US3591500A - Functional fluid compositions - Google Patents

Functional fluid compositions Download PDF

Info

Publication number
US3591500A
US3591500A US796885A US3591500DA US3591500A US 3591500 A US3591500 A US 3591500A US 796885 A US796885 A US 796885A US 3591500D A US3591500D A US 3591500DA US 3591500 A US3591500 A US 3591500A
Authority
US
United States
Prior art keywords
fluid
bis
sulfide
fluids
polyphenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US796885A
Inventor
James D Sullivan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Co filed Critical Monsanto Co
Application granted granted Critical
Publication of US3591500A publication Critical patent/US3591500A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M3/00Liquid compositions essentially based on lubricating components other than mineral lubricating oils or fatty oils and their use as lubricants; Use as lubricants of single liquid substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/024Well-defined aliphatic compounds unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/04Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing aromatic monomers, e.g. styrene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/304Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monohydroxy compounds, dihydroxy compounds and dicarboxylic acids only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/107Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/11Complex polyesters
    • C10M2209/112Complex polyesters having dihydric acid centres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/024Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aromatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/04Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen, halogen, and oxygen
    • C10M2211/042Alcohols; Ethers; Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/04Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen, halogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/16Nitriles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • C10M2215/222Triazines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • C10M2215/224Imidazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/086Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing sulfur atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/102Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon only in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/02Macromolecular compounds obtained by reactions of monomers involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/32Light or X-ray resistance
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/06Instruments or other precision apparatus, e.g. damping fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • C10N2040/13Aircraft turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/34Lubricating-sealants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/38Conveyors or chain belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/40Generators or electric motors in oil or gas winning field
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/42Flashing oils or marking oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/44Super vacuum or supercritical use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/50Medical uses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • This invention relates to functional fluid compositions having improved metal compatibility and more particularly to functional fluids containing certain organic nitrogen compounds.
  • present and future lubricants must, of course, possess at least adequate temperature-viscosity properties and satisfactory lubricity, that is, the lubricants must not become too thin at the very high temperatures to which they are subjected nor must they become too thick at the lower temperatures and must at the same time be able to provide at least minimum lubricity over such range of temperatures.
  • lubricants must also not be too volatile and even if somewhat volatile must not, upon evaporation, leave any significant deposits to interfere with the proper operation of engine bearings.
  • Anther lubricating problem associated with presentday design and design trends in jet engines is that the increased thrust needed to obtain high speeds and altitudes results in further increases in not only operating temperatures but also higher bearing pressures.
  • a further problem in obtaining a lubricant which has good combination of properties at various temperatures is that those materials having a low pour point also have a high evaporation rate at the temperatures of the order of 400 F.-500 F.
  • thermo stability high temperature stability
  • oxidative stability high temperature oxidative stability
  • little or no corrosion toward metals While fluids are known which possess adequate thermal and oxidative stability either inherently or can be provided by incorporating additives, many such functional fluids are corrosive to metals at high temperatures in the order of 5 00 F. and in particular to copper and silver.
  • additives including organic nitrogen compounds, have been used in the past to reduce or eliminate the tendency of lubricants to corrode metals at lower temperatures, i.e., to 350 F., at the higher temperatures referred to above the properties of additives become unpredictable.
  • metal corrosion inhibitors are not active at elevated temperatures and in many instances Where they retain their corrosion inhibiting properties, they cause other problems such as decreased thermal and oxidative stability.
  • Additives useful in many different chemical types of functional fluids have now been discovered which reduce or eliminate the corrosiveness of the fluids toward metals at high temperatures.
  • Another object of this invention is to provide functional fluid compositions which are substantially noncorrosive to metals. Another object of this invention is to provide functional fluid compositions which are substantially non-corrosive to metals at high temperatures.
  • Another object of this invention is to provide additives for functional fluids which when added in a small amount to a base stock will reduce or eliminate the copper corrosivity of the fluid.
  • an organic nitrogen compound selected from the group consisting of (A) A compound represented by the formula wherein X is selected from the group consisting of hydrogen, NH and OH, Y is selected from the group consisting of hydrogen, NH OH and NHCEN and G, G and G" are each selected from the group consisting of carbon and nitrogen provided that at least 1 of G and G" is carbon and at least 2 of G are carbon, Z is selected from the group consisting of hydrogen and a hydrocarbon group, n is an integer from 1 to 2, m is an integer from 1 to 2 and the sum of m-l-n is equal to the number of G groups that are carbon.
  • G is selected from the group consisting of carbon and nitrogen provided that from 2 to 4 of G is nitrogen
  • X is selected from the group consisting of hydrogen, NH and OH
  • p is an integer from to 2 and is no greater than the number of carbon atoms in the ring represented by G.
  • R, R and R are selected from the group consisting of hydrogen and NH
  • D A compound selected from the group consisting of cyanoamino hydroxy-pyrimidines, anilinopropionitriles, aminocarbazols, aminopyridines, aminonicotinic acids, cyanoglutaramides, aminonaphthylimides and alkyldiimidazolines.
  • the hydrocarbon group, Z above, can be an aliphatic or aromatic hydrocarbon.
  • Preferred additives of this invention are compounds of (A) above represented by the formula (Xhw N where X, Z, n and m have the same meaning as in (A) above.
  • Examples of compounds of Formula I above are 4 aminoindazole, 5 aminoindazole, 6 aminoindazole, 7-aminoindazole, 4-hydroxyindazole, S-hydroxyindaz le, 6-hydroxyindazole and 7-hydroxyindazole.
  • Such compounds are preferred additives of this invention because they are more soluble in the base stocks disclosed herein,
  • polyphenyl thioethers particularly polyphenyl thioethers, and can be employed in small amounts to prevent or reduce metal corrosion.
  • the amount of the additives of this invention which are used in functional fluids vary according to the nature of the particular fluid to which they are added, i.e., the amount is proportional to the corrosivity of the fluid.
  • the corrosivity of some fluids can be significantly reduced or eliminated by the addition of as little as about 0.025% by weight of the base stock of an additive of this invention.
  • an amount of up to about 5% by weight is adequate to achieve a substantially non-corrosive fluid. It is preferred to use from about 0.05% to about 0.5% by weight of an additive of this invention since within that range of concentrations the amount of additive used is low enough so that solubility considerations are not limiting yet adequate corrosion inhibition is obtained.
  • the amount of additive to be used can be expressed as a corrosion reducing amount, i.e., an amount which is effective to provide decreased corrosivity of the fluids contemplated.
  • the improved compositions of this invention can be prepared by dissolving the additive in a small portion of the fluid at elevated temperatures in the range of from about F. to about 200 F., then mixing the heated composition with the main portion of the fluid to form a composition of this invention.
