US3587784A - Telescopic load booster - Google Patents

Telescopic load booster Download PDF

Info

Publication number
US3587784A
US3587784A US762678A US3587784DA US3587784A US 3587784 A US3587784 A US 3587784A US 762678 A US762678 A US 762678A US 3587784D A US3587784D A US 3587784DA US 3587784 A US3587784 A US 3587784A
Authority
US
United States
Prior art keywords
cylinder
mast
load
carriage
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US762678A
Inventor
Raymond Carl Tait
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunters Manufacturing Co Inc
Original Assignee
Hunters Manufacturing Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunters Manufacturing Co Inc filed Critical Hunters Manufacturing Co Inc
Application granted granted Critical
Publication of US3587784A publication Critical patent/US3587784A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems

Definitions

  • the manifold includes a flow-restricting orifice leading to the mast cylinder and this-0rifice establishes a pressure differential between the pressures at which the two cylinders are actuated thereby achieving a controlled sequential operation both in lifting and lowering a load.
  • This invention relates to the art of work and material-handling equipment and more particularly to load boosters such as forklifts and the like.
  • Forklifts with a roller-mounted carriage to which the forks or other load-supporting means are attached.
  • a vertical mast or track is mounted on the frame of'the lift with the mast being ofa twopiece construction, a stationary portion and a vertically movably portion which is adapted to be extended above the stationary portion to increase the vertical distance over which the load may be lifted.
  • the carriage is adapted to travel along appropriate tracks or guideways within the vertically movable portion of the mast.
  • the prior art forklifts have employed a pair of hydraulic cylinders, one of which is adapted to actuate the carriage to move it over a vertical distance while the other cylinder is adapted to actuate the movably portion of the mast to extend it above the stationary portion of the mast.
  • the carriage must be capable of traversing the lowered height of the mast before the movable portion of the mast is extended and this requires the cylinder actuating the carriage to be activated before the cylinder controlling extension of the mast is actuated.
  • the prior art has accomplished this by employing a mechanical latch which has latchedthe movable portion of the mast to the fixed portion of the mast.
  • the pressurized fluid delivered by the pump initially is effective only to actuate the carriage for movement vertically along the mast and is ineffective to extend the movably portion of the mast.
  • the carriage trips the latch and thereby enables the pressurized fluid to be effective to actuate the cylinder to raise the movable portion of the mast.
  • the present invention contemplates a new and improved hydraulic control system for forklifts which overcomes all of the above-described problems. as well as others, but which is extremely simple in construction and economical to manufacture.
  • a forklift having a carriage moveable along a telescopic mast with a first cylinder for controlling the movement of the carriage and a second cylinder for controlling the extension of the mast.
  • a single pump supplies hydraulic fluid under pressure to the two cylinders through a manifold means incorporated in the circuit.
  • the inlet of the manifold is connected to the pump.
  • the manifold includes two outlet ports, one of which is connected to the cylinder for actuating the mast and the other of which is connected to the cylinder for actuating the carriage.
  • One of the outlet ports is of a size that the hydraulic fluid may readily flow therethrough while the other of the outlet ports is substantially smaller in size and comprises a restrictive orifice.
  • This manifold arrangement coupled with the dif ferential weights which the two cylinders must lift, eliminates the necessity for a releasable latch between the fixed and moveably portions of the mast and also eliminates any tendency of the load to descend at an uncontrolled rate or to drift downwardly. Moreover, this arrangement provides a controlled sequence of operation in which the mast always descends before the carriage.
  • FIG. 1 is a perspective view of a typical forklift in which the invention may be employed.
  • FIG. 2 is an elevation view, partly in section of a typical hydraulic cylinder and manifold which may be used with the forklift of FIG. 1.
  • FIG. 3 is a schematic hydraulic circuit diagram which employs the principles of this invention.
  • FIG. 1 illustrates a load booster or forklift indicated generally be the reference numeral A.
  • the forklift is generally of a conventional construction and employs a base or frame B supported by rollers or casters enabling the lift to be moved to the desired location. It will be appreciated that the lift may be either manually operated or power operated.
  • the lift further includes a mast, indicated generally by the reference numeral C, and a carriage and load supporting means, generally indicated by the reference numeral D.
  • These basic components comprise the conventional forklift and it is this specific environment in which the invention has particular application.
  • the mast C is of a two part-construction and employs a fixed mast portion 10 and an extensible or telescopic mast portion 11.
  • the mast portion 11 is mounted by any appropriate conventional means for movement within and along the length of the fixed mast portion 10 so that the portion 11 may be telescopically extended above the mast portion 10 in the manner shown in FIG. 1.
  • the carriage D comprises a carriage frame generally indicated by the reference numeral 15 and includes rollers (not shown) which cooperate in conventional fashion with a track or guideway formed in or carried on the movable mast portion 11.
  • a pair of forks 16 or other loadsupporting means may be supported on the carriage frame 15.
  • the forks 16 are merely exemplary of one form of load-carrying means and other load-supporting means such as a drum handler or various other types of equipment, all of which are conventional in the art, may be used in lieu of or in conjunction with the forks.
  • a first hydraulic cylinder 20 one end of which is supported on a base member 22 connected to the lower end of the movable mast 11.
  • cylinder includes an extensible piston rod 24, the upper end 26 of which is connected by any appropriate means to the carriage frame 15, such that as the piston rod 24 is extended, the carriage is moved on its rollers vertically along the guideways within the movable mast l 1.
  • a second cylinder 30 This cylinder, like the first cylinder 20, is positioned in a vertical position with the lower end'of the cylinder being mounted on the base frame 32 of the lift.
  • the cylinder 30 also includes an extensible piston rod 34, the upper end 36 of which is connected by any appropriate means to the movably mast l1 and is effective, when actuated, to extend the mast portion 11 above the mast portion 10.
  • Both of the cylinders 20 and 30 are single-acting cylinders and'may be of the type generally shown in FIG. 2.
  • the cylinder 30 employs a conventional packing 38 which surrounds the extensible piston rod 34 and a packing nut 39 which may be employed to adjust the compression of the packing.
  • the adjustment of the packing nut and the consequent compression of the packing material 38 will have an effect on the move ment of the piston rod 34, in that the greater the compression on the packing 38, the greater the frictional drag that will be imposed on the piston rod.
  • the cylinder 30 further includes a piston 40 which is connected to the inner end of the piston rod 34 and cooperates with the inner walls of the cylinder to define a fluid chamber 42 in conventional manner.
  • An inlet port 44 is formed in the wall of the cylinder 30 and permits the introduction of fluid pressure into the chamber 42.
