US3587110A - Corporate-network printed antenna system - Google Patents
Corporate-network printed antenna system Download PDFInfo
- Publication number
- US3587110A US3587110A US838226A US3587110DA US3587110A US 3587110 A US3587110 A US 3587110A US 838226 A US838226 A US 838226A US 3587110D A US3587110D A US 3587110DA US 3587110 A US3587110 A US 3587110A
- Authority
- US
- United States
- Prior art keywords
- sheet
- dipole
- point
- feed point
- dipole elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003989 dielectric material Substances 0.000 claims description 6
- 239000004020 conductor Substances 0.000 description 22
- 230000005540 biological transmission Effects 0.000 description 5
- 239000006260 foam Substances 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- RNAMYOYQYRYFQY-UHFFFAOYSA-N 2-(4,4-difluoropiperidin-1-yl)-6-methoxy-n-(1-propan-2-ylpiperidin-4-yl)-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-amine Chemical compound N1=C(N2CCC(F)(F)CC2)N=C2C=C(OCCCN3CCCC3)C(OC)=CC2=C1NC1CCN(C(C)C)CC1 RNAMYOYQYRYFQY-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/062—Two dimensional planar arrays using dipole aerials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/06—Details
- H01Q9/065—Microstrip dipole antennas
Definitions
- This invention relates to antenna systems and more particularly to an array of printed antennas energized from a corporate feed network.
- Microwave antenna array systems which are lightweight, rugged, low-cost and compact find wide use in both military and commercial applications.
- Printed antenna systems which are generally made of a plurality of dipoles formed on the surface of a low dielectric circuit board provide these desirable features.
- the feed for the plurality of dipoles is either provided by a plurality of feed lines on both sides of the insulating board or in a different plane from that of the dipoles.
- the dipoles are usually arranged in rows with the dipoles in each row spaced approximately one-half wavelength apart with the feed lines and dipoles arranged in transposed relation so that the dipoles are fed in equal phase. This type of system is inherently narrow in bandwidth.
- an improved, lightweight, compact printed antenna system wherein a plurality of dipoles arranged in adjacent pairs are secured to the broad planar surfaces of a sheet of insulative material. Pairs of adjacent dipoles are connected in parallel through feeder lines disposed on the insulating material. The center point of the feeder lines is connected by another feeder line to another double group. Likewise, this is repeated whereby all of the dipoles are fed with feeder lines of equal length.
- FIG. 1 illustrates the general layout of an antenna system in accordance with an embodiment of the present invention
- FIG. 2 illustrates one broad surface of the sheet of insulative material having a portion of the feed line and dipoles thereon
- FIG. 3 illustrates the opposite broad surface of the sheet of insulative material having a portion of the feed lines and dipoles thereon
- FIG. 41 is a cross-sectional view of a portion of the antenna in accordance with an embodiment of the present invention.
- FIG. 5 is a cross-sectional view of feed points to the antenna system
- FIG. 6 is a circuit diagram illustrating the impedance matching network.
- FIGS. 1, 2 and 3 there is shown the general layout of the fanlike center fed dipoles 11 and feed line 13 of a printed circuit panel antenna system in accordance with a preferred embodiment of the present invention.
- the fanlike dipoles II and the feed lines 13 are placed on insulative sheet of a one thirty-second inch thick, low dielectric material such as low loss polyolifin dielectric having a dielectric constant of 2.32.
- a half-portion 12 of each dipole element 11 is on one surface of the sheet 15, and the remaining half-portion 14 of each dipole element 11 is on the opposite surface of the sheet 15. That side of the sheet 15 having half-portions 14 thereon is shown in FIG. 1, with the half-portions 12 on the opposite side of sheet 15 not visible in FIG. 1 shown as dotted lines.
- the feed lines 13 are made up of a transmission line of the character having one conductor 17 on one surface and a second conductor 19 on the opposite surface.
- Conductors 17 on one surface, illustrated in FIG. 2 are coupled to the half-portion 12 of each dipole element 11 on that one surface, and conductors 19 on the opposite surface, illustrated in FIG. 3, are coupled to the halfportion 1-4 of each dipole II on the opposite surface.
- FIG. I is described in detail, bearing in mind however, that in actual practice there are feed lines on both sides of the dielectric sheet 15 with the feed line on one surface coupled to the half-portion of the dipole element on that one surface and the feed line on the opposite surface of the insulative sheets coupled to the half-portion of the dipole element on the opposite surface.
