,
D. urging said connector lengthwise of said cable so force said prongs to pierce said shielding,
E. folding a substantial portion of said connector back over said jacket so as to sandwich said shielding and said jacket between'said curved and folded portions of said strip connector, and lock said prongs in their piercing positions, and
, F. fastening said folded portion down upon said cable.
2. The method of claim 1 wherein said fastening step comprises wrapping adhesive tape around said cable and said folded portion of said connector.
3. The method of joining the shielding of two cables, comprising the steps of:
A. preparing two metal strip connectors, said connectors each being curved across its short dimension for a substantial portion of its length from one end thereof and having a plurality of prongs projecting outwardly of said curved portion, said prongs having points directed toward the opposite end,
B. inechanicallyand electrically connecting the ends of said strip connectors facing said prongs to two ends of a conas [O ducting strand,
C. splicing the conductors of said cables,
D. inserting the curved portions of each of said connectors into a different one of said cables directly under said shielding, I
E. urging said connectors lengthwise of said cables so as to force said prongs to pierce said shieldings,
F. folding a substantial portion of each of said connectors back over the jacket of the cable attached thereto, so as to sandwich said shielding and said jacket between the curved and folded portions of said strip connectors and lock said prongs in their piercing positions, and
G. fastening said folded portions down against said cables.
4. The method of claim 3 wherein said fastening step comprises wrapping adhesive tape around said cables and the folded portions of said connectors.
5. A connection between two cables, each comprising a plurality of insulated conductors, an overall jacket, and a metallic shielding layer bonded to said jacket, comprising:
A. means splicing the conductors of one of said cables to the respective conductors of the other of said cables,
B. at least two connectors comprising metal strips, each comprising a plurality of prongs distributed over at least a substantial portion of said strip, said portion, comprising said prongs of one of said strips, being inserted directly under said shielding layer of one of said cables, and said portion, comprising said prongs of another of strips, being inserted directly under said shielding layer of the other of said cables, said prongs piercing said shielding layers and making electrical contact therewith, portions of said strips being folded back over said jackets so as to grip the combined shielding layer and jacket of each of sat cables between the folded portions of said strips,
C. a plurality of turns of tape wrapped around each of said folded back portions of said strips and its attached cable, binding said portions back against said jacket, and locking said connectors to said cables, and
D. a metallic conductor electrically connecting together the ends of said folded back portions, thereby electrically connecting said shielding layers.
6. The connection of claim 5 wherein said metallic conductor is insulated and stranded.

Claims (6)