  • cylinder 30 also applies to the cylinder 20 which is of an identical construction and size. However, it is contemplated that, in addition to this conventional construction of the cylinders 20, 30, there will be included with the cylinder 30 a manifold, indicated generally by the reference numeral 50.
  • the manifold 50 includes an inlet port 52 and outlet ports 54, 46.
  • the outlet port 56 is aligned with the inlet port 44 for the cylinder 30 while the outlet port 54 is connected through appropriate fluid lines to the corresponding inlet port of the cylinder 20.
  • Port 52 is connected to the pump 60.
  • FIG. 3 there is a schematic illustration of a typical hydraulic circuit employing the manifold 50 and the cylinders 20, 30.
  • a motor 61 is coupled to the pump 60 and drives the pump to supply fluid under pressure from the tank or reservoir 62.
  • the pump 60 is connected to the manifold 50 by the fluid line 63.
  • a conventional solenoidoperated check valve 64 is inserted in the line 63.
  • a relief valve 65 may be positioned in the line 63 between the pump and the check valve and a second relief valve 66 may be positioned between the manifold 50 and the check valve 64.
  • a fluid line 68 connects the manifold 50 to the cylinder 20.
  • the inlet port 52 and the outlet port 54 are of substantial size and may be of the same dimensions. Contrasted with these two ports is the outlet port 56 which is severely restricted in diameter as compared to the outlet port 54 and forms, in effect, a restrictive orifice through which the fluid must flow if it is to enter the fluid chamber 42 in the cylinder 30.
  • the relationship between the port 54 and the restrictive orifice 56 is important to the operation of this invention. Although the precise dimensional relationship may vary, in substance, the port 56 must be sufficiently restricted in size that fluid under pressure introduced through the port 52 into the manifold 50 will follow the line ofleast resistance and flow outwardly through the port 54 rather than through the restrictive orifice 56. In this manner, the orifice 56 functions much as a valve in that the fluid, at least initially, is channeled through the port 54 to the cylinder associated with that port.
  • the operator will then actuate the motor 61 to drive the pump 60 which will introduce fluid under pressure through the check valve 64 into the manifold 50.
  • the fluid entering the manifold 50 through the port 52 will be confronted with the relatively restricted orifice 56 and the open outlet 54, and, following the path of least resistance, will tend to flow into the fluid chamber of the cylinder 20.
  • the fluid will accumulate in the cylinder 20 and establish a pressure which will cause the piston rod 24 to extend upwardly carrying with it the carriage D and the load supported on the forks 16.
  • the differential in weight described above prevents the piston 30 from being actuated. For example, assuming a load of 2,000 pounds resting on the forks 16 and further assuming that a pressure of 1,7000 p.s.i. is required to actuate the cylinder 20 to lift that load, the additional weight which the cylinder 30 must lift will require a pressure in excess of that value. As a result, any fluid which may tend to bleed through the orifice 56 into the chamber of the cylinder 30 will be at a pressure which is insufficient to actuate the cylinder 30.
  • the pump may be discontinued and the system will be hydraulically locked, supporting the load in its elevated position.
  • the movable mast 11 This is accomplished by extending the piston 24 to its fullest extent at which point the carriage frame 15 engages a top stop supported on the mast thereby preventing any further upward movement of the carriage.
  • the pump 60 continues to deliver fluid into the system and the pressure thus builds up in the cylinder 20 and in the system until it has achieved a level at which the flow rate of the fluid through the restrictive orifice 56 into the cylinder 30 is sufficient to build up a pressure in the cylinder sufficient to actuate the cylinder and commence to extend the piston rod 32 and the mast portion 11 to which it is connected.
  • the mast 11 moves upwardly, it carries with it the cylinder 20, carriage D and the load positioned on the fork 16.
  • the pump is discontinued and the system is hydraulically locked thereby maintaining the load in its elevated positron.
  • the operator need only actuate the valve 64 to dump a portion of the fluid back to tank. It has been found that when this occurs, the piston rod 24 will remain in its fully extended position, thus maintaining the carriage in a fixed position relative to the movable mast 11. However, fluid in the cylinder 30 will pass outward through the restrictive orifice 56 into the manifold 50 and back to tank thereby causing the movable mast 11 to descend carrying with it the carriage and load as described above. Should the valve be maintained in its open position, the movable mast 11 will fully descend to its lowered position before the carriage and load will commence to descend relative to the mast.
  • the precision dimensional relationships between the port 54 and the restricted orifice 56 may vary.
  • the port 54 has been nine-sixteenths inch in diameter while theres'tricted orifice 56 has been threesixteenths inch in diameter.
  • a pressure differential of l00 p.s.i. has been required to actuate the cylinder 30.
  • a pressure of 1700 p.s.i. is required to actuate the cylinder 20
  • a pressure of 1800 p.s.i. has been required before the cylinder 30 will be actuated.
  • other sizes of ports and orifices and other pressure differentials may be employed, since there are many variables which may affect the operation of the system in any given forklift.
  • the friction inherent in the system may vary depending on the mounting of the movable mast within the fixed mast and also the mounting of the carriage within the movable mast.
  • the size of the restrictive orifice 56 must be such that the pressure built up in the system does not exceed 2000 p.s.i. before the pressure is effective to actuate the cylinder 30. It has been found that if the orifice is too small, the back pressure created in the system by the orifice 56 becomes excessive and the system pressure will exceed 2000 p.s.i. On the other hand, if the restrictive orifice is too large, the back pressure becomes less but the proper operation of the system is unduly sensitive to the proper balancing of the frictional forces in the system.
  • a load-supporting mechanism having a load-lifting means and telescoping track means for said load-lifting means, said load-lifting means including work-supporting means and first hydraulic cylinder means for moving said work-supporting means between first and second positions along said track means, said telescoping track means including second hydrauc linder is actuated; sal flow-restricting means comprising manifold means in said system; said manifold means having an inlet connected to said an outlet in said manifold means in communication with said first cylinder; and
  • said restrictive orifice being substantially smaller in size than said outlet.
  • a load-lifting mechanism having load-lifting means and track means for said load-lifting means, said load-lifting means including a carriage movable along said track means, said track means including a fixed portion and a movable portion, first hydraulic cylinder means for moving said carriage along said track means, second hydraulic cylinder means for moving said movable portion of said track means and a hydraulic system including a single pump and fluid conduits interconnecting said first and second cylinders with said pump whereby fluid under pressure may be delivered to said cylinders, the improvement comprising:
  • said manifold means having an inlet port connected to said pump and first and second outlet ports connected to said first and second cylinders, respectively;
  • said second outlet port being substantially smaller in size than said first outlet port and forming a restrictive orifice through which fluid must pass when said second cylinder is actuated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