- this printed circuit panel antenna system 10 having half of the dipole on one side and half of the dipole on the opposite side may be foam supported in a shallow metal pan with the metal pan acting as a reflector for the dipoles.
- FIG. 4 shows a cross-sectional view of a portion of such an arrangement.
- the transmission line conductors l7 and 19 on either side of a dielectric sheet 15 are spaced from a reflector 23 by means of foam section 21.
- another layer of foam 25 and a second dielectric sheet 27 may be provided on the opposite surface of sheet 15.
- a coaxial line 28 may be coupled near the center of the printed circuit panel antenna system 10.
- the outer conductor 29 of the coaxial line 28 is coupled to conductor 59 at the one or bottom surface of the printed circuit dielectric sheet panel 15 at points 35 and 36 and is also coupled to the shallow metal pan or ground plane reflector 23.
- the center conductor 31 of the coaxial line 28 is fed through the insulative sheet 15 to the conductor 57 of the feed lines at the upper surface of the insulative sheet at point 31 as shown in FIGS. 2 and 5.
- conductor 57 is connected to conductor l7 and conductor 59 is connected to conductor 19.
- the individual dipole radiators 11 are made in the form of fans having a flare angle of in order to provide greater impedance bandwidth.
- the dipoles are fed from a corporate network of balanced transmission line sections branching out from points 37 and 39 in FIG. 1.
- the conductors 17, 19 which make up the feed lines from points 37 and 39 to the dipoles on opposite sides of the insulative sheet are of equal width to provide balanced lines from points 37,39 to the dipoles 11.
- the width of the conductor 17 from point B to point 37, and from point B to point 39 on the surface of the insulative sheet 15 changes so that a 50 ohm balanced impedance at the points 37,39 is transformed to ohm unbalanced impedance at point B (see FIG. 2).
- the width of the line on the opposite surface of the panel 15 does not change from point B to points 37 or 39 (see FIG. 3).
- the two halves of the complete array when joined together, as in the example, give a 50 ohm impedance.
- the impedance of the line at the point of the coaxial input connection across points 31 and 35,36 is also 50 ohms to match the coaxial line impedance.
- the impedance in the line from point B to point 31 is matched by a section of microstrip line where, as shown in FIGS. 2 and 3, the conductor 57 shown in FIG. 2 is considerably narrower than that of 59 illustrated in FIG. 3 to make a microstrip transmission line.
- a vernier impedance matching device 58 is formed by a small chip of dielectric material with a conductor such as copper on the upper surface. By changing the length of the chip 58 and its position along the microstrip line, an impedance match between the coaxial line 28 across points 31 and 35, 36 and point 35,36 is provided with low VSWR at the given frequency. Once the optimum chip position is located, one may simply glue the chip to the surface of the conductor 57.
- each of four an tenna dipole elements 11 has a load impedance Z for example.
- Lines 83 and 414 each represent that section of line in the array directly connected to a dipole 11.
- line 43 terminates at a dipole 11 including halfportions 12 and 14.
- line 44 terminates at a second dipole 11 including half-portions l2 and I4.
- each line 43,44 represents a conductor on one side of the sheet 15 and a matching conductor on the opposite side thereof.
- lines 43 and 44 are each arranged to provide a characteristic impedance of 2,, for example.
- the lines 43 and 44 are identical with both being onehalf wavelength long.
- the impedance at the junction point 45 is 2, independent of the value of the characteristic impedance Z of lines 43 and 44.
- a line 47 having a configuration such as to provide a characteristic impedance of Z for example, is coupled perpendicular to the lines 43 and 44 at point 45 to form a T with the lines and extends a length onequarter wavelength long (M4) at approximately the mean operating frequency of the antenna system.
- the impedance at point 49 is equal to (Z F/(Z or 2(Z /Z)
- a second line 51 one-quarter wavelength long at approximately the mean operating frequency of the antenna system connected to the free end of line 47 at point 49 will give an impedance at point 53 (. ⁇ /4 wavelength from point 49) of Z being the characteristic impedance of line 51) divided by the impedance at point 49 resulting in (Z ZJ) (22 Since the lower half 54 of the circuit is identical to that of the upper half 41, the impedance at the junction 53 is halved and is equal to (Z ZJ )/(4Z Now if the characteristic impedance 2 of the line 51 is equal to twice that of the characteristic impedance or Z of line 47, then the impedance of point 53 is equal to that of Z, or the load.
