US3575674A - Microstrip iris directional coupler - Google Patents

Microstrip iris directional coupler Download PDF

Info

Publication number
US3575674A
US3575674A US831810A US3575674DA US3575674A US 3575674 A US3575674 A US 3575674A US 831810 A US831810 A US 831810A US 3575674D A US3575674D A US 3575674DA US 3575674 A US3575674 A US 3575674A
Authority
US
United States
Prior art keywords
iris
ground plane
conductors
primary
common ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US831810A
Inventor
Harlan Howe Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Com Inc
Microwave Associates Inc
Original Assignee
Microwave Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microwave Associates Inc filed Critical Microwave Associates Inc
Application granted granted Critical
Publication of US3575674A publication Critical patent/US3575674A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/187Broadside coupled lines

Definitions

  • the field of this invention is generally microwave directional couplers and in particular microstrip directional couplers.
  • the basic elements of such a coupler comprise two conductors coupled together electrically and magnetically.
  • Directional couplers are generally four-port devices wherein power is selectively coupled between ports.
  • FIG. 1 labeled Prior Art. When power is supplied at input port 1, power flows to ports 2 and 3 and no power appears at port 4. In practice, however, some power will appear at port 4.
  • the ratio of the power input to the coupler at a given port to the power appearing at another port where power is not expected is called the isolation of the device.
  • the isolation is a measure of the imperfection of the device.
  • the directivity of the device is equal to the isolation minus the coupling and is in essence a quality factor.
  • a perfect coupler has an infinitely large isolation and high directivity whereas a low performance coupler has low isolation and poor directivity.
  • Z is the characteristic impedance
  • Cristal and Young (Cristal & Young, Theory and Tables of Optimum Symmetrical TEM-Mode Coupled-Transmission Line Directional Couplers, MTT-l3, No. 5, Sept; 1965, p. 544) added quarter wavelength sections in symmetrical discrete steps in such a manner that separation between conductors increased with each quarter wavelength of conductor addition.
  • interstage discontinuities limited directivity and in an effort to overcome this deficiency, C. P. Tresselt (Tresselt, The Design and Construction of Broadband High Directivity, Couplers Using Nonuniform Line Techniques, MTT-l4, 012, Dec. 1966, p.
  • FIG. 2 illustrates the field distribution for conventionally coupled microstrip lines.
  • the even mode field dis tribution is substantially contained within the dielectric medium 403 between conductors 401 and 402 and the ground plane 404 and is shown in solid lines.
  • the odd-mode field distribution is divided between air and the dielectric 403 between conductors 401 and 402, shown in dotted lines, thereby establishing a second propagation velocity through the air.
  • This invention provides a means of coupling microstrip lines wherein both even and odd mode fields are substantially contained within the dielectric thereby eliminating the phase unbalance common to other types and permitting greater directivity.
  • This invention relates to microstrip directional couplers of improved directivity.
  • An iris of suitable shape on a common ground plane is interposed between two conductive lines such that the lines are in spaced relationship on opposite faces of the common ground plane and having substantially a higher dielectric between conductors and the faces of the common ground plane.
  • a device according to this invention will preferably be fabricated on ceramic such as A1 0 see FIG. 3.
  • the common ground plane 505 having an iris therein is interposed between ceramic substrates 503 and 504 having conductive lines 501 and 502 on their opposite faces respectively. Both the even and odd mode fields are substantially contained within the dielectric; therefore the phase velocity is substantially the same.
  • a major feature of this invention is that it provides improved directivity.
  • Another feature of this invention is that the number of parts are substantially reduced, facilitating fabrication techniques.
  • FIG. 1 illustrates schematically the essential elements of prior art devices
  • FIG. 2 is a schematic side view of conventionally coupled lines on microstrip showing odd and even mode field distribu tion;
  • FIG. 3 is a schematic side view representation of the present invention showing even and odd mode field distribution
  • FIG. 4 is an exploded view (not to scale) which illustrates an embodiment of this invention having an integrated undulating iris and integrated undulating conductive lines;
  • FIG. 5 is an exploded view (not to scale) which illustrates another embodiment of this invention having a rectangular iris opening and stepped conductors.
  • FIG. 3 shows schematically and in side view or elevation the essential elements of this invention and their spatial arrangement.
  • a ground plane 505 with an iris 506 of any desired shape is interposed spatially between electric conductors 501 and 502 such that conductor 501 can see" conductor 502 through the opening of the iris.
  • a relatively high dielectric material 503 and 504 fills the space between conductors and common ground plane and between conductors through the iris opening.
  • the dielectric material may be ceramic such as alumina or beryllia; or it can be diamond; or even high resistivity semiconductor material such as silicon or gallium arsenide having a dielectric constant greater than 6.
  • this invention can function if the dielectric constant of the dielectric material 503 and 504 is greater than I, the performance of the coupler improves and greater directivity results with substantially higher dielectric constants, with dielectric constant in the 6 to 12 range being preferred in L through X frequency bands.
  • the electric conductors 501 and 502 can be of aluminum, copper, molybdenum, nickel, silver, gold or other good electrically conductive material such as columbium or niobium. It is not necessary that the conductors 501 and 502 be bonded to the dielectric material 503 and 504, but it is preferred. Any number of techniques well known to the art may be used for placing and bonding the conductors 501 and 502 on the dielectric substrate 503 and 504. Metal can be evaporated and deposited through a mask of desired shape onto the dielectric substrate 503 and 504; or a silk screen technique, well known in prior art, can be used.