A HYDRAULICALLY OPERATED, TELECOPIC FORKLIFT HAVING A MANIFOLD IN THE HYDRAULIC CIRCUIT INTERCONNECTING THE PUMP, THE CYLINDER FOR ACTUATING THE LIFT CARRIAGE AND THE CYLINDER FOR ACTUATING THE TELESCOPIC MAST. THE MANIFOLD INCLUDES A FLOW-RESTRICTING ORIFICE LEADING TO THE MAST CYLINDER AND THIS ORIFICE ESTABLISHES A PRESSURE DIFFERENTIAL BETWEEN THE PRESSURES AT WHICH THE TWO CYLINDERS ARE ACTUATED THEREBY ACHIEVING A CONTROLLED SEQUENTIAL OPERATION BOTH IN LIFTING AND LOWERING A LOAD.

Description

United States Patent 2,518,251 8/1950 Quayle ln ventor Raymond Carl Tait Cleveland, Ohio Appl. No. 762,678 Filed Sept. 26, 1968 Patented June 28, 1971 Assignee Hunter Manufacturing Company Cleveland, Ohio TELESCOPIC LOAD BOOSTER 6 Claims, 3 Drawing Figs.
[1.8. CI 187/9, 91/41 1 Int. Cl B661 9/22 Field of Search 187/9, 17; 91/41 1, 412
References Cited UNfl ED STATES PATENTS 2,598,233 5/1952 Deardorfl" 91/412 2,821,264 1/1958 Ulinski 187/9 3,135,283 6/1964 Keel 91/412(X) 3,208,556 9/1965 Shaffer..... 187/9 3,276,549 10/1966 Ramsey 187/9 Primary Examiner-Milton Buchler 1 Assistant Exam iner-- Jam es E. Pitten'ger Attorney- Yount & Tarolli ABSTRACT: A hydraulically operated, telescopic forklift having a manifold in the hydraulic circuit interconnecting the pump, the cylinder for actuating the lift carriage and the cylinder for actuating the telescopic mast. The manifold includes a flow-restricting orifice leading to the mast cylinder and this-0rifice establishes a pressure differential between the pressures at which the two cylinders are actuated thereby achieving a controlled sequential operation both in lifting and lowering a load.
PATENTED JUH28 IBYl INVIENTOR. RAYMOND CARL TAIT zfl wffior ATTORNEYS.
TELESCOPIC LOAD BOOSTER This invention relates to the art of work and material-handling equipment and more particularly to load boosters such as forklifts and the like.
Although the invention will be described with particular reference to forklifts, it is to be understood that the invention has broader application and may be employed with any loadlifting apparatus which employs a telescopic mast or track along which the load-supporting means travels as the load is lifted.
It is conventional practice to construct forklifts with a roller-mounted carriage to which the forks or other load-supporting means are attached. A vertical mast or track is mounted on the frame of'the lift with the mast being ofa twopiece construction, a stationary portion and a vertically movably portion which is adapted to be extended above the stationary portion to increase the vertical distance over which the load may be lifted. The carriage is adapted to travel along appropriate tracks or guideways within the vertically movable portion of the mast. Typically, the prior art forklifts have employed a pair of hydraulic cylinders, one of which is adapted to actuate the carriage to move it over a vertical distance while the other cylinder is adapted to actuate the movably portion of the mast to extend it above the stationary portion of the mast.
From the standpoint of simplicity of operation and economy of construction, it is highly desirable that relatively low hydraulic pressures, that is 2,000 psi. or lower, be employed in the hydraulic systems of forklifts. This is particularly so with the smaller sizes of forklifts, such as those having a lifting capacity of2,000 pounds or less. Accordingly, it has been conventional to employ single-acting cylinders and a single pump to supply the fluid under pressure to both cylinders. However, it is necessary with construction of this type to provide for a certain amount of free lift of the carriage before the movable portion of the mast is extended. Thus, the carriage must be capable of traversing the lowered height of the mast before the movable portion of the mast is extended and this requires the cylinder actuating the carriage to be activated before the cylinder controlling extension of the mast is actuated. The prior art has accomplished this by employing a mechanical latch which has latchedthe movable portion of the mast to the fixed portion of the mast. In this manner, the pressurized fluid delivered by the pump initially is effective only to actuate the carriage for movement vertically along the mast and is ineffective to extend the movably portion of the mast. As the carriage reaches the top of the fixed portion of the mast, it trips the latch and thereby enables the pressurized fluid to be effective to actuate the cylinder to raise the movable portion of the mast.
Although this arrangement has proven to be generally satisfactory, certain shortcomings have been experienced. Chief among these is the tendency of the load to drift downward at a rate which cannot be controlled by the operator. This drift condition is most noticeable when the load is being lowered with the mast extended. Thus, assuming the load is in an elevated position with the mast extended and it is desired to lower the load, the operator will actuate a valve which will relieve some of the hydraulic pressure in the system to permit the load to descend under the force of gravity. However, since there is but a single hydraulic circuit for both the cylinder which controls the position of the mast and the cylinder which controls the position of the carriage, it has been found that the mast may descend at one rate and, simultaneously, the carriage may descend at a different rate with the result that it is extremely difficult to gauge the rate of descent on the load. Moreover, even after the valve has been closed, there is often a tendency for either the carriage or the mast to drift downward for a period of time until the hydraulic pressures in the two cylinders have stabilized.
The present invention contemplates a new and improved hydraulic control system for forklifts which overcomes all of the above-described problems. as well as others, but which is extremely simple in construction and economical to manufacture.
it is the primary object of this invention to provide a hydraulic system for forklifts of the type described above in which precise control of the position of the mast and the carriage is obtainable at all times and the undesirable drift condition heretofore experienced is eliminated.