- the input impedance to the corporate network feed is equal to the individual antenna load impedance.
- the characteristic impedance Z or Z may have any chosen value. The only requirement is that Z be twice Z In practice, it is desirable to choose the values of Z, and Z to minimize the standing waves throughout the network.
- the four element array of FIG. 6 may be any one of the four element arrays such as the four element array 61 in FIG. I.
- the antenna loads provided by dipoles 11 are, for example, 50 ohms.
- the feed line section 62 between the dipoles 11 and the common point 63 of the array is for example, half a wavelength long with the characteristic impedance Z of the line being 50 ohms.
- the characteristic impedance Z of the line 66 between the junction at point 63 and point 64 is 50 ohms.
- the length of the line 66 between point 63 and point 64 is one-quarter of a wavelength.
- the length of the line 67 between point 64 and common point 65 which is the junction point with the lower half of the circuit is likewise onequarter wavelength long.
- the width of the conductor 67 is narrower than that of line 66, so as to provide a characteristic impedance of 100 ohms.
- the dipole array 61 is joined with a similar corporate network to three other similar four element arrays, 71, 72 and 73 to give a 16 dipole array which 16 dipole array has a total input impedance of (in this example) 50 ohms. Impedance match is provided by the M4 stub at the junction and the 2 to 1 ratio in the 2 impedance of the two line section.
- this process is repeated once more, where four 16 dipole arrays 75, 76, 77 and 78 are combined resulting in a 64 dipole array fed at point 37 of FIG. 2.
- the antenna impedance is 50 ohms
- the impedance at point 37 is also 50 ohms and the greatest theoretical VSWR throughout the system is about two-to-one.
- the notch width is made relatively small compared to the line width, so that the characteristic impedance of the line operating in the push-pull mode would not be greatly changed.
- An antenna system comprising:
- feed means including two narrow conductive strips fixed in opposed relation on said broad surfaces of said dielectric sheet and extending from a common feed point to said plurality of dipole elements with a length between the common feed point and one of said dipole elements being the same as that from the common feed point to any of the other dipole elements, said dipole elements being arranged on said sheet so that said feed means extends horizontally and vertically from said common feed point to said elements, said horizontally extending feed means at the junction with said vertically extending feed means having a notch located thereat in a manner so that currents will not be introduced into the feed means which are equal in magnitude and flow in the same direction.
- An antenna system comprising:
- feed means including two narrow conductive strips fixed in opposed relation on said broad surfaces of said dielectric sheet and extending from a common feed point to said plurality of dipole elements with the length between the common feed point and one of said dipole elements being the same as that from the common feed point to any of the other dipole elements, said feed means being unbalanced for a given length from said common feed point and balanced from the end of said given length remote from said common feed point to said dipole elements.
Landscapes
- Details Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Aerials With Secondary Devices (AREA)
- Dowels (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US83822669A | 1969-07-01 | 1969-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3587110A true US3587110A (en) | 1971-06-22 |
Family