  • additives of this invention are particularly useful in polyphenyl thioethers, which as used herein, means a compound or physical mixture of compounds represented by the structures where m is a whole number from 0 to 6,
  • a and A are each selected from oxygen and sulfur
  • x and y are whole numbers from 0 to 3 and the sum of x-i-y is from 1 to 6 and A and A are each selected from oxygen and sulfur but at least one of A and A is sulfur, and
  • T is selected from the group consisting of alkyl, haloalkyl and alkoxyl groups having from 1 to 4 carbon atoms, and hydroxyl
  • A is selected from the group consisting of oxygen and sulfur provided at least one A is sulfur
  • y, m and n are integers from 1 to 3 and K is an integer from to 1 providing at least one K is 1.
  • polyphenyl thioethers examples include:
  • compositions of this invention in Which additives of this invention are advantageous are mixtures of m-bis(phenylmercapto)benzene and certain other materials which have properties that make them Well suited for the uses disclosed above and particularly those applications, such as jet engine lubricants, requiring high temperatures, thermal and oxidative stability and Wide liquid range.
  • the other materials contemplated to be used with m-bis (phenylmercapto)benzene to provide such mixtures are as follows:
  • VII such as l,2,4-trisphenylmercaptobenzene, 3,3 -bis (phenylmercapto biphenyl m-bis p-phenylmercaptophenylmercapto benzene,
  • the compounds (a) through (c) can be used alone or in combination to form compositions of this invention.
  • a typical mixture of polyphenyl thioethers is one which contains by weight from about 45% to about 55% mphenoxyphenyl m-phenylmercaptophenyl sulfide, from about to about bis(m-phenylmercaptophenyl) sulfide and from about 18% to about 25 bis- (m-phenoxyphenyl) sulfide.
  • Particularly useful mixtures of polyphenyl thioethers are those containing the above mixtures and m-bis(phenylmercapto) benzene in about equal proportions.
  • mixtures containing polyphenyl thioethers, mixed polyphenyl ethers, thioethers and halogenated polyphenyl ethers which are suitable as lubricants under high temperature conditions are as follows in weight percent:
  • polyphenyl ethers in which the non-terminal phenylene rings are linked through oxygen atoms in the meta and/ or para positions, have been found to be particularly suitable.
  • An example of such polyphenyl ether compositions are those containing, in percent by weight, from about 0 to 6% of O-bis (m-phenoxyphenoxy)benzene (1), about 40 to of m-(bis(mphenoxyphenoxy)benzene (2), about 0 to 40% of m- [(m-phenoxyphenoxy) (p-phenoxyphen0Xy)] benzene (3), about 0 to 12% of p-bis(m-phenoxyphenoxy) benzene (4), about 0 to 10% of p-[(p-phenoxyphenoxy) (m-phenoxyphenoxy)] benzene (5), and about 0 to 6% of m-bis(p-phenoxyphenoxy)benzene (6).
  • Typical compositions of such mixtures are listed below. The number of parentheses
  • TYPICAL COMPOSITIONS Mixtures, percent by weight of Components A B C
  • Such fluids include synthetic ester base fluids. These are fluids of lubricating viscosity which are esters of alcohols containing at least 4 carbon atoms and which generally contain more than one ester group. They may be esters of polyhydric alcohols, of polybasic acids, or both.
  • Ester fluids with particularly advantageously low tern perature viscosity properties, which flo'w readily at temperatures as low as 30 F., are provided by the diesters of dibasic acids.
  • Ester lubricants of the dibasic acid ester type are illustrated by diesters of long-chain dicarboxylic acids like azelaic acid with long-chain branched primary alcohols of the C to C range.
  • the synthetic ester lubricants also include the esters of long-chain monobasic acids such as pelargonic acid with glycols such as polyethylene glycols.
  • Complex esters are also formed by linking dibasic acid half esters through a glycol such as dipropylene glycol, a polyethylene glycol of 200 molecular weight, and so forth.
  • polyester type lubricant fluids are valuable as well and also it is common practice to achieve desired properties in the ultimate base fluid by blending different polyester products.
  • Simple esters providing suitable fluids can be exemplified, for example, by bis(Z-methylbutyl) sebacate, bis(l-methylcyclohexylmethyl) sebacate, bis(2,2,4 trimethylpentyl) sebacate, dipropylene glycol dipelargonate, the diesters of acids such as sebacid, azelaic and adipic acid with complex C C primary branched chain alcohols such as those produced by the oxo process, polyethylene glycol 200 bis(2- ethylhexyl) sebacate, diisoamyl adipate, 1,6-hexamethylene glycol di(2 ethylhexanoate), bis(dimethylamyl) azelate and so forth.
  • Ester fluids with particularly good high temperature oxidation resistance are provided by neopentyl polyol esters.
  • the alcohols from which these esters are derived have the carbon structure of neopentane, with a central carbon atom surrounded by 4 substituent carbon atoms.
  • Included in the neopentyl polyols are neopentyl glycol, trimethylolethane, trimethylolpropane, pentaerythritol and dipentaerythritol.
  • the base fluids comprising neopentyl polyol esters are the esters with monocarboxylic acids. Such esters are generally more oxidatively and thermally stable than the dibasic acid esters.
  • the useful esters of the neopentyl polyols include, for example, the esters of trimethylol propane, neopentyl glycol, pentaerythitol and dipentaerythritol with normal, branched chain and mixed acids having the chain lengths varying from C to C
  • an illustrative series of esters are trimethylolpropane tri-n-pelargonate, trimethylolpropane, tricaprate, trimethylolpropane tricaprylate, the trimethylolpropane triester of mixed octanoates, pentaerythrityl tetra butyrate, pentaerythrityl tetravalerate, pentaterythrityl tetracaproate, pentaerythrityl dibutyrate dicaproate, pentaerythrityl butyrate caproate divalerate, pentaerythrityl butyrate trivalerate,
  • Suitable dipentaterythrityl esters include dipentaerythrityl hexabutyrate, dipentaerythrityl hexapropionate, dipentaerythrityl hexavalerate, dipentaerythrityl hexacaproate, dipentaerythrityl hexaheptoate, dipentaerythrityl hexacaprylate, dipentaerythrityl tributyrate tricaproate, dipentaerythrityl trivalerate trinonylate and other dipentaterythrityl mixed hexaesters of C fatty acids.
  • additives of this invention are useful in mixtures of monoand dipentaerythritol esters of C fatty acids and mixtures of C fatty acids.
  • ester fluids adapted for use as lubricant base stocks and useful in the provision of the compositions of this invention
  • referencec may be made, for example, to the discussion in Gunderson et al., Synthetic Lubricants (Reinhold, 1962).
  • compositions of this invention useful as funtional fluids can be prepared by combining additives of this invention described above with monoand dialkylthiophenes represented by the structural formula D m ⁇ S/ D 11 wherein A, B and D are each alkyl C radicals and any two of A, B and D radicals together with the carbon atom to which they are attached can form an alicyclic ring and m and n are integers from O to 1, providing the sum of m-l-n is at least one,
  • Typical thiophenes of structure XXVIII are as follows:
  • additives of this invention are blended synthetic fluids comprising a major proportion of dihalogenated diphenyl ethers or sulfides and a minor amount of blending agents selected from halogenated lower alkyl benzenes, halogenated benzene, monohalogenated dephenyl ethers and chlorinated biphenyl or combinations thereof.
  • the dihalogenated diphenyl ethers suitable for use as base stocks in the fluid compositions of this invention are those represented by the structure where A is a chalkogen having an atomic number of 8 to 16, E and F are bromine, chlorine and fluorine.
  • Typical examples of such ethers and sulfides are:
  • the ethers are generally preferred over the sulfides because their lower melting points make them usable in a Wider number of applications and of the ethers, those in which the halogen substituents are in the 3,4'-relationship 1 1 are preferred for use in the compositions of this invention, because their low melting points are the lowest of all the fluids of this invention.
  • the blending agents which can be used include the halogenated lower alkyl (C benzenes containing 1 to halogens, such as 4-bromomethylbenzene, 2-bromoethylbenzene, 4-bromopropylbenzene, 4-chlorobutylbenzene, 2,4-dichloromethylbenzene, 2,3-dibromoethylbenzene, 2,4-dibromoethylbenzene, 2,4-dichloroethylbenzene, 2-fluoro-4-chloroethylbenzene, 2,5-dibromoethylbenzene, 3,4-dibromoethylbenzene, 3,S-dibromopropylbenzene, 2,4- fiuorobutylbenzene and the like.
  • C benzenes containing 1 to halogens such as 4-bromomethylbenzene, 2-bromoethyl
  • halogenated alkyl benzenes are triand tetra-chloroethylbenzene, triand tetrabromoethylbenzene, pentachloromethylbenzene, pentachloroethylbenzene, pentabromoethylbenzene, pentabromopropylbenzene, pentachlorobutylbenzene and the like.
  • halogenated alkyl benzenes such as the mixture of brominated ethyl benzenes disclosed in U.S. Pat. No. 2,257,903, which contain an average of two atoms of bromine per mol of ethyl benzene.