in accordance with the present invention, there is provided a forklift having a carriage moveable along a telescopic mast with a first cylinder for controlling the movement of the carriage and a second cylinder for controlling the extension of the mast. A single pump supplies hydraulic fluid under pressure to the two cylinders through a manifold means incorporated in the circuit. The inlet of the manifold is connected to the pump. The manifold includes two outlet ports, one of which is connected to the cylinder for actuating the mast and the other of which is connected to the cylinder for actuating the carriage. One of the outlet ports is of a size that the hydraulic fluid may readily flow therethrough while the other of the outlet ports is substantially smaller in size and comprises a restrictive orifice. This manifold arrangement, coupled with the dif ferential weights which the two cylinders must lift, eliminates the necessity for a releasable latch between the fixed and moveably portions of the mast and also eliminates any tendency of the load to descend at an uncontrolled rate or to drift downwardly. Moreover, this arrangement provides a controlled sequence of operation in which the mast always descends before the carriage.
The invention described herein may take physical form in certain parts and arrangements of parts, a preferred embodiment of which will be described in detail herein and illustrated in the accompanying drawings which form a part hereof.
Referring now to the drawings wherein like reference numerals indicate like parts in the various views:
FIG. 1 is a perspective view ofa typical forklift in which the invention may be employed.
FIG. 2 is an elevation view, partly in section of a typical hydraulic cylinder and manifold which may be used with the forklift of FIG. 1.
FIG. 3 is a schematic hydraulic circuit diagram which employs the principles of this invention.
Referring now to the drawings, wherein the showings are for the purposes of illustrating the preferred embodiment of the invention only and not for the purposes oflimiting same, FIG. 1 illustrates a load booster or forklift indicated generally be the reference numeral A. The forklift is generally of a conventional construction and employs a base or frame B supported by rollers or casters enabling the lift to be moved to the desired location. It will be appreciated that the lift may be either manually operated or power operated. The lift further includes a mast, indicated generally by the reference numeral C, and a carriage and load supporting means, generally indicated by the reference numeral D. These basic components comprise the conventional forklift and it is this specific environment in which the invention has particular application.
Referring now in more detail to the construction of the forklift, the mast C is of a two part-construction and employs a fixed mast portion 10 and an extensible or telescopic mast portion 11. The mast portion 11 is mounted by any appropriate conventional means for movement within and along the length of the fixed mast portion 10 so that the portion 11 may be telescopically extended above the mast portion 10 in the manner shown in FIG. 1. The carriage D comprises a carriage frame generally indicated by the reference numeral 15 and includes rollers (not shown) which cooperate in conventional fashion with a track or guideway formed in or carried on the movable mast portion 11. A pair of forks 16 or other loadsupporting means may be supported on the carriage frame 15. it will be appreciated that the forks 16 are merely exemplary of one form of load-carrying means and other load-supporting means such as a drum handler or various other types of equipment, all of which are conventional in the art, may be used in lieu of or in conjunction with the forks.
To actuate the carriage D there is provided a first hydraulic cylinder 20, one end of which is supported on a base member 22 connected to the lower end of the movable mast 11. The
cylinder includes an extensible piston rod 24, the upper end 26 of which is connected by any appropriate means to the carriage frame 15, such that as the piston rod 24 is extended, the carriage is moved on its rollers vertically along the guideways within the movable mast l 1.
There is also provided a second cylinder 30. This cylinder, like the first cylinder 20, is positioned in a vertical position with the lower end'of the cylinder being mounted on the base frame 32 of the lift. The cylinder 30 also includes an extensible piston rod 34, the upper end 36 of which is connected by any appropriate means to the movably mast l1 and is effective, when actuated, to extend the mast portion 11 above the mast portion 10.
Both of the cylinders 20 and 30 are single-acting cylinders and'may be of the type generally shown in FIG. 2. As shown in the HQ, the cylinder 30 employs a conventional packing 38 which surrounds the extensible piston rod 34 and a packing nut 39 which may be employed to adjust the compression of the packing. In this connection, it is to be noted that the adjustment of the packing nut and the consequent compression of the packing material 38 will have an effect on the move ment of the piston rod 34, in that the greater the compression on the packing 38, the greater the frictional drag that will be imposed on the piston rod.
The cylinder 30 further includes a piston 40 which is connected to the inner end of the piston rod 34 and cooperates with the inner walls of the cylinder to define a fluid chamber 42 in conventional manner. An inlet port 44 is formed in the wall of the cylinder 30 and permits the introduction of fluid pressure into the chamber 42.
The above description of the cylinder 30 also applies to the cylinder 20 which is of an identical construction and size. However, it is contemplated that, in addition to this conventional construction of the cylinders 20, 30, there will be included with the cylinder 30 a manifold, indicated generally by the reference numeral 50.