  • the common ground plane 505 can be of any conductive material such as copper, aluminum, nickel, molybdenum, silver or gold and can similarly be bonded to either or both of the inner faces of the dielectric 503 and 504, or it may be a separate sheet of conductive material not necessarily bonded to either dielectric. Assembly consists of suitably aligning the individual components and fastening together by any suitable fastening means, not shown in FIG. 3.
  • FIG. 3 also shows the expected odd-mode and even-mode field distribution of this invention, wherein the odd-mode field is shown dotted between electric conductors 501 and 502 and the even-mode field is shown solid between electric conductors 501 and 502 and the common ground plane 505 respectively.
  • This concept of the field distribution is derived intuitively in observing a similar computer solution (Microstrip Circuit Designs," H. E. Stinehelfer, Sr., Interim Technical Report No. l, Jan. 1968, p. 23, Air Force Avionics Laboratory Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio) and from prior knowledge of stripline field distributions (Shielded Coupled- Strip Transmission Lines, S. B. Cohn, IRE Transactions- -M'I'l", Oct. 1955, p. 30).
  • the even and odd mode field distribution is substantially contained between conductors and common ground plane except for small fringe fields on outermost edge of conductors.
  • FIG. 4 shows one embodiment of an exploded view, not to scale, of this invention.
  • primary electrical conductor 1 is shown dotted on one face of dielectric 211; whereas on the other face of dielectric 211 is the common ground plane 3 in which an integrated iris 6 of an undulating contour has been etched to bound and expose the upper face of the dielectric 211 on which the common ground plane 3 rests.
  • the shape of the curve forming the bounds of the iris in this embodiment is undulating and follows a prescribed mathematical law described later, although any suitable bounds for the iris opening may be used.
  • the iris 6 in the embodiment is photoetched in the required pattern on the common ground plane 3 which in turn is integrally bonded to one face of dielectric 211, any suitable process for making the iris such as stamping may be used and the ground plane 3 need not be integrally bonded on the face of dielectric 211.
  • a secondary electrical conductor 2 on the upper face of dielectric material 111 is spaced-apart from common ground plane 3 by upper dielectric Ill, and is aligned above the iris 6 and the primary electrical conductor 1 so that their planes are parallel and primary conductor 1 sees substantially most of secondary electrical conductor 2 through the iris opening 6.
  • Input power to the primary line is introduced through a standard coaxial-to-microstrip-transformer connector 7 and output power is removed through similar coaxial connectors 17 and 27, where coaxial connector 17 connects to the secondary line 2 and coaxial connector 27 connects to the output of primary line I.
  • the secondary electrical conductive line 2 is further terminated by a resistive termination 12 and is matched to line 2. Connection of these elements to their respective lines is by any suitable conventional means such as soldering, welding, thermocompression bonding, etc.
  • subassembly 2000 of this embodiment consists essentially of primary conductor 1 integrally bonded on the lower face of dielectric material 211, common ground plane 3 with an iris 6 therein, said ground plane integrally bonded to the upper face of dielectric material 211, and coax-to-microstrip-connector-transformers 1 and 27; subassembly 3000 consists essentially of secondary conductive line 2 integrally bonded to the upper face of dielectric material 111, coax-tomicrostrip-connector-transformer l7, and matched resistive termination 12.
  • FIG. 5 is similar to FIG. 4 and schematically shows another similar embodiment excepting for the shape of primary and secondary electrical conductors 1.1 and 2.1 respectively, and the shape of the iris 6.1.
  • primary and secondary conductors I and 2 respectively and iris 6 are undulating and their shapes follow a prescribed mathematical law to be hereinafter described;
  • primary and secondary conductive lines 1.1 and 2.1 respectively and iris 6.1 may be any shape and in this embodiment are shown as rectangular, and
  • the shape of the iris opening 6 and the width of I lines 1 and 2 at any given point are critical and to the proper functioning of the embodiment shown on FIG. 4, and are determined by the required even and odd mode impedances at that point.
  • the design technique makes use of the exact design of a stepped impedance prototype.
  • the even and odd mode impedances may be exwhere Z, is the characteristic impedance of the line and K, is the voltage coupling coefficient.
  • the stepped coupler must then be described in terms of the PWM -Z- naM This is most conveniently done with the aid of a digital computer with the results being expressed as a curve of Z versus distance from the center of the coupler.
  • This plot may then be translated into two plots of iris opening and line width versus distance using the following relations:
  • a microwave overlay directional coupler comprising an elongated primary electrical conductor having input and output ends, a secondary electrical conductor being elongated and disposed in vertically spaced longitudinal alignment with said primary electrical conductor, a common ground plane having an iris opening therein, said common ground plane being disposed in spaced relationship between said primary and secondary electrical conductors so that primary conductor, iris opening, and secondary conductor are in spaced longitudinal alignment, and a dielectric material of substantially higher dielectric constant than the surrounding air, said dielectric material separating said primary electrical conductor, said common ground plane with iris opening therein, and said secondary electrical conductor, said iris opening being substantially rectangular with its minor dimension larger than the width of said conductors, each of said conductors having a rectangular portion of similar dimensions to said iris opening in substantial registration with said opening.
  • a directional coupler according to claim 1 in which the major dimension of said iris opening is a minor fraction of the length of either of said electrical conductors.