ID=25276587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US838226A Expired - Lifetime US3587110A (en) | 1969-07-01 | 1969-07-01 | Corporate-network printed antenna system |
Country Status (7)
Country | Link |
---|---|
US (1) | US3587110A (enrdf_load_stackoverflow) |
JP (1) | JPS5019027B1 (enrdf_load_stackoverflow) |
DE (1) | DE2014939C3 (enrdf_load_stackoverflow) |
FR (1) | FR2050408B1 (enrdf_load_stackoverflow) |
GB (1) | GB1293459A (enrdf_load_stackoverflow) |
NO (1) | NO129316B (enrdf_load_stackoverflow) |
SE (1) | SE357106B (enrdf_load_stackoverflow) |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3681769A (en) * | 1970-07-30 | 1972-08-01 | Itt | Dual polarized printed circuit dipole antenna array |
US3691563A (en) * | 1970-12-11 | 1972-09-12 | Motorola Inc | Dual band stripline antenna |
US3750185A (en) * | 1972-01-18 | 1973-07-31 | Westinghouse Electric Corp | Dipole antenna array |
US3771070A (en) * | 1972-12-22 | 1973-11-06 | Us Air Force | Stripline-to-two-conductor balun |
US3771075A (en) * | 1971-05-25 | 1973-11-06 | Harris Intertype Corp | Microstrip to microstrip transition |
US3818386A (en) * | 1967-04-03 | 1974-06-18 | Texas Instruments Inc | Solid-state modular microwave system |
US3854140A (en) * | 1973-07-25 | 1974-12-10 | Itt | Circularly polarized phased antenna array |
US3887925A (en) * | 1973-07-31 | 1975-06-03 | Itt | Linearly polarized phased antenna array |
FR2409053A1 (fr) * | 1977-11-21 | 1979-06-15 | Rca Corp | Applicateur pour thermotherapie hyperthermique |
US4360741A (en) * | 1980-10-06 | 1982-11-23 | The Boeing Company | Combined antenna-rectifier arrays for power distribution systems |
EP0089084A1 (fr) * | 1982-03-12 | 1983-09-21 | Laboratoires D'electronique Et De Physique Appliquee L.E.P. | Structure d'antenne plane hyperfréquences |
US4498085A (en) * | 1982-09-30 | 1985-02-05 | Rca Corporation | Folded dipole radiating element |
US4513292A (en) * | 1982-09-30 | 1985-04-23 | Rca Corporation | Dipole radiating element |
US4758843A (en) * | 1986-06-13 | 1988-07-19 | General Electric Company | Printed, low sidelobe, monopulse array antenna |
US4816835A (en) * | 1986-09-05 | 1989-03-28 | Matsushita Electric Works, Ltd. | Planar antenna with patch elements |
EP0323011A3 (en) * | 1987-12-18 | 1989-11-15 | Amtech Technology Corporation | Transponder antenna |
EP0255095A3 (en) * | 1986-07-29 | 1989-11-29 | Amtech Corporation | Transponder antenna |
US4977406A (en) * | 1987-12-15 | 1990-12-11 | Matsushita Electric Works, Ltd. | Planar antenna |
US4987424A (en) * | 1986-11-07 | 1991-01-22 | Yagi Antenna Co., Ltd. | Film antenna apparatus |
DE4021167A1 (de) * | 1989-07-11 | 1991-01-24 | Volkswagen Ag | Einrichtung mit zwei mikrowellenmoduln fuer eine nach dem doppler-prinzip arbeitende vorrichtung zur geschhwindigkeits- und/oder wegstreckenmessung |
GB2235587A (en) * | 1989-07-11 | 1991-03-06 | Volkswagen Ag | Janus antenna arrangement |
US5012256A (en) * | 1986-06-02 | 1991-04-30 | British Broadcasting Corporation | Array antenna |
EP0409221A3 (en) * | 1989-07-21 | 1991-10-30 | Selenia Industrie Elettroniche Associate S.P.A. | Integrated structure with radiating elements and dividing networks for application to radar antenna |
US5229782A (en) * | 1991-07-19 | 1993-07-20 | Conifer Corporation | Stacked dual dipole MMDS feed |
US5418541A (en) * | 1994-04-08 | 1995-05-23 | Schroeder Development | Planar, phased array antenna |
WO1995034104A1 (fr) * | 1994-06-09 | 1995-12-14 | Aktsionernoe Obschestvo Zakrytogo Tipa 'rusant' | Antenne reseau plane et element rayonnant a microbandes associe |
US5534882A (en) * | 1994-02-03 | 1996-07-09 | Hazeltine Corporation | GPS antenna systems |
US5563613A (en) * | 1994-04-08 | 1996-10-08 | Schroeder Development | Planar, phased array antenna |