  • blending agents include the monohalogenated diphenyl ethers such as 2-chlorodiphenyl ether, 3-chlorodiphenyl ether, 4-chlorodiphenyl ether, 3-br0modiphenyl ether and the like and chlorinated biphenyl which is illustrated by the chlorinated biphenyl commercially available as products containing about 21%, 32%, 42%, 48%, 54% and 60% of combined chlorine corresponding approximately to mono-, di-, tri-, tetra-, pentaand hexachlorobiphenyl, respectively.
  • monohalogenated diphenyl ethers such as 2-chlorodiphenyl ether, 3-chlorodiphenyl ether, 4-chlorodiphenyl ether, 3-br0modiphenyl ether and the like
  • chlorinated biphenyl which is illustrated by the chlorinated biphenyl commercially available as products containing about 21%, 32%, 42%, 48%, 54% and 60%
  • chlorinated biphenyl containing a stated percentage of combined chlorine is used herein as not only including these directly chlorinated products, but also as blends of one or more chlorinated biphenyl whereby the total chlorine content is broadly within the range of 20% to 60% preferably with the range of 20% to 42% by weight. 'It is also preferred, in order to obtain fluids having low crystallizing points, to use chlorinated biphenyl which has been isomerized, and preferably distilled thereafter according to the teachings of US. Pat. No. 3,068,297.
  • the halogenated benzenes which can be used as blending agents include chloroand bromobenzenes.
  • the preferred chlorobenzenes are di-, triand tetrachlorobenzene and mixtures thereof.
  • the preferred bromobenzenes are mono-, diand tribromobenzene and more particularly m-dibromobenzene.
  • halogenated benzenes useful as blending agents are o-dichlorobenzene, mdichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,2,3,4-tetrachlorobenzene, 1,2,3,S-tetrachlorobenzene, o-dibromobenzene and 1,2,4-tribromobenzene.
  • blending agents which can be used are perhalogenated alkyl compounds such as hexachlorobutadiene.
  • Another class of functional fluids employed in preparing compositions of this invention are aliphatic hydrocarbon oils. Such oils are those obtained by super refining petroleum thereby producing a mixture of saturated aliphatic hydrocarbons or they can be poduced synthetically.
  • Preferred hydrocarbon oils useful in preparing compositions of this invention are those represented by the formula wherein R R R and R are saturated hydrocarbon radicals having a combined total of from 4 to 80 carbon atoms. The number of variation of the R groups in F0rmula XXX is very large, and dependent thereupon is the viscosity range of any particular fluid.
  • Such exemplary compounds are 2,2,4-trimethylpentane, 4,4,6 trimethylnonane, 7,9 dibutyl-7-methylpentadecane, 9,11 dihexyl-9methylnonadecane, 11,13- dioctyl-ll-methyltricosane, 13,15 didecyl-13-methylheptacosane, 15,17-didodecyl methyldotriacontane, 4- ethyl-2,4-dimethylpentane, 4-butyl 4,6 dimethylnonane, 7-methyl-7-butyl 9 ethylpentadecane, 9 methyl-9- pentyl-ll-propylnonadecane, ll-methyl 11 hexyl-13- tridecyltricosane, 13-methyl 13 heptadecyl-lS-nonylheptacosane, 15-methyl 15 butyl-l7-hexy
  • One of the major bench scale methods used for evaluating the corrosivity of a lubricant or hydraulic fluid is the procedure given in MILL923 6A according to which the lubricant to be treated is heated at a specified temperature in the presence of certain metals and air and the corrosivity determined by measuring the change in weight of the metals.
  • compositions of this invention were tested according to the procedure of MIL-L-9236A except that the temperature was held at 500 F. instead of 600 F.
  • the metal specimens used were, as specified in said procedure, steel, copper, silver, titanium, magnesium alloy and aluminum alloy. However, only the results upon copper and silver are reported since the composition tested had essentially no effect on steel, titanium, magnesium alloy and aluminum alloy. The results observed using the abovedescribed procedure are recorded in the tables below.
  • the corrosivity to metals was determined by weighing the metal specimens before and after the test. The weight difference in milligrams per square centimeter of metal surface exposed to the fluid is reported.
  • Fluid A was a mixture consisting, by weight, of about 50% of m-bis(phenylmercapto)-benzene, about 25% of m-phenoxyphenyl mphenylmercaptophenyl sulfide, about 11% of bis(m-phenoxyphenyl) sulfide and about 14% of bis(m-phenylmercaptophenyl) sulfide.
  • Table I below presents the data obtained by employing 0.1%, by weight, of each additive in Fluid A when the composition was subjected to the above-described test.
  • Fluid B in Table III is a mixture consisting, by weight, of about 50% of m-phenoxyphenyl m-phenylmercaptophenyl sulfide, about 22% of bis(phenoxyphenyl) sulfide and about 28% of bis(mphenylmercaptophenyl) sulfide.
  • this invention relates to a novel method of lubricating gas turbine engines which comprises maintaining on the bearings and other points of wear of the engine a lubricating amount of a composition of this invention.
  • neopentyl polyol esters of C fatty acids are neopentyl polyol esters of C fatty acids, mixtures of neopentyl polyol esters of C fatty acids, dipentaerythritol ester of C fatty acids and mixtures of the pentaerythritol esters and dipentaerythritol esters.
  • Especially useful as gas turbine engine lubricants are mixtures of polyphenyl ethers and polyphenyl thioethers containing corrosion reducing amounts of an additive of this invention.
  • improved hydraulic pressure devices can be prepared in accordance with this invention which comprise in combination a fluid chamber and an actuating fluid in said chamber, said fluid comprising a mixture of one or more of the base stocks hereinbefore described.
  • the functional fluids of this invention can be utilized in those hydraulic systems wherein power must be transmitted and the frictional parts of the system lubricated by the hydraulic fluid utilized.
  • the novel composition of this invention finds utility in the transmission of power in a hydraulic system having a pump therein supplying the power for the system.
  • the parts which are so lubricated include the frictional surfaces of the source of power, namely the pump, valves, operating pistons and cylinders, fluid motors and in some cases, for machine tools, the ways, table and slides.
  • the hydraulic system may be of either the constant-volume or the variable-volume type of system.
  • the pumps may be of various types, including the piston-type pump, more particularly the variable-stroke pis ton pump, the variable-discharge or variable displacement piston pump, radial-piston pump, axial-piston pump, in
  • a pivoted cylinder block is adjusted at various angles with the piston assembly, for example, the Vickers axial-piston pump, or in which the mechanism which drives the pistons is set at an angle adjustable with the cylinder block; gear-type pump, which may be spur, helical or herringbone gears, variations of internal gears, or a screw pump; or vane pumps.
  • the valves may be stop valves, reversing valves, pilot valves, throttling valves, sequence valves or relief valves.
  • Fluid motors are usually constantor variable-discharge piston pumps caused to rotate by the pressure of the hydraulic fluid of the system with the power supplied by the pump power source. Such a hydraulic motor may be used in connection with a variable-discharge pump to form a variable-speed transmission.
  • compositions described above are generally quite suitable for most applications, it may also be desirable to add small amounts of various other functional addition agents such as viscosity index improvers, e.g., a polymerized methacrylate ester, an alkylated polystyrene, or the polyether condensation products of ethylene oxide or propylene oxide, or both, with a glycol such as ethylene glycol, propylene glycol, butanediol, etc., or with an aliphatic alcohol such as butanol, octanol, decanol, tridecanol, etc., pour point depressants, oxidation inhibitors, detergents, corrosionand rust-inhibiting agents, anti-wear and lubricity agents, anti-foaming agents such as the si1icone polymers, and the like.
  • viscosity index improvers e.g., a polymerized methacrylate ester, an alkylated polystyrene, or the polyether condensation
  • a composition comprising (I) a major amount of a fluid of lubricating or hydraulic fluid viscosity and is selected from the group consisting of (i) polyphenyl thioethers 1 5 (ii) mixed polyphenyl oxy-thioethers and mixtures of (i) and (ii); and
  • composition of claim 1 where the fluid is a mixture of polyphenyl thioethers.
  • a composition of claim 1 where the fluid is a. mixture of polyphenyl thioethers and mixed polyphenyl oxythioethers.
  • composition of claim 1 where the fluid is a mixture of m-bis(phenylmercapto)benzene and a polyphenyl thioether having from 3 to 6 aromatic rings.
  • a composition of claim 1 where the fluid is a mixture of a polyphenyl thioether and a mixed polyphenyl etherthioether each having from 3 to 5 aromatic rings.
  • a composition of claim 1 wherein the fluid is a mixture of polyphenyl thioethers containing by weight from about 45% to about 55% m-phenoxyphenyl m-phenylmercaptophenyl sulfide, from about 25 to about 35% bis(m-phenylmercaptophenyl) sulfide, and from about 18% to about 25% bis(m-phenoxyphenyl) sulfide.
  • composition of claim 6 wherein the aminoindazole is S-aminoindazole.
  • composition of claim 1 where the fluid is a mixture of m-bis(phenylmercapt0)benzene and bis(m-phenylmercaptophenyl)sulfide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)