The manifold 50 includes an inlet port 52 and outlet ports 54, 46. The outlet port 56 is aligned with the inlet port 44 for the cylinder 30 while the outlet port 54 is connected through appropriate fluid lines to the corresponding inlet port of the cylinder 20. Port 52 is connected to the pump 60.
Referring now to H6. 3, there is a schematic illustration of a typical hydraulic circuit employing the manifold 50 and the cylinders 20, 30. Thus, a motor 61 is coupled to the pump 60 and drives the pump to supply fluid under pressure from the tank or reservoir 62. The pump 60 is connected to the manifold 50 by the fluid line 63. A conventional solenoidoperated check valve 64 is inserted in the line 63. A relief valve 65 may be positioned in the line 63 between the pump and the check valve and a second relief valve 66 may be positioned between the manifold 50 and the check valve 64. A fluid line 68 connects the manifold 50 to the cylinder 20.
Referring now in more detail to the manifold 50, it will be noted that the inlet port 52 and the outlet port 54 are of substantial size and may be of the same dimensions. Contrasted with these two ports is the outlet port 56 which is severely restricted in diameter as compared to the outlet port 54 and forms, in effect, a restrictive orifice through which the fluid must flow if it is to enter the fluid chamber 42 in the cylinder 30. The relationship between the port 54 and the restrictive orifice 56 is important to the operation of this invention. Although the precise dimensional relationship may vary, in substance, the port 56 must be sufficiently restricted in size that fluid under pressure introduced through the port 52 into the manifold 50 will follow the line ofleast resistance and flow outwardly through the port 54 rather than through the restrictive orifice 56. In this manner, the orifice 56 functions much as a valve in that the fluid, at least initially, is channeled through the port 54 to the cylinder associated with that port.
Coupled with this arrangement of ports in the manifold 50, is the different conditions under which the two cylinders 30 and 20 must operate. Thus, to lift a load supported on the forks 16, the cylinder 20 must raise the weight of the carriage B, the weight of the forks 16, the weight of the load supported on the forks and also overcome the friction inherent in the system. On the other hand, the cylinder 30 must lift, in addition to the foregoing, the weight of the movably mast 11 and also overcome the friction inherent in the sliding engagement of the two mast portions 10, 11 and must, therefore, lift a greater weight than the cylinder 20. This differential in weight, which is inherent in the construction of the system, coupled with the differential port sizes in the manifold 50, cooperate to achieve the desired result.
Thus, assuming the forklift of FIG. 1 is in its inoperative position with the movable mast 11 and the forks l6 lowered and a load resting on the forks 16 waiting to be lifted, the operator will then actuate the motor 61 to drive the pump 60 which will introduce fluid under pressure through the check valve 64 into the manifold 50. The fluid entering the manifold 50 through the port 52 will be confronted with the relatively restricted orifice 56 and the open outlet 54, and, following the path of least resistance, will tend to flow into the fluid chamber of the cylinder 20. As a result, the fluid will accumulate in the cylinder 20 and establish a pressure which will cause the piston rod 24 to extend upwardly carrying with it the carriage D and the load supported on the forks 16. Although the pressure developed in the system to extend the piston rod 24 upwardly may cause some of the fluid to pass through the restrictive orifice 56 into the chamber of the cylinder 30, the differential in weight described above prevents the piston 30 from being actuated. For example, assuming a load of 2,000 pounds resting on the forks 16 and further assuming that a pressure of 1,7000 p.s.i. is required to actuate the cylinder 20 to lift that load, the additional weight which the cylinder 30 must lift will require a pressure in excess of that value. As a result, any fluid which may tend to bleed through the orifice 56 into the chamber of the cylinder 30 will be at a pressure which is insufficient to actuate the cylinder 30. At any point during this free-lift portion of the carriage movement, the pump may be discontinued and the system will be hydraulically locked, supporting the load in its elevated position. However, if it is desired to lift the load beyond the free-lift distance, it is necessary to extend the movable mast 11. This is accomplished by extending the piston 24 to its fullest extent at which point the carriage frame 15 engages a top stop supported on the mast thereby preventing any further upward movement of the carriage. However, the pump 60 continues to deliver fluid into the system and the pressure thus builds up in the cylinder 20 and in the system until it has achieved a level at which the flow rate of the fluid through the restrictive orifice 56 into the cylinder 30 is sufficient to build up a pressure in the cylinder sufficient to actuate the cylinder and commence to extend the piston rod 32 and the mast portion 11 to which it is connected. As the mast 11 moves upwardly, it carries with it the cylinder 20, carriage D and the load positioned on the fork 16. When the load has been lifted to the desired height, the pump is discontinued and the system is hydraulically locked thereby maintaining the load in its elevated positron.