WO1997008774A3 (en) * | 1995-08-23 | 1997-03-27 | Philips Electronics Nv | Printed antenna |
EP0889543A1 (en) * | 1997-06-30 | 1999-01-07 | Sony International (Europe) GmbH | Wide band printed dipole antenna for microwave and mm-wave applications |
EP0889542A1 (en) * | 1997-06-30 | 1999-01-07 | Sony International (Europe) GmbH | Wide band printed phase array antenna for microwave and mm-wave applications |
EP0973229A1 (en) * | 1998-06-18 | 2000-01-19 | Sony International (Europe) GmbH | Third resonance antenna |
US6037911A (en) * | 1997-06-30 | 2000-03-14 | Sony International (Europe) Gmbh | Wide bank printed phase array antenna for microwave and mm-wave applications |
US6356245B2 (en) * | 1999-04-01 | 2002-03-12 | Space Systems/Loral, Inc. | Microwave strip transmission lines, beamforming networks and antennas and methods for preparing the same |
US6480166B2 (en) * | 2000-07-14 | 2002-11-12 | Hon Hai Precision Ind. Co., Ltd. | Planar printed circuit antenna |
US20030218571A1 (en) * | 2002-05-27 | 2003-11-27 | Won-Sang Yoon | Planar antenna having linear and circular polarization |
DE112008001541T5 (de) | 2007-06-13 | 2010-04-29 | World Properties, Inc., Lincolnwood | Antenne mit thermisch übertragenem Element |
US20120152454A1 (en) * | 2010-12-10 | 2012-06-21 | Mass Steven J | Low mass foam electrical structure |
CN104393406A (zh) * | 2014-11-20 | 2015-03-04 | 上海无线电设备研究所 | 一种单脉冲阵列天线 |
CN108475844A (zh) * | 2017-04-21 | 2018-08-31 | 深圳市大疆创新科技有限公司 | 天线、无人机的地面控制系统以及无人机系统 |
US10120065B2 (en) * | 2015-07-17 | 2018-11-06 | Wistron Corp. | Antenna array |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4233607A (en) * | 1977-10-28 | 1980-11-11 | Ball Corporation | Apparatus and method for improving r.f. isolation between adjacent antennas |
DE2921856C2 (de) * | 1979-05-30 | 1985-09-12 | Siemens AG, 1000 Berlin und 8000 München | Richtantenne aus zwei eine strahlende Doppelleitung bildenden Streifenleitern und Gruppenantenne unter Verwendung mehrerer derartiger Richtantennen |
FR2487588A1 (fr) * | 1980-07-23 | 1982-01-29 | France Etat | Doublets replies en plaques pour tres haute frequence et reseaux de tels doublets |
DE3427629A1 (de) * | 1984-07-26 | 1986-01-30 | Siemens AG, 1000 Berlin und 8000 München | Ringantenne in gedruckter schaltungstechnik |
JPH0720008B2 (ja) * | 1986-02-25 | 1995-03-06 | 松下電工株式会社 | 平面アンテナ |
FR2662026B1 (fr) * | 1990-05-11 | 1992-07-10 | Thomson Csf | Antenne orientable plane, fonctionnant en micro-ondes. |
GB0211109D0 (en) * | 2002-05-15 | 2002-06-26 | Antenova Ltd | Dielectric resonator antenna array feed mechanism |
RU2727348C1 (ru) * | 2019-04-26 | 2020-07-21 | Акционерное общество "Всероссийский научно-исследовательский институт радиотехники" | Полосковая щелевая линейная антенная решетка |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2762045A (en) * | 1952-10-08 | 1956-09-04 | Internat Telephone And Telepho | Antenna feed system |
BE542180A (enrdf_load_stackoverflow) * | 1953-01-21 | |||
US2877427A (en) * | 1955-10-11 | 1959-03-10 | Sanders Associates Inc | Parallel transmission line circuit |
US2962716A (en) * | 1957-06-21 | 1960-11-29 | Itt | Antenna array |
FR1336481A (fr) * | 1962-09-06 | 1963-08-30 | Rohde & Schwarz Ohg | Champ d'antenne |
-
1969
- 1969-07-01 US US838226A patent/US3587110A/en not_active Expired - Lifetime
-
1970
- 1970-03-25 SE SE04132/70A patent/SE357106B/xx unknown
- 1970-03-26 GB GB04828/70A patent/GB1293459A/en not_active Expired
- 1970-03-26 DE DE2014939A patent/DE2014939C3/de not_active Expired
- 1970-03-31 JP JP45027380A patent/JPS5019027B1/ja active Pending
- 1970-03-31 FR FR7011449A patent/FR2050408B1/fr not_active Expired
- 1970-06-12 NO NO02300/70A patent/NO129316B/no unknown
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3818386A (en) * | 1967-04-03 | 1974-06-18 | Texas Instruments Inc | Solid-state modular microwave system |