Abstract

A microwave iris directional coupler on microstrip having high directivity is disclosed. The device is primarily for use in single ground plane microstrip transmission lines of the type commonly used for microwave hybrid integrated circuits. It has an iris between two lines separated by a common ground plane, such that each line forms a separate transmission line with the common ground plane and is completely isolated from each other, beyond the open portion of the iris.

Description

United States Patent [72] Inventor Harlan Howe, Jr.
Acton, Mass. [2]] Appl. No. 831,810 [22] Filed May 9, 1969 [45] Patented Apr. 20, 1971 [73] Assignee Microwave Associates, Inc.
{54] MICROSTRIP IRIS DIRECTIONAL COUPLER 4 Claims, 5 Drawing Figs.
[52] U.S. Cl 333/10, 333/84M [51] Int. Cl 1101p 5/14 [50] Field of Search 333/10, 84 (M) [56] References Cited UNITED STATES PATENTS 3,513,414 5/1970 ,l-lowe 333/84M FOREIGN PATENTS 828,241 2/ 1960 Great Britain Primary Examiner-Herman Karl Saalbach Assistant Examiner-Saxfield Chatmon, Jr. Attorneys-Nicholas Prasinos and Rosen & Steinhilper ABSTRACT: A microwave iris directional coupler on microstrip having high directivity is disclosed. The device is primarily for use in single ground plane microstrip transmission lines of the type commonly used for microwave hybrid integrated circuits. It has an iris between two lines separated by a common ground plane, such that each line forms a separate transmission line with the common ground plane and is completely isolated from each other, beyond the open portion of the iris.
PATENTED APRZOISTI 3; 575674 sum 1 OF R 2 A lPowER FLOW T PRIOR ART v A HG E ODD-MODE FIELD EVEN -MODE FIELD PRBOR ART PEG 2 HARLAN HOWE JR, INVENTOR ATTORNEYS PATEI'HEU APR 2 01971 sum 2 BF 3 HAR AN HOWE JR, INVENTOR BY fmwm finsm & STEINHILPER ATTORNEYS PATEHTEH AFRZUUI 3575674 sum 3 OF 3 HAR AN HOWE R. INVENTOR RQSEN w STEINHI'M: ATTORNEYS L w MICROSTRIP IRIS DIRECTIONAL COUPLER BACKGROUND OF INVENTION The field of this invention is generally microwave directional couplers and in particular microstrip directional couplers. The basic elements of such a coupler comprise two conductors coupled together electrically and magnetically. Directional couplers are generally four-port devices wherein power is selectively coupled between ports. The flow of power in an ideal microstrip directional coupler when all its ports are terminated in matched loads is exemplified in FIG. 1 labeled Prior Art. When power is supplied at input port 1, power flows to ports 2 and 3 and no power appears at port 4. In practice, however, some power will appear at port 4. The ratio of the power input to the coupler at a given port to the power appearing at another port where power is not expected is called the isolation of the device. The isolation is a measure of the imperfection of the device. The directivity of the device is equal to the isolation minus the coupling and is in essence a quality factor. A perfect coupler has an infinitely large isolation and high directivity whereas a low performance coupler has low isolation and poor directivity.
It is important that the coupled fields between the conductor as well as the fields between the conductors and the ground plane be balanced electrically and that they have the same propagation velocity. These fields may be described in terms of the even and odd mode impedances of the lines:
where Z is the even mode impedance K is the complete elliptic integral of the first kind 5 is the dielectric constant w is the line width s is the separation, and
b is the ground plane spacing. Similarly Z 09 ohms I 00 3011' K(k o) where Z,,,, is the odd mode impedance -cot h k =tan h( line distribution Z,,=\ Z,, -Z,,,,
where Z, is the characteristic impedance.
Also oe Z 1 Kv where K, is the voltage coupling coefficient.
Prior art couplers having the above characteristics have been fabricated in conventional stripline for many years. The
simplest prior art coupler consists of a single quarter wave section of coupled conductors sharing one side of a common ground plane, where power input and output is effected by connectors made between the ends of the coupled conductors and the external terminals. This class of couplers has about one octave of bandwidth and suffers from limited directivity.
. To improve bandwidth and to some extent, directivity, Cristal and Young (Cristal & Young, Theory and Tables of Optimum Symmetrical TEM-Mode Coupled-Transmission Line Directional Couplers, MTT-l3, No. 5, Sept; 1965, p. 544) added quarter wavelength sections in symmetrical discrete steps in such a manner that separation between conductors increased with each quarter wavelength of conductor addition. However, interstage discontinuities limited directivity and in an effort to overcome this deficiency, C. P. Tresselt (Tresselt, The Design and Construction of Broadband High Directivity, Couplers Using Nonuniform Line Techniques, MTT-l4, 012, Dec. 1966, p. 647) modified this type coupler by using a continuously tapered coupling coefficient which resulted in multielement undulating branches. These type couplers were all of the side coupled variety sharing one side of a common ground plane. Further improvements were made by Shelton (Shelton, lmpedances of Offset Parallel Coupled Strip Transmission Lines," MIT-l4, No. 1, Jan. 1966, p. 7) with a partial overlay coupler sharing common ground planes, and S. Yamamoto et al. (Yamamoto, Osakami, & ltakura, Slit Coupled Strip Transmission Lines, MTT-14, No. 11, Nov. 1966, p. 542) who introduced the quarter wave rectangular slit coupled overlay coupled such that input and output lines had separate ground planes. Although directivity improved somewhat with this type coupler, the bandwidth was limited to one octave, and also because the abrupt slot created internal discontinuities, it limited the directivity of the device. Hence, it is known how to couple through a slit on double ground plane stripline. (Stripline is defined as a conductive pattern supported on a dielectric between ground planes.)