Assuming it is then desired to lower the load a predetermined amount, the operator need only actuate the valve 64 to dump a portion of the fluid back to tank. It has been found that when this occurs, the piston rod 24 will remain in its fully extended position, thus maintaining the carriage in a fixed position relative to the movable mast 11. However, fluid in the cylinder 30 will pass outward through the restrictive orifice 56 into the manifold 50 and back to tank thereby causing the movable mast 11 to descend carrying with it the carriage and load as described above. Should the valve be maintained in its open position, the movable mast 11 will fully descend to its lowered position before the carriage and load will commence to descend relative to the mast. Contrasted with this operation is that of the prior art which did not employ a manifold having the differential ports described herein. With the prior art construction and with the movable mast extended, any opening of the valve to dump a portion of the fluid back to tank would result in both the carriage and the mast l1 descending, often times at differential rates which were extremely difficult to gauge. Moreover, should the valve subsequently be closed with the mast partially extended, it frequently occurred that a period of time would be required for the two cylinders to reach equilibrium and the system to stabilize. As pointed out above, this undesirable result is obviated by the present construction which assures a controlled sequential operation. 1
The precision dimensional relationships between the port 54 and the restricted orifice 56 may vary. In one satisfactory arrangement, the port 54 has been nine-sixteenths inch in diameter while theres'tricted orifice 56 has been threesixteenths inch in diameter. With that relationship, a pressure differential of l00 p.s.i. has been required to actuate the cylinder 30. Thus, assuming a pressure of 1700 p.s.i. is required to actuate the cylinder 20, a pressure of 1800 p.s.i. has been required before the cylinder 30 will be actuated. Obviously, other sizes of ports and orifices and other pressure differentials may be employed, since there are many variables which may affect the operation of the system in any given forklift. For example, the friction inherent in the system may vary depending on the mounting of the movable mast within the fixed mast and also the mounting of the carriage within the movable mast. In addition, it is possible to vary the frictional engagement between the packing and the piston rod of each of the cylinders 20, 30 simply by adjusting the gland nut 39. By so doing, the frictional resistance which the piston rod 34, for example, must overcome may be increased thus necessitating a higher pressure level before the cylinder 30 will be actuated.
As pointed out above, it is highly desirable to maintain the pressure in the system at a level below 2000 p.s.i. Should the pressure exceed that level, more expensive fittings would have to be employed in the fluid system. Accordingly, the size of the restrictive orifice 56 must be such that the pressure built up in the system does not exceed 2000 p.s.i. before the pressure is effective to actuate the cylinder 30. It has been found that if the orifice is too small, the back pressure created in the system by the orifice 56 becomes excessive and the system pressure will exceed 2000 p.s.i. On the other hand, if the restrictive orifice is too large, the back pressure becomes less but the proper operation of the system is unduly sensitive to the proper balancing of the frictional forces in the system. For example, it has been found that if the back pressure built up before the cylinder 30 is actuated is 50 p.s.i., proper operation of the system does require some adjusting of the frictional forces including the gland nuts on the cylinders. However, if the pressure differential is maintained in the vicinity of l00 p.s.i., the sensitivity to frictional forces is substantially reduced and satisfactory operation is achieved.
The invention has been described with reference to but a single preferred embodiment. Modifications and alterations in this embodiment will occur to those having ordinary skill in the art and it is intended that such modifications and alterations are to be included within the scope of the invention as defined by the appended claims.
I claim:
1. In a load-supporting mechanism having a load-lifting means and telescoping track means for said load-lifting means, said load-lifting means including work-supporting means and first hydraulic cylinder means for moving said work-supporting means between first and second positions along said track means, said telescoping track means including second hydrauc linder is actuated; sal flow-restricting means comprising manifold means in said system; said manifold means having an inlet connected to said an outlet in said manifold means in communication with said first cylinder; and
a restrictive orifice in said manifold means in communication with said second cylinder;
said restrictive orifice being substantially smaller in size than said outlet.
2. The improvement of claim 1 wherein said pressure differential is approximately p.s.i.
3. In a load-lifting mechanism having load-lifting means and track means for said load-lifting means, said load-lifting means including a carriage movable along said track means, said track means including a fixed portion and a movable portion, first hydraulic cylinder means for moving said carriage along said track means, second hydraulic cylinder means for moving said movable portion of said track means and a hydraulic system including a single pump and fluid conduits interconnecting said first and second cylinders with said pump whereby fluid under pressure may be delivered to said cylinders, the improvement comprising:
manifold means in said system;
said manifold means having an inlet port connected to said pump and first and second outlet ports connected to said first and second cylinders, respectively;
said second outlet port being substantially smaller in size than said first outlet port and forming a restrictive orifice through which fluid must pass when said second cylinder is actuated.
4. The improvement of claim 3 wherein said second cylinder is operative when actuated to move both said movable track portion and said carriage.
5. The improvement of claim 4 wherein said first cylinder is supported on said movable track portion.
6. The improvement of claim 3 wherein the dimensional relationships of said outlet ports is such that a pressure differential of approximately I00 p.s.i. is established between the pressure at which said first cylinder is actuated and the pressure at which said second cylinder is actuated.
US762678A 1968-09-26 1968-09-26 Telescopic load booster Expired - Lifetime US3587784A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US76267868A 1968-09-26 1968-09-26