Abstract

FUNCTIONAL FLUID COMPRISING A BASE FLUID SUCH AS POLYPHENYL ETHERS, POLYPHENYL THIOETHERS, MIXED POLYPHENYLOXY THIOETHERS, SYNTHETIC ESTERS, ALKYL THIOPHENES, AND DIHALOGENATED DIPHENYL ESTERS AND CERTAIN ORGANIC NITROGEN COMPOUNDS SUCH AS AMINOINDAZOLES, HYDROXYINDAZOLES, HYDROXY AND AMINO SUBSTITUTED PYRAZOLES, TRIAZOLES, TETRAZOLES, OR COMPOUNDS OF THE FORMULA

3-R2,R1,R-S-TRIAZOLO(4,3-A)-S-TRIAZINE

HAVING IMPROVED METAL COMPATIBILITY. THESE COMPOSITIONS ARE PARTICULARLY USEFUL AS AIRCRAFT ENGINE LUBRICANTS IN HYDRAULIC FLUIDS.

Description

United States Patent 3,591,500 FUNCTIONAL FLUID COMPOSITIONS James D. Sullivan, Webster Groves, Mo., assignor to Monsanto Company, St. Louis, Mo.
No Drawing. Continuation-impart of application Ser. No. 540,488, Apr. 6, 1966. This application Feb. 5, 1969, Ser. No. 796,885
Int. Cl. Cltlm 1/32, 1/42 U.S. Cl. 252-475 8 Claims ABSTRACT OF THE DISCLOSURE Functional fluid compositions comprising a base fluid such as polyphenyl ethers, polyphenyl thioethers, mixed polyphenyloxy thioethers, synthetic esters, alkyl thiophenes, and dihalogenated diphenyl ethers and certain organic nitrogen compounds such as aminoindazoles, hydroxyindazoles, hydroxy and amino substituted pyrazoles, triazoles, tetrazoles, or compounds of the formula have improved metal compatibility. These compositions are particularly useful as aircraft engine lubricants in hydraulic fluids.
This application is a continuation-in-part of application Ser. No. 540,488 filed Apr. 6, 1966 now abandoned.
This invention relates to functional fluid compositions having improved metal compatibility and more particularly to functional fluids containing certain organic nitrogen compounds.
Many different types of materials are utilized as functional fluids and functional fluids are used in many different types of application. Such fluids have been used as electronic coolants, atomic reactor coolants, diffusion pump fluids, synthetic lubricants, damping fluids, bases for greases, force transmission fluids (hydraulic fluids) and as filter mediums for air-conditioning systems. Because of the wide variety of applications and the varied conditions under which functional fluids are utilized, the properties desired in a good functional fluid necessarily vary with the particular application in which it is to be utilized with each individual application requiring a -functional fluid having a specific class of properties.
Of the foregoing, the use of functional fluids as lubricants, particularly aircraft engine lubricants, has posed a diflicult area of application. Present design trends in aircraft engines are to the pure jet type or turbofan and away from the turboprop engine. Aside from the mechanical diflierences in design between the turbofan and turboprop engines, there is a significant difference in the properties of the lubricants required for these engines, primarily because of increased operating temperatures. Furthermore, even within the area of turbofan engine design alone, there is a trend to increase the temperatures at which a lubricant must operate. Present temperature levels for turbofan lubricants are of the order of 400-450 F. (bulk oil temperature). However, it is evident that within the near future, temperatures of the order of 500 F. or higher will be commonplace.
As the operating temperatures for lubricants have increased, it has become exceedingly difficult to find lubricants which properly function at these higher temperatures for any satisfactory length of time. Furthermore, it should always be realized that while the operating temperatures generally referred to are bulk oil temperatures, the actual icetemperatures at the point requiring lubrication exceed the bulk oil temperature and oftentimes are one hundred to several hundred degrees higher.
In addition to the high temperature stability or durability problem, that is, the problem of finding a lubricant which will be thermally and oxidatively stable at temperatures as high at 500 F., the solution of this problem is further complicated by the fact that in order for a lubricant to be satisfactory for use in many aircraft engines, it must also be usable at temperatures as low as 20 F. to 0 F. It is, thereore, evident that present trends require lubricants having not only an exceedingly wide liquid range but lubricants which are also thermally and oxidatively stable at high temperatures. Furthermore, present and future lubricants must, of course, possess at least adequate temperature-viscosity properties and satisfactory lubricity, that is, the lubricants must not become too thin at the very high temperatures to which they are subjected nor must they become too thick at the lower temperatures and must at the same time be able to provide at least minimum lubricity over such range of temperatures. In general, such lubricants must also not be too volatile and even if somewhat volatile must not, upon evaporation, leave any significant deposits to interfere with the proper operation of engine bearings.
Other properties which must be possessed by satisfactory jet engine lubricants are low pour point and relatively high flash point and autogenous ignition temperatures.
Anther lubricating problem associated with presentday design and design trends in jet engines is that the increased thrust needed to obtain high speeds and altitudes results in further increases in not only operating temperatures but also higher bearing pressures.
A further problem in obtaining a lubricant which has good combination of properties at various temperatures is that those materials having a low pour point also have a high evaporation rate at the temperatures of the order of 400 F.-500 F.
In summary, as discussed above, a satisfactory jet engine lubricant must possess a wide variety of properties. Furthermore, all of these properties are not only diflicult to obtain in the same fluid but some of them tend to be mutually exclusive.
The most important properties for jet engine lubricants mentioned above are high temperature stability (thermal stability), high temperature oxidative stability and little or no corrosion toward metals. While fluids are known which possess adequate thermal and oxidative stability either inherently or can be provided by incorporating additives, many such functional fluids are corrosive to metals at high temperatures in the order of 5 00 F. and in particular to copper and silver. Although many additives, including organic nitrogen compounds, have been used in the past to reduce or eliminate the tendency of lubricants to corrode metals at lower temperatures, i.e., to 350 F., at the higher temperatures referred to above the properties of additives become unpredictable. Many previously known metal corrosion inhibitors are not active at elevated temperatures and in many instances Where they retain their corrosion inhibiting properties, they cause other problems such as decreased thermal and oxidative stability.
Additives useful in many different chemical types of functional fluids have now been discovered which reduce or eliminate the corrosiveness of the fluids toward metals at high temperatures.
It is, therefore, an object of this invention to provide functional fluid compositions which are substantially noncorrosive to metals. Another object of this invention is to provide functional fluid compositions which are substantially non-corrosive to metals at high temperatures.
Another object of this invention is to provide additives for functional fluids which when added in a small amount to a base stock will reduce or eliminate the copper corrosivity of the fluid.
The objects mentioned above and others, which will hereinafter be apparent, are accomplished by adding to functional fluids, hereinafter described, corrosion reducing amounts of an organic nitrogen compound selected from the group consisting of (A) A compound represented by the formula wherein X is selected from the group consisting of hydrogen, NH and OH, Y is selected from the group consisting of hydrogen, NH OH and NHCEN and G, G and G" are each selected from the group consisting of carbon and nitrogen provided that at least 1 of G and G" is carbon and at least 2 of G are carbon, Z is selected from the group consisting of hydrogen and a hydrocarbon group, n is an integer from 1 to 2, m is an integer from 1 to 2 and the sum of m-l-n is equal to the number of G groups that are carbon.
(B) A compound represented by the formula where G is selected from the group consisting of carbon and nitrogen provided that from 2 to 4 of G is nitrogen, X is selected from the group consisting of hydrogen, NH and OH, and p is an integer from to 2 and is no greater than the number of carbon atoms in the ring represented by G.
(C) A compound represented by the formula where each R, R and R are selected from the group consisting of hydrogen and NH and (D) A compound selected from the group consisting of cyanoamino hydroxy-pyrimidines, anilinopropionitriles, aminocarbazols, aminopyridines, aminonicotinic acids, cyanoglutaramides, aminonaphthylimides and alkyldiimidazolines.
The hydrocarbon group, Z above, can be an aliphatic or aromatic hydrocarbon.
Preferred additives of this invention are compounds of (A) above represented by the formula (Xhw N where X, Z, n and m have the same meaning as in (A) above.
Examples of compounds of Formula I above are 4 aminoindazole, 5 aminoindazole, 6 aminoindazole, 7-aminoindazole, 4-hydroxyindazole, S-hydroxyindaz le, 6-hydroxyindazole and 7-hydroxyindazole. Such compounds are preferred additives of this invention because they are more soluble in the base stocks disclosed herein,
particularly polyphenyl thioethers, and can be employed in small amounts to prevent or reduce metal corrosion.
Particular compounds of (A) to (D) are presented in.
Table I hereinafter set forth.