1. The method of making an electrical connection to the shielding of a cable comprising the steps of: A. preparing a metal strip connector curved across its short dimension for a substantial portion of its length from one end thereof, and having a plurality of prongs projecting outwardly of the curved portion with points directed toward the opposite end, B. mechanically and electrically connecting the end, facing said prongs, of said strip connector, to a conducting strand, C. inserting said curved portion of said connector into said cable directly under said shielding, D. urging said connector lengthwise of said cable so as to force said prongs to pierce said shielding, E. folding a substantial portion of said connector back over said jacket so as to sandwich said shielding and said jacket between said curved and folded portions of said strip connector, and lock said prongs in their piercing positions, and F. fastening said folded portion down upon said cable.
2. The method of claim 1 wherein said fastening step comprises wrapping adhesive tape around said cable and said folded portion of said connector.
3. The method of joining the shielding of two cables, comprising the steps of: A. preparing two metal strip connectors, said connectors each being curved across its short dimension for a substantial portion of its length from one end thereof and having a plurality of prongs projecting outwardly of said curved portion, said prongs having points directed toward the opposite end, B. mechanically and electrically connecting the ends of said strip connectors facing said prongs to two ends of a conducting strand, C. splicing the conductors of said cables, D. inserting the curved portions of each of said connectors into a different one of said cables directly under said shielding, E. urging said connectors lengthwise of said cables so as to force said prongs to pierce said shieldings, F. folding a substantial portion of each of said connectors back over the jacket of the cable attached thereto, so as to sandwich said shielding and said jacket between the curved and folded portions of said strip connectors and lock said prongs in their piercing positions, And G. fastening said folded portions down against said cables.
4. The method of claim 3 wherein said fastening step comprises wrapping adhesive tape around said cables and the folded portions of said connectors.
5. A connection between two cables, each comprising a plurality of insulated conductors, an overall jacket, and a metallic shielding layer bonded to said jacket, comprising: A. means splicing the conductors of one of said cables to the respective conductors of the other of said cables, B. at least two connectors comprising metal strips, each comprising a plurality of prongs distributed over at least a substantial portion of said strip, said portion, comprising said prongs of one of said strips, being inserted directly under said shielding layer of one of said cables, and said portion, comprising said prongs of another of strips, being inserted directly under said shielding layer of the other of said cables, said prongs piercing said shielding layers and making electrical contact therewith, portions of said strips being folded back over said jackets so as to grip the combined shielding layer and jacket of each of said cables between the folded portions of said strips, C. a plurality of turns of tape wrapped around each of said folded back portions of said strips and its attached cable, binding said portions back against said jacket, and locking said connectors to said cables, and D. a metallic conductor electrically connecting together the ends of said folded back portions, thereby electrically connecting said shielding layers.
6. The connection of claim 5 wherein said metallic conductor is insulated and stranded.
US848804A 1969-08-11 1969-08-11 Method and means for connecting cable shielding Expired - Lifetime US3594691A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84880469A 1969-08-11 1969-08-11

Publications (1)

Publication Number Publication Date
US3594691A true US3594691A (en) 1971-07-20

Family

ID=25304320

Family Applications (1)

Application Number Title Priority Date Filing Date
US848804A Expired - Lifetime US3594691A (en) 1969-08-11 1969-08-11 Method and means for connecting cable shielding

Country Status (1)

Country Link
US (1) US3594691A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732354A (en) * 1971-01-19 1973-05-08 J Thompson Cable end seal, support and grounding assembly
US3778749A (en) * 1971-11-02 1973-12-11 Minnesota Mining & Mfg Connector
US4236779A (en) * 1978-05-01 1980-12-02 Bunker Ramo Corporation EMI Shielded cable and connector assembly
US5414212A (en) * 1992-01-29 1995-05-09 Filotex Shielded "herringbone" harness
US8777643B2 (en) * 2012-08-16 2014-07-15 Hubbell Incorporated Ground strap shield connector
US20190214771A1 (en) * 2017-09-11 2019-07-11 Ardent Concepts, Inc. Compliant Termination for a Controlled-Impedance Cable

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR615529A (en) * 1926-05-01 1927-01-10 Electrical cable lug
FR779868A (en) * 1934-10-18 1935-04-13 Electrical wire lug
US2099950A (en) * 1936-01-11 1937-11-23 Danielson Mfg Company Harness cord
US2536003A (en) * 1946-07-08 1950-12-26 Burndy Engineering Co Inc Coaxial cable connection
GB951738A (en) * 1961-12-22 1964-03-11 Amp Inc Earthing the shields of shielded electrical connectors
US3194877A (en) * 1962-05-08 1965-07-13 Amp Inc Electrical connector for connecting an electrical lead to the braid of a braid-shielded electrical cable
US3223775A (en) * 1963-03-29 1965-12-14 Nugent Daniel Eugene Conductive clip
US3278880A (en) * 1963-05-27 1966-10-11 Reynolds Metals Co Strip conductor coils with terminals
US3458649A (en) * 1966-11-21 1969-07-29 William H Channell Cable splice sleeve