Publications (1)

Publication Number Publication Date
US3587784A true US3587784A (en) 1971-06-28

Family

ID=25065761

Family Applications (1)

Application Number Title Priority Date Filing Date
US762678A Expired - Lifetime US3587784A (en) 1968-09-26 1968-09-26 Telescopic load booster

Country Status (1)

Country Link
US (1) US3587784A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792836A (en) * 1972-03-06 1974-02-19 E Bender Simplified well rig
US3885685A (en) * 1974-01-17 1975-05-27 Boeing Co Transportable loader for aircraft
US3934681A (en) * 1974-04-12 1976-01-27 Baker-Roos Overhead service unit
US4280592A (en) * 1977-10-17 1981-07-28 Clark Equipment Company Full free-lift upright for lift truck
US4355703A (en) * 1979-03-08 1982-10-26 Clark Equipment Company Upright for lift truck
US4356891A (en) * 1979-03-08 1982-11-02 Clark Equipment Company Upright for lift truck
GB2164318A (en) * 1984-09-14 1986-03-19 Linde Ag Lifting frame connected to vehicle
US4593791A (en) * 1984-04-17 1986-06-10 Allis-Chalmers Corporation Automatic sequencing circuit for lift cylinders
US5330032A (en) * 1992-02-20 1994-07-19 Linde Aktiengesellschaft Lift trucks and extensible mast structures therefor
US5379594A (en) * 1992-04-06 1995-01-10 Crown Equipment Corporation Lift truck with noise attenuated hydraulic circuit
US5393190A (en) * 1994-02-14 1995-02-28 Vickary; Coleman Apparatus for lifting and tilting heavy containers
US6089353A (en) * 1996-08-16 2000-07-18 Bt Prime Mover, Inc. Material handling vehicle having a stability support
EP1260478A2 (en) * 2001-05-23 2002-11-27 Still Gmbh Hydraulic arrangement for the lift cylinder of an industrial truck
US20080056867A1 (en) * 2006-09-06 2008-03-06 Zuckerman Raymond S Computer server lift with slideable horizontal surface
US20080067005A1 (en) * 2000-05-03 2008-03-20 Hagman Earl L Variable straddle transporter lift with programmable height positions
US20080071429A1 (en) * 2006-09-14 2008-03-20 Crown Equipment Corporation Systems and methods of remotely controlling a materials handling vehicle
US20080129445A1 (en) * 2006-09-14 2008-06-05 Crown Equipment Corporation Systems and methods of remotely controlling a materials handling vehicle
US20100114405A1 (en) * 2006-09-14 2010-05-06 Elston Edwin R Multiple zone sensing for materials handling vehicles
US20100145551A1 (en) * 2008-12-04 2010-06-10 Pulskamp Steven R Apparatus for remotely controlling a materials handling vehicle
US20110046813A1 (en) * 2009-08-18 2011-02-24 Castaneda Anthony T Steer correction for a remotely operated materials handling vehicle
US20110091306A1 (en) * 2009-10-20 2011-04-21 Francois Roux Free lift mast for truck mounted forklift
US20110118903A1 (en) * 2006-09-14 2011-05-19 Crown Equipment Corporation Systems and methods of remotely controlling a materials handling vehicle
US20110166721A1 (en) * 2009-08-18 2011-07-07 Castaneda Anthony T Object tracking and steer maneuvers for materials handling vehicles
US20130133982A1 (en) * 2011-05-30 2013-05-30 Geda-Dechentreiter Gmbh & Co. Kg Hoist
US8577551B2 (en) 2009-08-18 2013-11-05 Crown Equipment Corporation Steer control maneuvers for materials handling vehicles
US9122276B2 (en) 2006-09-14 2015-09-01 Crown Equipment Corporation Wearable wireless remote control device for use with a materials handling vehicle
USD750339S1 (en) * 2012-06-29 2016-02-23 Hyster-Yale Group, Inc. Arm rest
US9522817B2 (en) 2008-12-04 2016-12-20 Crown Equipment Corporation Sensor configuration for a materials handling vehicle
USD895221S1 (en) * 2018-01-26 2020-09-01 Toyota Material Handling Manufacturing Sweden Ab Forklift
USD942108S1 (en) * 2019-04-16 2022-01-25 Hangzhou Hikrobot Technology Co., Ltd Forklift
US11429095B2 (en) 2019-02-01 2022-08-30 Crown Equipment Corporation Pairing a remote control device to a vehicle
US11626011B2 (en) 2020-08-11 2023-04-11 Crown Equipment Corporation Remote control device
US11641121B2 (en) 2019-02-01 2023-05-02 Crown Equipment Corporation On-board charging station for a remote control device