The amount of the additives of this invention which are used in functional fluids vary according to the nature of the particular fluid to which they are added, i.e., the amount is proportional to the corrosivity of the fluid. Thus, the corrosivity of some fluids can be significantly reduced or eliminated by the addition of as little as about 0.025% by weight of the base stock of an additive of this invention. In general, an amount of up to about 5% by weight is adequate to achieve a substantially non-corrosive fluid. It is preferred to use from about 0.05% to about 0.5% by weight of an additive of this invention since within that range of concentrations the amount of additive used is low enough so that solubility considerations are not limiting yet adequate corrosion inhibition is obtained.
Because of the various considerations which go into the choice of the amount of additive used and also because of the differences existing between the many fluids in which the additives of this invention are active, the amount of additive to be used can be expressed as a corrosion reducing amount, i.e., an amount which is effective to provide decreased corrosivity of the fluids contemplated.
Since many of the additives of this invention have limited solubility in some of the fluids hereinafter described, the improved compositions of this invention can be prepared by dissolving the additive in a small portion of the fluid at elevated temperatures in the range of from about F. to about 200 F., then mixing the heated composition with the main portion of the fluid to form a composition of this invention.
The additives of this invention are particularly useful in polyphenyl thioethers, which as used herein, means a compound or physical mixture of compounds represented by the structures where m is a whole number from 0 to 6,
Where A and A are each selected from oxygen and sulfur,
where x and y are whole numbers from 0 to 3 and the sum of x-i-y is from 1 to 6 and A and A are each selected from oxygen and sulfur but at least one of A and A is sulfur, and
and alkoxy groups having from 1 to 4 carbon atoms, hydroxyl and hydrogen, T is selected from the group consisting of alkyl, haloalkyl and alkoxyl groups having from 1 to 4 carbon atoms, and hydroxyl, A is selected from the group consisting of oxygen and sulfur provided at least one A is sulfur, y, m and n are integers from 1 to 3 and K is an integer from to 1 providing at least one K is 1.
Examples of such polyphenyl thioethers are:
Preferred compositions of this invention in Which additives of this invention are advantageous are mixtures of m-bis(phenylmercapto)benzene and certain other materials which have properties that make them Well suited for the uses disclosed above and particularly those applications, such as jet engine lubricants, requiring high temperatures, thermal and oxidative stability and Wide liquid range. The other materials contemplated to be used with m-bis (phenylmercapto)benzene to provide such mixtures are as follows:
(a) The three-, four-, five-, and six-ring polyphenyl thioethers, for example, O-bis(phenylmercapto)benzene bis-(m-phenylmercaptophenyl) sulfide (men In phenylmercaptophenyl p phenylmercaptophenyl sulfide,
the trisphenylmercaptobenzenes,
(VII) such as l,2,4-trisphenylmercaptobenzene, 3,3 -bis (phenylmercapto biphenyl m-bis p-phenylmercaptophenylmercapto benzene,
(XII) m-bis(m-phenylmercaptophenylmercapto)benzene Q O U U O and bis [m- (m-phenylmercaptophenylmercapto phenyl] sulfide (XIII) (b) The mixed polyphenyl oxy-thioethers having the formula wherein R is a phenyl group, R is a phenylene group and Y and Y are each selected from the group consisting of oxygen and sulfur, providing at least one of Y and Y is sulfur and n is a Whole number from 1 to 4. Examples of such mixed polyphenyl oxythioethers are m-phenylmercaptodiphenyl ether 3,3 '-bis (phenylmercapto diphenyl ether,
3,3-bis (phenoxy)di-phenyl sulfide,
3-phenoxy-3-phenylmercaptodiphenyl sulfide,
3-phenylmercapto-3-phenoxydiphenyl ether,
3,4-bis (phenylmercapto diphenyl ether,
m-bis(m-phenylmercaptophenoxy benzene,
and 3-phenylmercapto-3-(m-phenylmercaptophenylmercapto diphenyl ether,
(XXII) O- Q- Q Q- O (c) The four-, fiveand six-ring polyphenyl ethers which can be represented by the structure fill? where m is 2, 3, or 4 such as bis(m-phenoxyphenyl)ether, m-phenoxyphenyl p-phenoxyphenyl ether, m-bis(m-phenoxyphenoxy) ]benzene, m-[ (m-phenoxyphenoxy) (p-phenoxyphenoxy ]benzene, p-[ p-phenoxyphenoxy) (m-phenoxyphenoxy)]benzene, p-bis(m phenoxyphenoxy)benzene, m-bis(p-phenoxyphenoxy)benzene and o bis(mphenoxyphenoxy)benzene, by the structure (XXIV) and mixtures and combination of (a) through (c).
The compounds (a) through (c) can be used alone or in combination to form compositions of this invention.
A typical mixture of polyphenyl thioethers is one which contains by weight from about 45% to about 55% mphenoxyphenyl m-phenylmercaptophenyl sulfide, from about to about bis(m-phenylmercaptophenyl) sulfide and from about 18% to about 25 bis- (m-phenoxyphenyl) sulfide. Particularly useful mixtures of polyphenyl thioethers are those containing the above mixtures and m-bis(phenylmercapto) benzene in about equal proportions. More particularly, examples of mixtures containing polyphenyl thioethers, mixed polyphenyl ethers, thioethers and halogenated polyphenyl ethers which are suitable as lubricants under high temperature conditions are as follows in weight percent:
% m-bis (phenylmercapto)benzene 25 m-phenoxyphenyl-m-phenylmercaptophenyl sulfide 1 1% bis(m-phenoxyphenyl) sulfide 14% bis (m-phenylmercaptophenyl)sulfide 5 0% m-bis( phenylmercapto benzene 25 m-phenoxy-m-phenylmercapto benzene 25 O-bis (phenylmercapto benzene 46 m- (m-chlorophenylmercapto -m-phenylmercapto benzene 31% m-bis(phenylmercapto benzene 15 m-phenoxy-m-phenylrnercapto benzene 8% m-chlorodiphenyl sulfide It is also contemplated that any of the individual polyphenyl ethers described above or mixtures thereof in admixture with additives of this invention can also be utilized to provide compositions of this invention. For example, mixtures of polyphenyl ethers in which the non-terminal phenylene rings are linked through oxygen atoms in the meta and/ or para positions, have been found to be particularly suitable. An example of such polyphenyl ether compositions are those containing, in percent by weight, from about 0 to 6% of O-bis (m-phenoxyphenoxy)benzene (1), about 40 to of m-(bis(mphenoxyphenoxy)benzene (2), about 0 to 40% of m- [(m-phenoxyphenoxy) (p-phenoxyphen0Xy)] benzene (3), about 0 to 12% of p-bis(m-phenoxyphenoxy) benzene (4), about 0 to 10% of p-[(p-phenoxyphenoxy) (m-phenoxyphenoxy)] benzene (5), and about 0 to 6% of m-bis(p-phenoxyphenoxy)benzene (6). Typical compositions of such mixtures are listed below. The number of parentheses refers to the compound mentioned above having the same number thereafter.
TYPICAL COMPOSITIONS Mixtures, percent by weight of Components A B C The action of the additives of this invention has been found to be beneficial in a wide variety of synthetic functional fluids. Such fluids include synthetic ester base fluids. These are fluids of lubricating viscosity which are esters of alcohols containing at least 4 carbon atoms and which generally contain more than one ester group. They may be esters of polyhydric alcohols, of polybasic acids, or both.
Ester fluids with particularly advantageously low tern perature viscosity properties, which flo'w readily at temperatures as low as 30 F., are provided by the diesters of dibasic acids. Ester lubricants of the dibasic acid ester type are illustrated by diesters of long-chain dicarboxylic acids like azelaic acid with long-chain branched primary alcohols of the C to C range. The synthetic ester lubricants also include the esters of long-chain monobasic acids such as pelargonic acid with glycols such as polyethylene glycols. Complex esters are also formed by linking dibasic acid half esters through a glycol such as dipropylene glycol, a polyethylene glycol of 200 molecular weight, and so forth. Permutation and combination of these methods of forming polyester type lubricant fluids are valuable as well and also it is common practice to achieve desired properties in the ultimate base fluid by blending different polyester products. Simple esters providing suitable fluids can be exemplified, for example, by bis(Z-methylbutyl) sebacate, bis(l-methylcyclohexylmethyl) sebacate, bis(2,2,4 trimethylpentyl) sebacate, dipropylene glycol dipelargonate, the diesters of acids such as sebacid, azelaic and adipic acid with complex C C primary branched chain alcohols such as those produced by the oxo process, polyethylene glycol 200 bis(2- ethylhexyl) sebacate, diisoamyl adipate, 1,6-hexamethylene glycol di(2 ethylhexanoate), bis(dimethylamyl) azelate and so forth.
Ester fluids with particularly good high temperature oxidation resistance are provided by neopentyl polyol esters. The alcohols from which these esters are derived have the carbon structure of neopentane, with a central carbon atom surrounded by 4 substituent carbon atoms. Included in the neopentyl polyols are neopentyl glycol, trimethylolethane, trimethylolpropane, pentaerythritol and dipentaerythritol. Generally, the base fluids comprising neopentyl polyol esters are the esters with monocarboxylic acids. Such esters are generally more oxidatively and thermally stable than the dibasic acid esters. The useful esters of the neopentyl polyols include, for example, the esters of trimethylol propane, neopentyl glycol, pentaerythitol and dipentaerythritol with normal, branched chain and mixed acids having the chain lengths varying from C to C Thus, an illustrative series of esters are trimethylolpropane tri-n-pelargonate, trimethylolpropane, tricaprate, trimethylolpropane tricaprylate, the trimethylolpropane triester of mixed octanoates, pentaerythrityl tetra butyrate, pentaerythrityl tetravalerate, pentaterythrityl tetracaproate, pentaerythrityl dibutyrate dicaproate, pentaerythrityl butyrate caproate divalerate, pentaerythrityl butyrate trivalerate, pentaerythrityl butyrate tricaproate, pentaerythrityl tributyrate caproate and mixed tetraesters of C fatty acids. Suitable dipentaterythrityl esters include dipentaerythrityl hexabutyrate, dipentaerythrityl hexapropionate, dipentaerythrityl hexavalerate, dipentaerythrityl hexacaproate, dipentaerythrityl hexaheptoate, dipentaerythrityl hexacaprylate, dipentaerythrityl tributyrate tricaproate, dipentaerythrityl trivalerate trinonylate and other dipentaterythrityl mixed hexaesters of C fatty acids. Also, additives of this invention are useful in mixtures of monoand dipentaerythritol esters of C fatty acids and mixtures of C fatty acids.