All of these techniques are limited, however, when an attempt is made to apply them to single ground plane microstrip because of the unequal dielectric constant between the upper and lower sides of the line which is inherent to microstrip construction. (Microstrip is defined as a conductive pattern supported on a dielectric sheet which has a ground plane on its opposite face). FIG. 2 illustrates the field distribution for conventionally coupled microstrip lines. The even mode field dis tribution is substantially contained within the dielectric medium 403 between conductors 401 and 402 and the ground plane 404 and is shown in solid lines. The odd-mode field distribution, however, is divided between air and the dielectric 403 between conductors 401 and 402, shown in dotted lines, thereby establishing a second propagation velocity through the air. This difference creates a phase unbalance which limits the directivity of the coupler. (Further discussion on Shielded Coupled-Strip Transmission Lines" is found in an article by S. B. Cohn having the above title and published in Oct. 1955, [RE TransactionsMicrowave Theory and Techniques.)
This invention provides a means of coupling microstrip lines wherein both even and odd mode fields are substantially contained within the dielectric thereby eliminating the phase unbalance common to other types and permitting greater directivity.
SUMMARY OF THE INVENTION This invention relates to microstrip directional couplers of improved directivity.
An iris of suitable shape on a common ground plane is interposed between two conductive lines such that the lines are in spaced relationship on opposite faces of the common ground plane and having substantially a higher dielectric between conductors and the faces of the common ground plane.
As an example, a device according to this invention will preferably be fabricated on ceramic such as A1 0 see FIG. 3.
The common ground plane 505 having an iris therein is interposed between ceramic substrates 503 and 504 having conductive lines 501 and 502 on their opposite faces respectively. Both the even and odd mode fields are substantially contained within the dielectric; therefore the phase velocity is substantially the same.
A major feature of this invention is that it provides improved directivity.
Another feature of this invention is that the number of parts are substantially reduced, facilitating fabrication techniques.
DESCRIPTION OF THE INVENTION Exemplary embodiments of the invention and methods to make them are described with reference to the accompanying drawings, in which:
FIG. 1 illustrates schematically the essential elements of prior art devices;
FIG. 2 is a schematic side view of conventionally coupled lines on microstrip showing odd and even mode field distribu tion;
FIG. 3 is a schematic side view representation of the present invention showing even and odd mode field distribution;
FIG. 4 is an exploded view (not to scale) which illustrates an embodiment of this invention having an integrated undulating iris and integrated undulating conductive lines;
FIG. 5 is an exploded view (not to scale) which illustrates another embodiment of this invention having a rectangular iris opening and stepped conductors.
FIG. 3 shows schematically and in side view or elevation the essential elements of this invention and their spatial arrangement. A ground plane 505 with an iris 506 of any desired shape is interposed spatially between electric conductors 501 and 502 such that conductor 501 can see" conductor 502 through the opening of the iris. A relatively high dielectric material 503 and 504 fills the space between conductors and common ground plane and between conductors through the iris opening. The dielectric material may be ceramic such as alumina or beryllia; or it can be diamond; or even high resistivity semiconductor material such as silicon or gallium arsenide having a dielectric constant greater than 6. Although this invention can function if the dielectric constant of the dielectric material 503 and 504 is greater than I, the performance of the coupler improves and greater directivity results with substantially higher dielectric constants, with dielectric constant in the 6 to 12 range being preferred in L through X frequency bands.
The electric conductors 501 and 502 can be of aluminum, copper, molybdenum, nickel, silver, gold or other good electrically conductive material such as columbium or niobium. It is not necessary that the conductors 501 and 502 be bonded to the dielectric material 503 and 504, but it is preferred. Any number of techniques well known to the art may be used for placing and bonding the conductors 501 and 502 on the dielectric substrate 503 and 504. Metal can be evaporated and deposited through a mask of desired shape onto the dielectric substrate 503 and 504; or a silk screen technique, well known in prior art, can be used. Subsequent steps of sintering, plating, and sintering well known in the art will produce a conductor integrally bonded to the ceramic dielectric. The common ground plane 505 can be of any conductive material such as copper, aluminum, nickel, molybdenum, silver or gold and can similarly be bonded to either or both of the inner faces of the dielectric 503 and 504, or it may be a separate sheet of conductive material not necessarily bonded to either dielectric. Assembly consists of suitably aligning the individual components and fastening together by any suitable fastening means, not shown in FIG. 3.
FIG. 3 also shows the expected odd-mode and even-mode field distribution of this invention, wherein the odd-mode field is shown dotted between electric conductors 501 and 502 and the even-mode field is shown solid between electric conductors 501 and 502 and the common ground plane 505 respectively. This concept of the field distribution is derived intuitively in observing a similar computer solution (Microstrip Circuit Designs," H. E. Stinehelfer, Sr., Interim Technical Report No. l, Jan. 1968, p. 23, Air Force Avionics Laboratory Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio) and from prior knowledge of stripline field distributions (Shielded Coupled- Strip Transmission Lines, S. B. Cohn, IRE Transactions- -M'I'l", Oct. 1955, p. 30). Note that the even and odd mode field distribution is substantially contained between conductors and common ground plane except for small fringe fields on outermost edge of conductors.