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR615529A (en) * 1926-05-01 1927-01-10 Electrical cable lug
FR779868A (en) * 1934-10-18 1935-04-13 Electrical wire lug
US2099950A (en) * 1936-01-11 1937-11-23 Danielson Mfg Company Harness cord
US2536003A (en) * 1946-07-08 1950-12-26 Burndy Engineering Co Inc Coaxial cable connection
GB951738A (en) * 1961-12-22 1964-03-11 Amp Inc Earthing the shields of shielded electrical connectors
US3194877A (en) * 1962-05-08 1965-07-13 Amp Inc Electrical connector for connecting an electrical lead to the braid of a braid-shielded electrical cable
US3223775A (en) * 1963-03-29 1965-12-14 Nugent Daniel Eugene Conductive clip
US3278880A (en) * 1963-05-27 1966-10-11 Reynolds Metals Co Strip conductor coils with terminals
US3458649A (en) * 1966-11-21 1969-07-29 William H Channell Cable splice sleeve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732354A (en) * 1971-01-19 1973-05-08 J Thompson Cable end seal, support and grounding assembly
US3778749A (en) * 1971-11-02 1973-12-11 Minnesota Mining & Mfg Connector
US4236779A (en) * 1978-05-01 1980-12-02 Bunker Ramo Corporation EMI Shielded cable and connector assembly
US5414212A (en) * 1992-01-29 1995-05-09 Filotex Shielded "herringbone" harness
US8777643B2 (en) * 2012-08-16 2014-07-15 Hubbell Incorporated Ground strap shield connector
US20190214771A1 (en) * 2017-09-11 2019-07-11 Ardent Concepts, Inc. Compliant Termination for a Controlled-Impedance Cable

Similar Documents

Publication Publication Date Title
US5191710A (en) Method of forming an electrode unit
CN207459195U (en) A kind of anti-open circuit plug-in connector for possessing cold weld wiring
JPS5894776A (en) Electric connector
US4026628A (en) Electrical connector for cables and magnetic forming process for same
CN110323581B (en) Electric wire with terminal
US4949454A (en) Method for making an electrical connection to a flat electrical conductor
US3814836A (en) Connector for insulated conductors
US3594691A (en) Method and means for connecting cable shielding
US3643008A (en) Shielded cable construction providing for an internal connection to ground
JP3910874B2 (en) Flat cable connector and flat cable connector
US4302065A (en) Flat cable assembly and methods of terminating and connectorizing the cable of same
US3605077A (en) Wire stop and wire guide in terminals and connectors
JP5608496B2 (en) Fiber conductor wire connection structure and connection method
JPS62202471A (en) Connector and manufacture of the same
US20140345127A1 (en) Method of connecting a cable with a cable connector
US3461221A (en) Electrical connector for flat conductor cable
GB2052891A (en) Method of attaching a contact element to an electric line
US4540224A (en) Grounding clip for use with shielded, jacketed flat cable
JP3244432B2 (en) Electrical connector cable connection structure
US2651764A (en) Tinsel wire connector for electrical conductors
TW200409407A (en) A cable connector assembly and its method of manufacture
JP3071208B2 (en) Connector harness at both ends
GB1329634A (en) Electrical connections
JPH1021972A (en) Connector
JPH03108206A (en) Shielded card cable

Legal Events

Date Code Title Description
AS Assignment

Owner name: ANACONDA-ERICSSON INC., A CORP. OF DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ANACONDA COMPANY, THE A CORP. OF DE;REEL/FRAME:003846/0822

Effective date: 19800728

Owner name: ANACONDA-ERICSSON INC., A CORP. OF, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANACONDA COMPANY, THE A CORP. OF DE;REEL/FRAME:003846/0822

Effective date: 19800728

AS Assignment

Owner name: ALCATEL NA, INC., A CORP OF DE., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ERICSSON, INC.;REEL/FRAME:004923/0892

Effective date: 19880412

Owner name: ALCATEL NA, INC., 100 PENNY ROAD, CLAREMONT, NC.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ERICSSON, INC.;REEL/FRAME:004923/0892

Effective date: 19880412