For further description of still other ester fluids adapted for use as lubricant base stocks and useful in the provision of the compositions of this invention, referencec may be made, for example, to the discussion in Gunderson et al., Synthetic Lubricants (Reinhold, 1962).
Other compositions of this invention useful as funtional fluids can be prepared by combining additives of this invention described above with monoand dialkylthiophenes represented by the structural formula D m \S/ D 11 wherein A, B and D are each alkyl C radicals and any two of A, B and D radicals together with the carbon atom to which they are attached can form an alicyclic ring and m and n are integers from O to 1, providing the sum of m-l-n is at least one,
Typical thiophenes of structure XXVIII are as follows:
2,5 l-hexyl-1-methylnonyl)thiophene, 2,4-( l-hexyl-l-methylnonyl) thiophene, Z-tert-butyl thiophene,
2,5-tert-butyl thiophene,
2,5 1, l-dimethylpropyl thiophene,
2,5 l-butyll -octylnonyl) thiophene,
2,5 1-propylcyclobutyl thiophene, 2-tert-butyl-4-(1-octyl-l-methyloctadecyl) thiophene, 2,5-( l-methylcyclohexyl)thiophene,
2,5-( l-octyl-1-rnethyldecyl)thiophene, 2,5 1,1-dimethyltridecyl) thiophene, 2,3( 1,1-dimethyltridecyl)thiophene, 2,4-( 1, l-dimethyltridecyl thiophene, 2,4-( l-methylcyclopentyl)thiophene, and 2,5 l-n-dodecylopentyl thiophene.
Other functional fluids in which the additives of this invention can be use are blended synthetic fluids comprising a major proportion of dihalogenated diphenyl ethers or sulfides and a minor amount of blending agents selected from halogenated lower alkyl benzenes, halogenated benzene, monohalogenated dephenyl ethers and chlorinated biphenyl or combinations thereof. The dihalogenated diphenyl ethers suitable for use as base stocks in the fluid compositions of this invention are those represented by the structure where A is a chalkogen having an atomic number of 8 to 16, E and F are bromine, chlorine and fluorine.
Typical examples of such ethers and sulfides are:
(1) Different halogen on each ring: 2-bromo-2-chlorodiphenyl ether, 2-bormo2-chlorodiphenyl sulfide, 2-bromo-3-chlorodiphenyl ether, 2-bromo-3-chlorodipheny1 sulfide, 2-bromo-4'-chlorodiphenyl ether, 2-bromo-4'-chlorodiphenyl sulfide, 3-bromo-2-chlorodiphenyl ether, 3-bromo-2-chlorodiphenyl sulfide, 3-bromo-3'-chlorodiphenyl ether, 3-fluoro-3'-fiuorodiphenyl sulfide, 3-fluoro-4-chl0rodiphenyl ether, 3-bromo-4-fluorodiphenyl sulfide, 4-fluoro-3'-fiuorodiphenyl ether, 4-bromo-3'-chlorodiphenyl sulfide, 4-bromo-4'-chlorodiphenyl ether, 4-bromo-4'-chlorodiphenyl sulfide, 4-bromo-2-chlorodiphenyl ether, and 4-brorno-2'-chlorodiphenyl sulfide (2) Same halogen on each ring: 2,2-dibromodiphenyl ether, 2,2-dibrornodiphenyl sulfide, 2,3'-dibromophenyl ether, 2,3'-dibromodiphenyl sulfide, 2,4-difluorodiphenyl ether, 2,4'-difluorodiphenyl sulfide, 3,3-dibromodiphenyl ether, 3,3'-dibromodiphenyl sulfide, 3,4'-dibromodiphenyl ether, 3,4'-dibromodiphenyl sulfide, 4,4'-dibromodiphenyl ether, 4,4'-dibromodiphenyl sulfide, 2,2-dichlorodiphenyl ether, 2,2'-dichlorodiphenyl sulfide, 2,3'-dichlorodiphenyl ether, 2,3-dichlorodiphenyl sulfide, 2,4'-dichlorodiphenyl ether, 2,4'-dichlorophenyl sulfide, 3,3'-dichlorodiphenyl ether, 3,3'-dichlorodiphenyl sulfide, 3,4'-dichlorodiphenyl ether, 3,4'-dichlorodiphenyl sulfide, 4,4-dichlorodiphenyl ether, 4,4-dichlorodiphenyl sulfide As used herein the term major amount of a fluid means that the amount of a particular fluid in a specific formulation is at least equal to the amount of any particular blending agent in said formulation. On the other hand the term minor amount of a blending agent means that the amount of a particular blending agent in a specific formulation is no more than the amount of any specific fluid in said formulation.
The ethers are generally preferred over the sulfides because their lower melting points make them usable in a Wider number of applications and of the ethers, those in which the halogen substituents are in the 3,4'-relationship 1 1 are preferred for use in the compositions of this invention, because their low melting points are the lowest of all the fluids of this invention.
The blending agents which can be used include the halogenated lower alkyl (C benzenes containing 1 to halogens, such as 4-bromomethylbenzene, 2-bromoethylbenzene, 4-bromopropylbenzene, 4-chlorobutylbenzene, 2,4-dichloromethylbenzene, 2,3-dibromoethylbenzene, 2,4-dibromoethylbenzene, 2,4-dichloroethylbenzene, 2-fluoro-4-chloroethylbenzene, 2,5-dibromoethylbenzene, 3,4-dibromoethylbenzene, 3,S-dibromopropylbenzene, 2,4- fiuorobutylbenzene and the like. It is preferred to use the bromine-containing compounds because of the increased fire-resistance obtained thereby. Further examples of halogenated alkyl benzenes are triand tetra-chloroethylbenzene, triand tetrabromoethylbenzene, pentachloromethylbenzene, pentachloroethylbenzene, pentabromoethylbenzene, pentabromopropylbenzene, pentachlorobutylbenzene and the like.
In addition to the use of specific compounds, there can be used a mixture of halogenated alkyl benzenes such as the mixture of brominated ethyl benzenes disclosed in U.S. Pat. No. 2,257,903, which contain an average of two atoms of bromine per mol of ethyl benzene.
Other blending agents include the monohalogenated diphenyl ethers such as 2-chlorodiphenyl ether, 3-chlorodiphenyl ether, 4-chlorodiphenyl ether, 3-br0modiphenyl ether and the like and chlorinated biphenyl which is illustrated by the chlorinated biphenyl commercially available as products containing about 21%, 32%, 42%, 48%, 54% and 60% of combined chlorine corresponding approximately to mono-, di-, tri-, tetra-, pentaand hexachlorobiphenyl, respectively. The expression chlorinated biphenyl containing a stated percentage of combined chlorine is used herein as not only including these directly chlorinated products, but also as blends of one or more chlorinated biphenyl whereby the total chlorine content is broadly within the range of 20% to 60% preferably with the range of 20% to 42% by weight. 'It is also preferred, in order to obtain fluids having low crystallizing points, to use chlorinated biphenyl which has been isomerized, and preferably distilled thereafter according to the teachings of US. Pat. No. 3,068,297.
The halogenated benzenes which can be used as blending agents include chloroand bromobenzenes. The preferred chlorobenzenes are di-, triand tetrachlorobenzene and mixtures thereof. The preferred bromobenzenes are mono-, diand tribromobenzene and more particularly m-dibromobenzene. Typical examples of halogenated benzenes useful as blending agents are o-dichlorobenzene, mdichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,2,3,4-tetrachlorobenzene, 1,2,3,S-tetrachlorobenzene, o-dibromobenzene and 1,2,4-tribromobenzene.
Other blending agents which can be used are perhalogenated alkyl compounds such as hexachlorobutadiene.
Another class of functional fluids employed in preparing compositions of this invention are aliphatic hydrocarbon oils. Such oils are those obtained by super refining petroleum thereby producing a mixture of saturated aliphatic hydrocarbons or they can be poduced synthetically. Preferred hydrocarbon oils useful in preparing compositions of this invention are those represented by the formula wherein R R R and R are saturated hydrocarbon radicals having a combined total of from 4 to 80 carbon atoms. The number of variation of the R groups in F0rmula XXX is very large, and dependent thereupon is the viscosity range of any particular fluid. To list by name the many compounds contemplated by the above structure would unduly lengthen the present disclosure so therefore the following named compounds conforming to Formula XXX are included herein only to point out the more commonly available and more desirable members of the class of compounds and in no way is such listing intended to exclude other compounds conforming to said formula. Such exemplary compounds are 2,2,4-trimethylpentane, 4,4,6 trimethylnonane, 7,9 dibutyl-7-methylpentadecane, 9,11 dihexyl-9methylnonadecane, 11,13- dioctyl-ll-methyltricosane, 13,15 didecyl-13-methylheptacosane, 15,17-didodecyl methyldotriacontane, 4- ethyl-2,4-dimethylpentane, 4-butyl 4,6 dimethylnonane, 7-methyl-7-butyl 9 ethylpentadecane, 9 methyl-9- pentyl-ll-propylnonadecane, ll-methyl 11 hexyl-13- tridecyltricosane, 13-methyl 13 heptadecyl-lS-nonylheptacosane, 15-methyl 15 butyl-l7-hexyldotriacontane.
One of the major bench scale methods used for evaluating the corrosivity of a lubricant or hydraulic fluid is the procedure given in MILL923 6A according to which the lubricant to be treated is heated at a specified temperature in the presence of certain metals and air and the corrosivity determined by measuring the change in weight of the metals. I
Various compositions of this invention were tested according to the procedure of MIL-L-9236A except that the temperature was held at 500 F. instead of 600 F. The metal specimens used were, as specified in said procedure, steel, copper, silver, titanium, magnesium alloy and aluminum alloy. However, only the results upon copper and silver are reported since the composition tested had essentially no effect on steel, titanium, magnesium alloy and aluminum alloy. The results observed using the abovedescribed procedure are recorded in the tables below. The corrosivity to metals was determined by weighing the metal specimens before and after the test. The weight difference in milligrams per square centimeter of metal surface exposed to the fluid is reported.