FIG. 4 shows one embodiment of an exploded view, not to scale, of this invention. Referring to FIG. 4, primary electrical conductor 1 is shown dotted on one face of dielectric 211; whereas on the other face of dielectric 211 is the common ground plane 3 in which an integrated iris 6 of an undulating contour has been etched to bound and expose the upper face of the dielectric 211 on which the common ground plane 3 rests. The shape of the curve forming the bounds of the iris in this embodiment is undulating and follows a prescribed mathematical law described later, although any suitable bounds for the iris opening may be used. Although the iris 6 in the embodiment is photoetched in the required pattern on the common ground plane 3 which in turn is integrally bonded to one face of dielectric 211, any suitable process for making the iris such as stamping may be used and the ground plane 3 need not be integrally bonded on the face of dielectric 211. A secondary electrical conductor 2 on the upper face of dielectric material 111 is spaced-apart from common ground plane 3 by upper dielectric Ill, and is aligned above the iris 6 and the primary electrical conductor 1 so that their planes are parallel and primary conductor 1 sees substantially most of secondary electrical conductor 2 through the iris opening 6.
(By the word sees, as used in this context, it is meant that straight lines drawn to connect the primary electrical conductor to the secondary electrical conductor and passing through the iris opening are mutually perpendicular to the planes containing the electrical conductors).
Input power to the primary line is introduced through a standard coaxial-to-microstrip-transformer connector 7 and output power is removed through similar coaxial connectors 17 and 27, where coaxial connector 17 connects to the secondary line 2 and coaxial connector 27 connects to the output of primary line I.
The secondary electrical conductive line 2 is further terminated by a resistive termination 12 and is matched to line 2. Connection of these elements to their respective lines is by any suitable conventional means such as soldering, welding, thermocompression bonding, etc.
In FIG. 4, the assembly is shown in exploded form. However, in actual assembly the subassemblies 2000 and 3000 are bolted together using bolts 8 and nut 10 withwasher 9 in between although other desirable fastening means may be used. Note that subassembly 2000 of this embodiment consists essentially of primary conductor 1 integrally bonded on the lower face of dielectric material 211, common ground plane 3 with an iris 6 therein, said ground plane integrally bonded to the upper face of dielectric material 211, and coax-to-microstrip-connector-transformers 1 and 27; subassembly 3000 consists essentially of secondary conductive line 2 integrally bonded to the upper face of dielectric material 111, coax-tomicrostrip-connector-transformer l7, and matched resistive termination 12.
FIG. 5 is similar to FIG. 4 and schematically shows another similar embodiment excepting for the shape of primary and secondary electrical conductors 1.1 and 2.1 respectively, and the shape of the iris 6.1. Whereas in FIG. 4 primary and secondary conductors I and 2 respectively and iris 6 are undulating and their shapes follow a prescribed mathematical law to be hereinafter described; in FIG. 5 primary and secondary conductive lines 1.1 and 2.1 respectively and iris 6.1 may be any shape and in this embodiment are shown as rectangular, and
In FIG. 4, the shape of the iris opening 6 and the width of I lines 1 and 2 at any given point are critical and to the proper functioning of the embodiment shown on FIG. 4, and are determined by the required even and odd mode impedances at that point. The design technique makes use of the exact design of a stepped impedance prototype. For each section of the prototype, the even and odd mode impedances may be exwhere Z, is the characteristic impedance of the line and K, is the voltage coupling coefficient. The stepped coupler must then be described in terms of the PWM -Z- naM This is most conveniently done with the aid of a digital computer with the results being expressed as a curve of Z versus distance from the center of the coupler. This plot may then be translated into two plots of iris opening and line width versus distance using the following relations:
where B ground plane spacing W line width S iris width 0 Jacobian theta function II Jacobian eta function S,,, C,,, d, are Jacobian elliptic functions.
K complete elliptic integral of the first kind with k as the modules. I The final dimensional plots are then used as artwork for the fabrication rocess ofthe iris.
e em drments of the invention which have been described herein are an illustration of the best modes known to practice this invention. Other alternative configurations may be made within the scope of this invention by those skilled in the art. No attempt has been made to illustrate all possible embodiments of the invention, but rather to illustrate its principles and best manner to practice it. Therefore, while only three embodiments have been described as illustrative of the invention, such other forms as would occur to one skilled in this art on a reading of the foregoing specification are also within the spirit and scope of this invention.
I claim:
I. A microwave overlay directional coupler comprising an elongated primary electrical conductor having input and output ends, a secondary electrical conductor being elongated and disposed in vertically spaced longitudinal alignment with said primary electrical conductor, a common ground plane having an iris opening therein, said common ground plane being disposed in spaced relationship between said primary and secondary electrical conductors so that primary conductor, iris opening, and secondary conductor are in spaced longitudinal alignment, and a dielectric material of substantially higher dielectric constant than the surrounding air, said dielectric material separating said primary electrical conductor, said common ground plane with iris opening therein, and said secondary electrical conductor, said iris opening being substantially rectangular with its minor dimension larger than the width of said conductors, each of said conductors having a rectangular portion of similar dimensions to said iris opening in substantial registration with said opening.
2. A microwave overlay directional coupler as recited in claim 1 wherein the dielectric material has a dielectric constant higher than 6.
3. A microwave overlay directional coupler as recited in claim 1 wherein the material of the primary and secondary electrical conductors, and the common ground plane are selected from the group consisting of aluminum, copper,
' molybdenum, nickel, gold, silver, columbium and niobium.
4. A directional coupler according to claim 1 in which the major dimension of said iris opening is a minor fraction of the length of either of said electrical conductors.