US3681769A (en) * | 1970-07-30 | 1972-08-01 | Itt | Dual polarized printed circuit dipole antenna array |
US3691563A (en) * | 1970-12-11 | 1972-09-12 | Motorola Inc | Dual band stripline antenna |
US3771075A (en) * | 1971-05-25 | 1973-11-06 | Harris Intertype Corp | Microstrip to microstrip transition |
US3750185A (en) * | 1972-01-18 | 1973-07-31 | Westinghouse Electric Corp | Dipole antenna array |
US3771070A (en) * | 1972-12-22 | 1973-11-06 | Us Air Force | Stripline-to-two-conductor balun |
US3854140A (en) * | 1973-07-25 | 1974-12-10 | Itt | Circularly polarized phased antenna array |
US3887925A (en) * | 1973-07-31 | 1975-06-03 | Itt | Linearly polarized phased antenna array |
FR2409053A1 (fr) * | 1977-11-21 | 1979-06-15 | Rca Corp | Applicateur pour thermotherapie hyperthermique |
US4197860A (en) * | 1977-11-21 | 1980-04-15 | Rca Corporation | Hyperthermia applicator |
US4360741A (en) * | 1980-10-06 | 1982-11-23 | The Boeing Company | Combined antenna-rectifier arrays for power distribution systems |
EP0089084A1 (fr) * | 1982-03-12 | 1983-09-21 | Laboratoires D'electronique Et De Physique Appliquee L.E.P. | Structure d'antenne plane hyperfréquences |
US4527165A (en) * | 1982-03-12 | 1985-07-02 | U.S. Philips Corporation | Miniature horn antenna array for circular polarization |
US4498085A (en) * | 1982-09-30 | 1985-02-05 | Rca Corporation | Folded dipole radiating element |
US4513292A (en) * | 1982-09-30 | 1985-04-23 | Rca Corporation | Dipole radiating element |
US5012256A (en) * | 1986-06-02 | 1991-04-30 | British Broadcasting Corporation | Array antenna |
US4758843A (en) * | 1986-06-13 | 1988-07-19 | General Electric Company | Printed, low sidelobe, monopulse array antenna |
EP0255095A3 (en) * | 1986-07-29 | 1989-11-29 | Amtech Corporation | Transponder antenna |
US4816835A (en) * | 1986-09-05 | 1989-03-28 | Matsushita Electric Works, Ltd. | Planar antenna with patch elements |
US4987424A (en) * | 1986-11-07 | 1991-01-22 | Yagi Antenna Co., Ltd. | Film antenna apparatus |
US4977406A (en) * | 1987-12-15 | 1990-12-11 | Matsushita Electric Works, Ltd. | Planar antenna |
EP0323011A3 (en) * | 1987-12-18 | 1989-11-15 | Amtech Technology Corporation | Transponder antenna |
DE4021167A1 (de) * | 1989-07-11 | 1991-01-24 | Volkswagen Ag | Einrichtung mit zwei mikrowellenmoduln fuer eine nach dem doppler-prinzip arbeitende vorrichtung zur geschhwindigkeits- und/oder wegstreckenmessung |
GB2235587A (en) * | 1989-07-11 | 1991-03-06 | Volkswagen Ag | Janus antenna arrangement |
EP0409221A3 (en) * | 1989-07-21 | 1991-10-30 | Selenia Industrie Elettroniche Associate S.P.A. | Integrated structure with radiating elements and dividing networks for application to radar antenna |
US5229782A (en) * | 1991-07-19 | 1993-07-20 | Conifer Corporation | Stacked dual dipole MMDS feed |
US5293175A (en) * | 1991-07-19 | 1994-03-08 | Conifer Corporation | Stacked dual dipole MMDS feed |
US5534882A (en) * | 1994-02-03 | 1996-07-09 | Hazeltine Corporation | GPS antenna systems |
US5418541A (en) * | 1994-04-08 | 1995-05-23 | Schroeder Development | Planar, phased array antenna |
US5563613A (en) * | 1994-04-08 | 1996-10-08 | Schroeder Development | Planar, phased array antenna |
WO1995034104A1 (fr) * | 1994-06-09 | 1995-12-14 | Aktsionernoe Obschestvo Zakrytogo Tipa 'rusant' | Antenne reseau plane et element rayonnant a microbandes associe |
WO1997008774A3 (en) * | 1995-08-23 | 1997-03-27 | Philips Electronics Nv | Printed antenna |
US6037911A (en) * | 1997-06-30 | 2000-03-14 | Sony International (Europe) Gmbh | Wide bank printed phase array antenna for microwave and mm-wave applications |
EP0889542A1 (en) * | 1997-06-30 | 1999-01-07 | Sony International (Europe) GmbH | Wide band printed phase array antenna for microwave and mm-wave applications |