To demonstrate the advantages of the anticorrosion activity of additives of this invention, various additives were added to a fluid designated as Fluid A. Fluid A was a mixture consisting, by weight, of about 50% of m-bis(phenylmercapto)-benzene, about 25% of m-phenoxyphenyl mphenylmercaptophenyl sulfide, about 11% of bis(m-phenoxyphenyl) sulfide and about 14% of bis(m-phenylmercaptophenyl) sulfide. Table I below presents the data obtained by employing 0.1%, by weight, of each additive in Fluid A when the composition was subjected to the above-described test.
TABLE I Metal Weight change. mg./em.
Additive Copper Silver None-Control (average of 33 tests) 2. 39 67 5-aminoindazole 01 39 6-arninoindazole 01 28 7-aminoindazole 00 3-amino-l,2,4-triazole. 09 56 3,5-diamiuo-l,2,4-triaz0 03 l3 5-ami1104-earbamyl-3-pyrazoleacct ac 01 1U 2A-dicyano-3ethyl-3-methy1 glutaramidm 57 5!) 4-amino-l,8-naphthalimide 35 53 2,2-octamethylene di-2-imidazoline 04 31 Adenine-N-oxide 1.02 7-amino1v-triazolo-(d) pyrimidine. 01 22 6,7-diamino-1,2,6,8-tetrazaindolizine. 21 02 fi-aminoiudole. l. 04 16 fi-hydroxyindole- 1. 27 27 3,6-diaminocarbaz 04 07 3,4-diamino pyridine. 05 1t) 2-an1inonicotinie acid 37 30 7-amino-s-triazolo (1,5-a)-pyrimidin-5-(4H)-one. 44 4-methy1-1H-pyrazole (3,4-b) -pyridine-3,6-diol. 22 24 4-aminopyrazolo (3,4-d)py1'imidine 58 20 4,5-diaminopyrin'lidine 39 53 2,4,5-triaminopyrimidine. 04 21 3-amino-1-phenyl-2-pyrazol 1. 41 52 2-eyano amino4,6-dihydroxypyrimidine. 1.94 29 4,6-dihydr0xypyrimidine 1. 22 59 4-aminopyrimido(4,5-d)pyrimidine l6 05 3,5,7-triamino-s-triazolo(4,3-a)-s-triazine 69 25 5-hydroxy-7-methyl-l,3,8-triazaindolizine 1. 64 43 6-hydroxyindoz0le 1 04 30 1 .05% concentration.
13 The data in Table I is to be compared with data presented in Table 11 below. The data in Table II was obtained from additional runs of the same test employing Fluid A containing 0.1% by weight of additives of very similar molecular structure to those listed in Table I.
TAB LE II Metal weight change, mgJcm.
Additive Copper Silver Control-from above -2. 39 67 d-aminouracil 2. 6 74 fi-aminouracil 3. 1 48 2,7-di1nercapto-4-hydroxypyrimido-(4,5-b)
pyrimidine 5. 4 81 Benzimidazole 3. 7 1. 2 2-phenyl-4, 6-bis (8'aminophonyl) -1,3,5-triazine 2. 8 07 Z-mercaptopyrimidine 4. 4 1. 5 4,6-dihydroxy-2-mercaptopyrimidine 6. 2 -1. 1 4-amino-6-hydroXy-2-mercaptopyrimi -6. 2 93 2-amino-4,G-dihydroxypyrimidine 3. 4 61 1-[3-(ti-chloropyridazinyl)]-3-(3,4-dichlorophenyl) urea 5. 9 1. 7 3-methyl-5-phenyl pyrazole 8. 4 2. 0 2-hydroxy-3,3-4,4,5,6,hexachlorocarbanilide 8. 8 -3. 1 (3,4-dichlorophenylureido) -p-menthane -3. 0 69 G-nitroindazole 8. 4 1. 4
A comparison of the results obtained in Tables I and II above indicates the selectivity required in solving the problem of metal corrosion by functional fluids at high temperatures by the incorporation of additives. Many additives which because of their structural similarity would be expected to reduce metal attack are found to increase it under the high temperature conditions for which the compositions of this invention are particularly useful.
In Table III below the results obtained using the abovedescribed test are presented wherein fluids are employed containing S-aminoindazole, one of the preferred additives of this invention. Also included are the results obtained with different amounts of S-aminoindazole employed in other fluids. The fluid designated Fluid B in Table III is a mixture consisting, by weight, of about 50% of m-phenoxyphenyl m-phenylmercaptophenyl sulfide, about 22% of bis(phenoxyphenyl) sulfide and about 28% of bis(mphenylmercaptophenyl) sulfide. The concentration of the additive is given in weight percent of the fluid and the copper attack is reported as weight change in milligrams In accordance with the above data, it is evident that some of the fluids, particularly thioethers and mixtures of thioethers, when used as lubricants for gas turbine engines are outstanding with respect to high temperature stability and metal fluid compatibility when combined with additives of this invention. Thus, this invention relates to a novel method of lubricating gas turbine engines which comprises maintaining on the bearings and other points of wear of the engine a lubricating amount of a composition of this invention. Other fluids containing an additive of this invention useful as gas turbine engine lubricants are neopentyl polyol esters of C fatty acids, mixtures of neopentyl polyol esters of C fatty acids, dipentaerythritol ester of C fatty acids and mixtures of the pentaerythritol esters and dipentaerythritol esters. Especially useful as gas turbine engine lubricants are mixtures of polyphenyl ethers and polyphenyl thioethers containing corrosion reducing amounts of an additive of this invention.
As a result of the excellent physical properties of the compositions particularly described above, improved hydraulic pressure devices can be prepared in accordance with this invention which comprise in combination a fluid chamber and an actuating fluid in said chamber, said fluid comprising a mixture of one or more of the base stocks hereinbefore described. In such a hydraulic apparatus wherein a movable member is actuated by the abovedescribed functional fluids, performance characteristics are obtainable which are superior to those heretofore obtainable.
Because of the excellent fire-resistance of the compositions of this invention, their exceptionally low pour points, and good lubricity, the functional fluids of this invention can be utilized in those hydraulic systems wherein power must be transmitted and the frictional parts of the system lubricated by the hydraulic fluid utilized. Thus, the novel composition of this invention finds utility in the transmission of power in a hydraulic system having a pump therein supplying the power for the system. In such a system, the parts which are so lubricated include the frictional surfaces of the source of power, namely the pump, valves, operating pistons and cylinders, fluid motors and in some cases, for machine tools, the ways, table and slides. The hydraulic system may be of either the constant-volume or the variable-volume type of system.
The pumps may be of various types, including the piston-type pump, more particularly the variable-stroke pis ton pump, the variable-discharge or variable displacement piston pump, radial-piston pump, axial-piston pump, in
which a pivoted cylinder block is adjusted at various angles with the piston assembly, for example, the Vickers axial-piston pump, or in which the mechanism which drives the pistons is set at an angle adjustable with the cylinder block; gear-type pump, which may be spur, helical or herringbone gears, variations of internal gears, or a screw pump; or vane pumps. The valves may be stop valves, reversing valves, pilot valves, throttling valves, sequence valves or relief valves. Fluid motors are usually constantor variable-discharge piston pumps caused to rotate by the pressure of the hydraulic fluid of the system with the power supplied by the pump power source. Such a hydraulic motor may be used in connection with a variable-discharge pump to form a variable-speed transmission.
Although the compositions described above are generally quite suitable for most applications, it may also be desirable to add small amounts of various other functional addition agents such as viscosity index improvers, e.g., a polymerized methacrylate ester, an alkylated polystyrene, or the polyether condensation products of ethylene oxide or propylene oxide, or both, with a glycol such as ethylene glycol, propylene glycol, butanediol, etc., or with an aliphatic alcohol such as butanol, octanol, decanol, tridecanol, etc., pour point depressants, oxidation inhibitors, detergents, corrosionand rust-inhibiting agents, anti-wear and lubricity agents, anti-foaming agents such as the si1icone polymers, and the like.
While this invention has been described with respect to various specific examples and embodiments, it is to be understood that the invention is not limited thereto and that it can be variously practiced within the scope of the following claims.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A composition comprising (I) a major amount of a fluid of lubricating or hydraulic fluid viscosity and is selected from the group consisting of (i) polyphenyl thioethers 1 5 (ii) mixed polyphenyl oxy-thioethers and mixtures of (i) and (ii); and
(II) a corrosion reducing amount of aminoindazole.
2. A composition of claim 1 where the fluid is a mixture of polyphenyl thioethers.
3. A composition of claim 1 where the fluid is a. mixture of polyphenyl thioethers and mixed polyphenyl oxythioethers.
4. A composition of claim 1 where the fluid is a mixture of m-bis(phenylmercapto)benzene and a polyphenyl thioether having from 3 to 6 aromatic rings.
5. A composition of claim 1 where the fluid is a mixture of a polyphenyl thioether and a mixed polyphenyl etherthioether each having from 3 to 5 aromatic rings.
6. A composition of claim 1 wherein the fluid is a mixture of polyphenyl thioethers containing by weight from about 45% to about 55% m-phenoxyphenyl m-phenylmercaptophenyl sulfide, from about 25 to about 35% bis(m-phenylmercaptophenyl) sulfide, and from about 18% to about 25% bis(m-phenoxyphenyl) sulfide.
7. A composition of claim 6 wherein the aminoindazole is S-aminoindazole.
8. A composition of claim 1 where the fluid is a mixture of m-bis(phenylmercapt0)benzene and bis(m-phenylmercaptophenyl)sulfide.
References Cited UNITED STATES PATENTS OTHER REFERENCES Cotton: Chem. Abs., vol. 65 (1966), page 102'59, Control of Surface Reactions on Copper by Means of Organic Reagents.
DANIEL E. WYMAN, Primary Examiner 20 W. H. CANNON, Assistant Examiner US. Cl. X.R.
US796885A 1966-04-06 1969-02-05 Functional fluid compositions Expired - Lifetime US3591500A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US54048866A 1966-04-06 1966-04-06
US79688569A 1969-02-05 1969-02-05
US15613571A 1971-06-23 1971-06-23
US15613471A 1971-06-23 1971-06-23
US15613371A 1971-06-23 1971-06-23
US31615972A 1972-12-18 1972-12-18
US05/429,451 US3939084A (en) 1966-04-06 1973-12-28 Functional fluid compositions containing substituted pyrimidines