Claims (4)

1. A microwave overlay directional coupler comprising an elongated primary electrical conductor having input and output ends, a secondary electrical conductor being elongated and disposed in vertically spaced longitudinal alignment with said primary electrical conductor, a common ground plane having an iris opening therein, said common ground plane being disposed in spaced relationship between said primary and secondary electrical conductors so that primary conductor, iris opening, and secondary conductor are in spaced longitudinal alignment, and a dielectric material of substantially higher dielectric constant than the surrounding air, said dielectric material separating said primary electrical conductor, said common ground plane with iris opening therein, and said secondary electrical conductor, said iris opening being substantially rectangular with its minor dImension larger than the width of said conductors, each of said conductors having a rectangular portion of similar dimensions to said iris opening in substantial registration with said opening.
2. A microwave overlay directional coupler as recited in claim 1 wherein the dielectric material has a dielectric constant higher than 6.
3. A microwave overlay directional coupler as recited in claim 1 wherein the material of the primary and secondary electrical conductors, and the common ground plane are selected from the group consisting of aluminum, copper, molybdenum, nickel, gold, silver, columbium and niobium.
4. A directional coupler according to claim 1 in which the major dimension of said iris opening is a minor fraction of the length of either of said electrical conductors.
US831810A 1969-05-09 1969-05-09 Microstrip iris directional coupler Expired - Lifetime US3575674A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83181069A 1969-05-09 1969-05-09

Publications (1)

Publication Number Publication Date
US3575674A true US3575674A (en) 1971-04-20

Family

ID=25259917

Family Applications (1)

Application Number Title Priority Date Filing Date
US831810A Expired - Lifetime US3575674A (en) 1969-05-09 1969-05-09 Microstrip iris directional coupler

Country Status (1)