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792836A (en) * 1972-03-06 1974-02-19 E Bender Simplified well rig
US3885685A (en) * 1974-01-17 1975-05-27 Boeing Co Transportable loader for aircraft
US3934681A (en) * 1974-04-12 1976-01-27 Baker-Roos Overhead service unit
US4280592A (en) * 1977-10-17 1981-07-28 Clark Equipment Company Full free-lift upright for lift truck
US4355703A (en) * 1979-03-08 1982-10-26 Clark Equipment Company Upright for lift truck
US4356891A (en) * 1979-03-08 1982-11-02 Clark Equipment Company Upright for lift truck
US4593791A (en) * 1984-04-17 1986-06-10 Allis-Chalmers Corporation Automatic sequencing circuit for lift cylinders
GB2164318A (en) * 1984-09-14 1986-03-19 Linde Ag Lifting frame connected to vehicle
US5330032A (en) * 1992-02-20 1994-07-19 Linde Aktiengesellschaft Lift trucks and extensible mast structures therefor
US5379594A (en) * 1992-04-06 1995-01-10 Crown Equipment Corporation Lift truck with noise attenuated hydraulic circuit
US5393190A (en) * 1994-02-14 1995-02-28 Vickary; Coleman Apparatus for lifting and tilting heavy containers
US6089353A (en) * 1996-08-16 2000-07-18 Bt Prime Mover, Inc. Material handling vehicle having a stability support
US20080067005A1 (en) * 2000-05-03 2008-03-20 Hagman Earl L Variable straddle transporter lift with programmable height positions
EP1260478A2 (en) * 2001-05-23 2002-11-27 Still Gmbh Hydraulic arrangement for the lift cylinder of an industrial truck
EP1260478A3 (en) * 2001-05-23 2005-04-20 Still Gmbh Hydraulic arrangement for the lift cylinder of an industrial truck
US20080056867A1 (en) * 2006-09-06 2008-03-06 Zuckerman Raymond S Computer server lift with slideable horizontal surface
US20080071429A1 (en) * 2006-09-14 2008-03-20 Crown Equipment Corporation Systems and methods of remotely controlling a materials handling vehicle
US8193903B2 (en) 2006-09-14 2012-06-05 Crown Equipment Corporation Associating a transmitter and a receiver in a supplemental remote control system for materials handling vehicles
US20100114405A1 (en) * 2006-09-14 2010-05-06 Elston Edwin R Multiple zone sensing for materials handling vehicles
US8970363B2 (en) 2006-09-14 2015-03-03 Crown Equipment Corporation Wrist/arm/hand mounted device for remotely controlling a materials handling vehicle
US9122276B2 (en) 2006-09-14 2015-09-01 Crown Equipment Corporation Wearable wireless remote control device for use with a materials handling vehicle
US10179723B2 (en) 2006-09-14 2019-01-15 Crown Equipment Corporation Systems and methods of remotely controlling a materials handling vehicle
US20110118903A1 (en) * 2006-09-14 2011-05-19 Crown Equipment Corporation Systems and methods of remotely controlling a materials handling vehicle
US9908527B2 (en) 2006-09-14 2018-03-06 Crown Equipment Corporation Multiple zone sensing for materials handling vehicles
US8072309B2 (en) 2006-09-14 2011-12-06 Crown Equipment Corporation Systems and methods of remotely controlling a materials handling vehicle
US20080129445A1 (en) * 2006-09-14 2008-06-05 Crown Equipment Corporation Systems and methods of remotely controlling a materials handling vehicle
US9082293B2 (en) 2006-09-14 2015-07-14 Crown Equipment Corporation Systems and methods of remotely controlling a materials handling vehicle
US9645968B2 (en) 2006-09-14 2017-05-09 Crown Equipment Corporation Multiple zone sensing for materials handling vehicles
US8725362B2 (en) 2006-09-14 2014-05-13 Crown Equipment Corporation Multiple zone sensing for materials handling vehicles traveling under remote control
US8725317B2 (en) 2006-09-14 2014-05-13 Crown Equipment Corporation Multiple detection zone supplemental remote control system for a materials handling vehicle
US8725363B2 (en) 2006-09-14 2014-05-13 Crown Equipment Corporation Method for operating a materials handling vehicle utilizing multiple detection zones
US9522817B2 (en) 2008-12-04 2016-12-20 Crown Equipment Corporation Sensor configuration for a materials handling vehicle
US9207673B2 (en) 2008-12-04 2015-12-08 Crown Equipment Corporation Finger-mounted apparatus for remotely controlling a materials handling vehicle
US10301155B2 (en) 2008-12-04 2019-05-28 Crown Equipment Corporation Sensor configuration for a materials handling vehicle
US20100145551A1 (en) * 2008-12-04 2010-06-10 Pulskamp Steven R Apparatus for remotely controlling a materials handling vehicle
US8452464B2 (en) 2009-08-18 2013-05-28 Crown Equipment Corporation Steer correction for a remotely operated materials handling vehicle
US20110166721A1 (en) * 2009-08-18 2011-07-07 Castaneda Anthony T Object tracking and steer maneuvers for materials handling vehicles
US20110046813A1 (en) * 2009-08-18 2011-02-24 Castaneda Anthony T Steer correction for a remotely operated materials handling vehicle
US8731777B2 (en) 2009-08-18 2014-05-20 Crown Equipment Corporation Object tracking and steer maneuvers for materials handling vehicles
US9002581B2 (en) 2009-08-18 2015-04-07 Crown Equipment Corporation Object tracking and steer maneuvers for materials handling vehicles
US9493184B2 (en) 2009-08-18 2016-11-15 Crown Equipment Corporation Steer maneuvers for materials handling vehicles
US8577551B2 (en) 2009-08-18 2013-11-05 Crown Equipment Corporation Steer control maneuvers for materials handling vehicles
US20110091306A1 (en) * 2009-10-20 2011-04-21 Francois Roux Free lift mast for truck mounted forklift
US8777545B2 (en) 2009-10-20 2014-07-15 Bright Coop, Inc. Free lift mast for truck mounted forklift
US20130133982A1 (en) * 2011-05-30 2013-05-30 Geda-Dechentreiter Gmbh & Co. Kg Hoist
USD750339S1 (en) * 2012-06-29 2016-02-23 Hyster-Yale Group, Inc. Arm rest
USD895221S1 (en) * 2018-01-26 2020-09-01 Toyota Material Handling Manufacturing Sweden Ab Forklift
US11429095B2 (en) 2019-02-01 2022-08-30 Crown Equipment Corporation Pairing a remote control device to a vehicle
US11500373B2 (en) 2019-02-01 2022-11-15 Crown Equipment Corporation On-board charging station for a remote control device
US11641121B2 (en) 2019-02-01 2023-05-02 Crown Equipment Corporation On-board charging station for a remote control device
USD942108S1 (en) * 2019-04-16 2022-01-25 Hangzhou Hikrobot Technology Co., Ltd Forklift
US11626011B2 (en) 2020-08-11 2023-04-11 Crown Equipment Corporation Remote control device

Similar Documents

Publication Publication Date Title
US3587784A (en) Telescopic load booster
US3202242A (en) Industrial truck with an elevatable operator platform that is movable with and relative to the load handling means
US2571550A (en) Material handling device for industrial trucks
US2518251A (en) Industrial truck
US3208556A (en) Multiple stage masts for lift trucks
US2506242A (en) Vehicle mounted crane with load lifting accessory
US2795346A (en) Load grip side shift for lift trucks
US5190436A (en) Carriage assembly having side shiftable and adjustable forks
US2918143A (en) Triple telescopic high free lift truck
US3127956A (en) Lift truck
US2642157A (en) Lifting mast assembly
US3051265A (en) Fork truck with tri-lift mast
US3763965A (en) Transfer vehicle for reels
US2666501A (en) Hydraulically operated tier-lift mechanism for industrial trucks
US2690272A (en) Rotating load platform for lift trucks
US3630317A (en) Arrangement for stabilization of trucks
US3631940A (en) Load carriage with operator{3 s platform
US3786902A (en) Load-lifting mechanism for a lift truck
US2659505A (en) Mechanism for controlling the stability of material-handling machines
US4365693A (en) High visibility lift apparatus
US2962179A (en) Adjustable overhead lift truck guard
US2747689A (en) Tier lift truck
GB1008918A (en) Lifting truck
US3048293A (en) Side-loading counterbalanced industrial lift truck
US4026432A (en) Lift-vehicle assembly