Publications (1)

Publication Number Publication Date
US3591500A true US3591500A (en) 1971-07-06

Family

ID=27569044

Family Applications (5)

Application Number Title Priority Date Filing Date
US796885A Expired - Lifetime US3591500A (en) 1966-04-06 1969-02-05 Functional fluid compositions
US00156133A Expired - Lifetime US3759829A (en) 1966-04-06 1971-06-23 Functional fluid compositions
US00156134A Expired - Lifetime US3752764A (en) 1966-04-06 1971-06-23 Functional fluid compositions
US00156135A Expired - Lifetime US3788992A (en) 1966-04-06 1971-06-23 Functional fluid compositions
US05/429,451 Expired - Lifetime US3939084A (en) 1966-04-06 1973-12-28 Functional fluid compositions containing substituted pyrimidines

Family Applications After (4)

Application Number Title Priority Date Filing Date
US00156133A Expired - Lifetime US3759829A (en) 1966-04-06 1971-06-23 Functional fluid compositions
US00156134A Expired - Lifetime US3752764A (en) 1966-04-06 1971-06-23 Functional fluid compositions
US00156135A Expired - Lifetime US3788992A (en) 1966-04-06 1971-06-23 Functional fluid compositions
US05/429,451 Expired - Lifetime US3939084A (en) 1966-04-06 1973-12-28 Functional fluid compositions containing substituted pyrimidines

Country Status (9)

Country Link
US (5) US3591500A (en)
BE (1) BE696664A (en)
BR (1) BR6788302D0 (en)
DE (1) DE1644909A1 (en)
ES (1) ES338687A1 (en)
FR (1) FR1517601A (en)
GB (2) GB1192910A (en)
IL (1) IL27743A (en)
NL (1) NL6704601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178253A (en) * 1977-04-05 1979-12-11 Ciba-Geigy Corporation Corrosion inhibited lubricant compositions
US4367152A (en) * 1981-07-02 1983-01-04 Exxon Research And Engineering Co. Selected heteroaromatic nitrogen compounds as antioxidant/metal deactivators/electrical insulators in lubricating oils and petroleum liquid fuels
WO2001090281A1 (en) * 2000-05-25 2001-11-29 Basf Aktiengesellschaft Hydraulic fluids with improved corrosion protection for non-ferrous metals

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES338687A1 (en) * 1966-04-06 1968-04-01 Monsanto Co Functional fluid compositions
US4064059A (en) * 1972-12-21 1977-12-20 Texaco Inc. Synthetic aircraft turbine oil
US3850824A (en) * 1973-05-17 1974-11-26 Texaco Inc Synthetic aircraft turbine oil
US3922227A (en) * 1974-08-19 1975-11-25 Texaco Inc Antioxidant heterocyclic nitrogenous aromatic containing oil compositions
US4115288A (en) * 1977-01-10 1978-09-19 Mobil Oil Corporation Lubricants containing substituted triazoles as antiwear agents
US4096078A (en) * 1977-06-28 1978-06-20 Texaco Inc. Synthetic aircraft turbine oil
US4294585A (en) * 1980-09-22 1981-10-13 Texaco Inc. Novel fuel composition for internal combustion engine
US4840741A (en) * 1986-04-14 1989-06-20 Exxon Research And Engineering Company Ashless anti-wear additives
GB8811696D0 (en) * 1988-05-18 1988-06-22 Fodor J Method of reducing friction & wear between bodies in relative motion
US5279651A (en) * 1992-12-18 1994-01-18 Exxon Research & Engineering Company Inorganic/organic inhibitor for corrosion of iron containing materials in sulfur environment
JPH08509778A (en) * 1993-05-08 1996-10-15 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン Silver corrosion protection agent (▲ II ▼)
BR9911590A (en) 1998-05-26 2001-02-13 Warner Lambert Co Bicyclic pyrimidines and bicyclic 3,4-dihydropyrimidines as inhibitors of cell proliferation
US6423844B1 (en) * 2001-06-06 2002-07-23 The United States Of America As Represented By The Secretary Of The Navy Process for making 1,2,4-triazolo[4,3-a][1,3,5]triazine-3,5,7-triamine
US6846926B1 (en) 2001-06-06 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Triazolyl-aminotriazine compositions, including salts
US7015222B1 (en) 2001-06-06 2006-03-21 The United States Of America As Represented By The Secretary Of The Navy Agricultural compositions
US6919453B1 (en) 2001-06-06 2005-07-19 The United States Of America As Represented By The Secretary Of The Navy Colorant compositions
EP1394241A1 (en) * 2002-08-07 2004-03-03 Rohm And Haas Company Cyclic thioureas as additives for lubricating oils
US7084270B2 (en) * 2002-08-14 2006-08-01 Hoffman-La Roche Inc. Pyrimido compounds having antiproliferative activity
US7129351B2 (en) * 2002-11-04 2006-10-31 Hoffmann-La Roche Inc. Pyrimido compounds having antiproliferative activity
MXPA05010765A (en) * 2003-04-10 2005-12-12 Hoffmann La Roche Pyrimido compounds.
US9771540B2 (en) * 2009-01-20 2017-09-26 Exxonmobil Research And Engineering Company Hydraulic oil compositions with improved hydraulic motor efficiency
DE102010006099A1 (en) * 2010-01-28 2011-08-18 EXCOR Korrosionsforschung GmbH, 01067 Composition of vapor phase corrosion inhibitors, process for their preparation and their use for temporary corrosion protection
KR101946011B1 (en) * 2011-09-22 2019-02-11 삼성전자주식회사 Electrolyte solution for lithium secondary battery and lithium secondary battery using the same
CA3138307A1 (en) * 2019-05-13 2020-11-19 Ecolab Usa Inc. 1,2,4-triazolo[1,5-a] pyrimidine derivative as copper corrosion inhibitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES338687A1 (en) * 1966-04-06 1968-04-01 Monsanto Co Functional fluid compositions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178253A (en) * 1977-04-05 1979-12-11 Ciba-Geigy Corporation Corrosion inhibited lubricant compositions
US4367152A (en) * 1981-07-02 1983-01-04 Exxon Research And Engineering Co. Selected heteroaromatic nitrogen compounds as antioxidant/metal deactivators/electrical insulators in lubricating oils and petroleum liquid fuels
JPS5823892A (en) * 1981-07-02 1983-02-12 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Heterocyclic nitrogen composition selected as antioxidant/metal deactivator/electric insulator in hydrocarbon composition
WO2001090281A1 (en) * 2000-05-25 2001-11-29 Basf Aktiengesellschaft Hydraulic fluids with improved corrosion protection for non-ferrous metals
US20030141482A1 (en) * 2000-05-25 2003-07-31 Bernd Wenderoth Hydraulic fluids having improved corrosion protection for non-ferrous metals

Also Published As

Publication number Publication date
ES338687A1 (en) 1968-04-01
US3752764A (en) 1973-08-14
IL27743A (en) 1971-01-28
NL6704601A (en) 1967-10-09
US3759829A (en) 1973-09-18
FR1517601A (en) 1968-03-15
GB1188813A (en) 1970-04-22
BR6788302D0 (en) 1973-01-09
GB1192910A (en) 1970-05-28
US3939084A (en) 1976-02-17
BE696664A (en) 1967-10-05
DE1644909A1 (en) 1971-05-19
US3788992A (en) 1974-01-29

Similar Documents

Publication Publication Date Title
US3591500A (en) Functional fluid compositions
US3790478A (en) Synthetic lubricant for aero gas turbines
US3274107A (en) Lubricant composition containing a sulfide
US4519932A (en) Low temperature hydraulic fluids based on two centistoke synthetic hydrocarbons
US3956154A (en) Hydraulic fluid system
US3629114A (en) Functional fluid compositions
US3505230A (en) Functional ester base fluids containing corrosion inhibitors
US4443349A (en) Fluorinated aliphatic polyalkylether lubricant with an additive composed of an aromatic phosphine substituted with perfluoroalkylether groups
EP0477360B1 (en) Fire resistant hydraulic fluids
US3778376A (en) Functional fluids
US3492229A (en) Functional fluid compositions
US3865743A (en) Functional fluids
JPS6224479B2 (en)
US3490737A (en) Functional fluid compositions
US2862886A (en) Compositions for use as hydraulic fluids
US3329614A (en) Hydraulic pressure transmission fluid
US4438007A (en) Perfluorinated aliphatic polyalkylether lubricant with an additive composed of an aromatic phosphine substituted with perfluoroalkylether groups
US3413225A (en) Functional fluid containing azo benzene derivatives as antioxidants
JP2774282B2 (en) Silicone grease composition with excellent lubricity
US3622512A (en) Grease compositions of polyol aliphatic esters
US4001129A (en) Fire resistant functional fluids
US3657128A (en) Synergistic functional fluid compositions
US3630916A (en) Functional fluid compositions
US5209861A (en) High temperature nonflammable hydraulic fluid
US3629120A (en) Functional fluid compositions