Country Link
US (1) US3575674A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659228A (en) * 1970-07-30 1972-04-25 Rca Corp Strip-type directional coupler having elongated aperture in ground plane opposite coupling region
US4080579A (en) * 1972-03-07 1978-03-21 Raytheon Company Stripline four port hybrid junction
US4737740A (en) * 1983-05-26 1988-04-12 The United States Of America As Represented By The Secretary Of The Navy Discontinuous-taper directional coupler
US4739289A (en) * 1986-11-24 1988-04-19 Celeritek Inc. Microstrip balun having improved bandwidth
JPS63300606A (en) * 1987-05-29 1988-12-07 A T R Koudenpa Tsushin Kenkyusho:Kk Directional coupler
JPS6447106A (en) * 1987-08-17 1989-02-21 Atr Kodenpa Tsushin Kenkyusho Microwave circuit device
EP0319584A1 (en) * 1987-05-29 1989-06-14 Atr Optical And Radio Communications Research Laboratories Directional coupler
EP0354524A1 (en) * 1988-08-12 1990-02-14 Hughes Aircraft Company Plural plane waveguide coupler
US5008639A (en) * 1989-09-27 1991-04-16 Pavio Anthony M Coupler circuit
US5012047A (en) * 1987-04-06 1991-04-30 Nec Corporation Multilayer wiring substrate
AT393048B (en) * 1987-04-17 1991-07-25 Siemens Ag Oesterreich ALIGNMENT COUPLER IN MICROSTRIP TECHNOLOGY
US5471221A (en) * 1994-06-27 1995-11-28 The United States Of America As Represented By The Secretary Of The Army Dual-frequency microstrip antenna with inserted strips
US5561378A (en) * 1994-07-05 1996-10-01 Motorola, Inc. Circuit probe for measuring a differential circuit
JP2557888B2 (en) 1987-05-29 1996-11-27 株式会社 エイ・ティ・ア−ル光電波通信研究所 Multi-terminal directional coupler
US5634208A (en) * 1995-03-28 1997-05-27 Nippon Telegraph And Telephone Corporation Multilayer transmission line using ground metal with slit, and hybrid using the transmission line
US5907266A (en) * 1996-11-26 1999-05-25 Raytheon Company Alignment tolerant overlay directional coupler
US20050168301A1 (en) * 2003-07-18 2005-08-04 Carson James C. Double-sided, edge-mounted stripline signal processing modules and modular network
US20090056984A1 (en) * 2007-09-05 2009-03-05 Tatung Company Signal transmission structure and layout method for the same
EP2045869A1 (en) * 2007-10-02 2009-04-08 Rohde & Schwarz GmbH & Co. KG Directional coupler
DE102009048148A1 (en) * 2009-06-04 2010-12-09 Rohde & Schwarz Gmbh & Co. Kg Feed forward coupler with strip conductors
US20140320238A1 (en) * 2013-04-29 2014-10-30 Rohde & Schwarz Gmbh & Co. Kg Coupled line system with controllable transmission behaviour
US20150207199A1 (en) * 2012-09-14 2015-07-23 Kabushiki Kaisha Toshiba Combiner
US20170237140A1 (en) * 2016-02-17 2017-08-17 Eagantu Ltd. Wide band directional coupler
US20180151937A1 (en) * 2016-11-29 2018-05-31 Kabushiki Kaisha Toshiba Method of manufacturing directional coupler
US10198045B1 (en) 2016-07-22 2019-02-05 Google Llc Generating fringing field for wireless communication
US10396421B2 (en) * 2017-02-10 2019-08-27 Yifei Zhang Slot coupled directional coupler and directional filters in multilayer substrate
US10651528B2 (en) * 2017-11-27 2020-05-12 Maury Microwave, Inc. Broadband directional couplers for TEM and quasi-TEM mode guides and lines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB828241A (en) * 1957-02-22 1960-02-17 Standard Telephones Cables Ltd Microwave directional coupler
US3513414A (en) * 1968-12-23 1970-05-19 Microwave Ass Integrated iris coupler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB828241A (en) * 1957-02-22 1960-02-17 Standard Telephones Cables Ltd Microwave directional coupler
US3513414A (en) * 1968-12-23 1970-05-19 Microwave Ass Integrated iris coupler