EP0889543A1 (en) * | 1997-06-30 | 1999-01-07 | Sony International (Europe) GmbH | Wide band printed dipole antenna for microwave and mm-wave applications |
EP0973229A1 (en) * | 1998-06-18 | 2000-01-19 | Sony International (Europe) GmbH | Third resonance antenna |
US6356245B2 (en) * | 1999-04-01 | 2002-03-12 | Space Systems/Loral, Inc. | Microwave strip transmission lines, beamforming networks and antennas and methods for preparing the same |
US6480166B2 (en) * | 2000-07-14 | 2002-11-12 | Hon Hai Precision Ind. Co., Ltd. | Planar printed circuit antenna |
US6844851B2 (en) * | 2002-05-27 | 2005-01-18 | Samsung Thales Co., Ltd. | Planar antenna having linear and circular polarization |
US20030218571A1 (en) * | 2002-05-27 | 2003-11-27 | Won-Sang Yoon | Planar antenna having linear and circular polarization |
DE112008001541T5 (de) | 2007-06-13 | 2010-04-29 | World Properties, Inc., Lincolnwood | Antenne mit thermisch übertragenem Element |
US20120152454A1 (en) * | 2010-12-10 | 2012-06-21 | Mass Steven J | Low mass foam electrical structure |
US9293800B2 (en) * | 2010-12-10 | 2016-03-22 | Northrop Grumman Systems Corporation | RF transmission line disposed within a conductively plated cavity located in a low mass foam housing |
CN104393406A (zh) * | 2014-11-20 | 2015-03-04 | 上海无线电设备研究所 | 一种单脉冲阵列天线 |
CN104393406B (zh) * | 2014-11-20 | 2017-07-14 | 上海无线电设备研究所 | 一种单脉冲阵列天线 |
US10120065B2 (en) * | 2015-07-17 | 2018-11-06 | Wistron Corp. | Antenna array |
CN108475844A (zh) * | 2017-04-21 | 2018-08-31 | 深圳市大疆创新科技有限公司 | 天线、无人机的地面控制系统以及无人机系统 |
CN108475844B (zh) * | 2017-04-21 | 2020-10-30 | 深圳市大疆创新科技有限公司 | 天线、无人机的地面控制系统以及无人机系统 |
Also Published As
Publication number | Publication date |
---|---|
JPS5019027B1 (enrdf_load_stackoverflow) | 1975-07-03 |
FR2050408B1 (enrdf_load_stackoverflow) | 1974-03-15 |
SE357106B (enrdf_load_stackoverflow) | 1973-06-12 |
NO129316B (enrdf_load_stackoverflow) | 1974-03-25 |
GB1293459A (en) | 1972-10-18 |
DE2014939B2 (de) | 1980-11-27 |
DE2014939C3 (de) | 1981-09-03 |
DE2014939A1 (de) | 1971-01-14 |
FR2050408A1 (enrdf_load_stackoverflow) | 1971-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3587110A (en) | Corporate-network printed antenna system | |
US3887925A (en) | Linearly polarized phased antenna array | |
US3681769A (en) | Dual polarized printed circuit dipole antenna array | |
US3854140A (en) | Circularly polarized phased antenna array | |
US3803623A (en) | Microstrip antenna | |
US4922263A (en) | Plate antenna with double crossed polarizations | |
US4125837A (en) | Dual notch fed electric microstrip dipole antennas | |
US4054874A (en) | Microstrip-dipole antenna elements and arrays thereof | |
US4758843A (en) | Printed, low sidelobe, monopulse array antenna | |
US5307075A (en) | Directional microstrip antenna with stacked planar elements | |
US4843403A (en) | Broadband notch antenna | |
US4477813A (en) | Microstrip antenna system having nonconductively coupled feedline | |
US4162499A (en) | Flush-mounted piggyback microstrip antenna | |
US5216430A (en) | Low impedance printed circuit radiating element | |
US4434425A (en) | Multiple ring dipole array | |
US4479127A (en) | Bi-loop antenna system | |
US3987455A (en) | Microstrip antenna | |
US2602856A (en) | Power distribution system | |
US3575674A (en) | Microstrip iris directional coupler | |
US4035807A (en) | Integrated microwave phase shifter and radiator module | |
US5410281A (en) | Microwave high power combiner/divider | |
US3044066A (en) | Three conductor planar antenna | |
US3916349A (en) | Phase shifter for linearly polarized antenna array | |
US2935747A (en) | Broadband antenna system | |
US3286268A (en) | Log periodic antenna with parasitic elements interspersed in log periodic manner |