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659228A (en) * 1970-07-30 1972-04-25 Rca Corp Strip-type directional coupler having elongated aperture in ground plane opposite coupling region
US4080579A (en) * 1972-03-07 1978-03-21 Raytheon Company Stripline four port hybrid junction
US4737740A (en) * 1983-05-26 1988-04-12 The United States Of America As Represented By The Secretary Of The Navy Discontinuous-taper directional coupler
US4739289A (en) * 1986-11-24 1988-04-19 Celeritek Inc. Microstrip balun having improved bandwidth
US5012047A (en) * 1987-04-06 1991-04-30 Nec Corporation Multilayer wiring substrate
AT393048B (en) * 1987-04-17 1991-07-25 Siemens Ag Oesterreich ALIGNMENT COUPLER IN MICROSTRIP TECHNOLOGY
JP2557888B2 (en) 1987-05-29 1996-11-27 株式会社 エイ・ティ・ア−ル光電波通信研究所 Multi-terminal directional coupler
US4906954A (en) * 1987-05-29 1990-03-06 Atr Optical And Radio Communications Research Laboratories Directional coupler device
EP0319584A4 (en) * 1987-05-29 1990-05-14 Atr Optical And Radio Comm Res Directional coupler.
EP0319584A1 (en) * 1987-05-29 1989-06-14 Atr Optical And Radio Communications Research Laboratories Directional coupler
JPS63300606A (en) * 1987-05-29 1988-12-07 A T R Koudenpa Tsushin Kenkyusho:Kk Directional coupler
JPS6447106A (en) * 1987-08-17 1989-02-21 Atr Kodenpa Tsushin Kenkyusho Microwave circuit device
EP0354524A1 (en) * 1988-08-12 1990-02-14 Hughes Aircraft Company Plural plane waveguide coupler
JPH07120888B2 (en) 1988-08-12 1995-12-20 ヒューズ・エアクラフト・カンパニー Multi-plane waveguide coupler
US5008639A (en) * 1989-09-27 1991-04-16 Pavio Anthony M Coupler circuit
US5471221A (en) * 1994-06-27 1995-11-28 The United States Of America As Represented By The Secretary Of The Army Dual-frequency microstrip antenna with inserted strips
US5561378A (en) * 1994-07-05 1996-10-01 Motorola, Inc. Circuit probe for measuring a differential circuit
US5634208A (en) * 1995-03-28 1997-05-27 Nippon Telegraph And Telephone Corporation Multilayer transmission line using ground metal with slit, and hybrid using the transmission line
US5907266A (en) * 1996-11-26 1999-05-25 Raytheon Company Alignment tolerant overlay directional coupler
US20050168301A1 (en) * 2003-07-18 2005-08-04 Carson James C. Double-sided, edge-mounted stripline signal processing modules and modular network
US20090056984A1 (en) * 2007-09-05 2009-03-05 Tatung Company Signal transmission structure and layout method for the same
EP2045869A1 (en) * 2007-10-02 2009-04-08 Rohde & Schwarz GmbH & Co. KG Directional coupler
DE102009048148A1 (en) * 2009-06-04 2010-12-09 Rohde & Schwarz Gmbh & Co. Kg Feed forward coupler with strip conductors
US9559402B2 (en) * 2012-09-14 2017-01-31 Kabushiki Kaisha Toshiba Combiner including land pattern formed on printed board
US20150207199A1 (en) * 2012-09-14 2015-07-23 Kabushiki Kaisha Toshiba Combiner
US20140320238A1 (en) * 2013-04-29 2014-10-30 Rohde & Schwarz Gmbh & Co. Kg Coupled line system with controllable transmission behaviour
US9484611B2 (en) * 2013-04-29 2016-11-01 Rohde & Schwarz Gmbh & Co. Kg Coupled line system with controllable transmission behaviour
US20170237140A1 (en) * 2016-02-17 2017-08-17 Eagantu Ltd. Wide band directional coupler
US10340577B2 (en) * 2016-02-17 2019-07-02 Eagantu Ltd. Wide band directional coupler
US10198045B1 (en) 2016-07-22 2019-02-05 Google Llc Generating fringing field for wireless communication
US20180151937A1 (en) * 2016-11-29 2018-05-31 Kabushiki Kaisha Toshiba Method of manufacturing directional coupler
US10547095B2 (en) * 2016-11-29 2020-01-28 Kabushiki Kaisha Toshiba Method of manufacturing directional coupler
US10396421B2 (en) * 2017-02-10 2019-08-27 Yifei Zhang Slot coupled directional coupler and directional filters in multilayer substrate
US10651528B2 (en) * 2017-11-27 2020-05-12 Maury Microwave, Inc. Broadband directional couplers for TEM and quasi-TEM mode guides and lines

Similar Documents

Publication Publication Date Title
US3575674A (en) Microstrip iris directional coupler
Cohn et al. History of microwave passive components with particular attention to directional couplers
US3652941A (en) Double balanced microwave mixer using balanced microstrip baluns
US3771075A (en) Microstrip to microstrip transition
Tsai et al. A generalized model for coupled lines and its applications to two-layer planar circuits
US8471646B2 (en) Wideband, differential signal balun for rejecting common mode electromagnetic fields
US4383227A (en) Suspended microstrip circuit for the propagation of an odd-wave mode
US5600286A (en) End-on transmission line-to-waveguide transition
US3784933A (en) Broadband balun
US4371845A (en) Modular microwave power divider-amplifier-combiner
US4163955A (en) Cylindrical mode power divider/combiner with isolation
US3737810A (en) Wideband tem components
JP3691710B2 (en) Broadband balanced and unbalanced transformer for wireless and RF applications
US5192927A (en) Microstrip spur-line broad-band band-stop filter
US3965445A (en) Microstrip or stripline coupled-transmission-line impedance transformer
US3506932A (en) Quadrature hybrid coupler
US5097233A (en) Coplanar 3dB quadrature coupler
US3946339A (en) Slot line/microstrip hybrid
US4578652A (en) Broadband four-port TEM mode 180° printed circuit microwave hybrid
US3142808A (en) Transmission line filter having coupling extending quarter wave length between strip line resonators
US5075647A (en) Planar slot coupled microwave hybrid
GB2129624A (en) A coupling circuit
US3626332A (en) Quadrature hybrid coupler network comprising three identical tandem fifteen cascaded section couplers
US4419635A (en) Slotline reverse-phased hybrid ring coupler
US4023123A (en) Microstrip reverse-phased hybrid ring coupler