US3586637A - Europium activated barium and strontium borophosphate luminescent material - Google Patents
Europium activated barium and strontium borophosphate luminescent material Download PDFInfo
- Publication number
- US3586637A US3586637A US834285A US3586637DA US3586637A US 3586637 A US3586637 A US 3586637A US 834285 A US834285 A US 834285A US 3586637D A US3586637D A US 3586637DA US 3586637 A US3586637 A US 3586637A
- Authority
- US
- United States
- Prior art keywords
- radiation
- luminescent material
- strontium
- luminescent
- barium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title abstract description 23
- 229910052693 Europium Inorganic materials 0.000 title abstract description 13
- -1 Europium activated barium Chemical class 0.000 title abstract description 6
- 229910052712 strontium Inorganic materials 0.000 title description 10
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 title description 8
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 abstract description 13
- SJXLHFMLQXOLPF-UHFFFAOYSA-M barium metaborate metaphosphate Chemical compound [Ba+2].[O-]B=O.[O-]P(=O)=O SJXLHFMLQXOLPF-UHFFFAOYSA-M 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 description 33
- 239000000126 substance Substances 0.000 description 21
- 229910052753 mercury Inorganic materials 0.000 description 10
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 9
- 239000011575 calcium Substances 0.000 description 9
- 229910052791 calcium Inorganic materials 0.000 description 9
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 9
- 229910052788 barium Inorganic materials 0.000 description 8
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical class [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000295 emission spectrum Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- HDWJJMTZKNOVOM-UHFFFAOYSA-L P(=O)([O-])([O-])O.B(O)(O)O.[Sr+2] Chemical compound P(=O)([O-])([O-])O.B(O)(O)O.[Sr+2] HDWJJMTZKNOVOM-UHFFFAOYSA-L 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- LELSMFYQGDHCHH-UHFFFAOYSA-L barium(2+);boric acid;hydrogen phosphate Chemical compound [Ba+2].OB(O)O.OP([O-])([O-])=O LELSMFYQGDHCHH-UHFFFAOYSA-L 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 102000006830 Luminescent Proteins Human genes 0.000 description 1
- 108010047357 Luminescent Proteins Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- ZTDUXQYGFKBQBH-UHFFFAOYSA-L calcium boric acid hydrogen phosphate Chemical compound P(=O)([O-])([O-])O.B(O)(O)O.[Ca+2] ZTDUXQYGFKBQBH-UHFFFAOYSA-L 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7737—Phosphates
- C09K11/7738—Phosphates with alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/774—Borates
Definitions
- the invention relates to a novel luminescent material and to a low-pressure mercury vapor lamp employing such a material.
- a document is copied by irradiating the master and directing the radiation which has been reflected or transmitted to a piece of paper which is sensitive to this radiation and contains substances which can be decomposed by the radiation so that a copy of the master document is obtained possibly after further treatment, for example, fixing.
- a requirement generally imposed on the reproduction papers to be used is that the substances which are sensitive to radiation are converted as little as possible by normal daylight. This of course facilitates working with these papers and also imposes few requirements on the storage thereof. Since normal daylight contains comparatively little ultraviolet radiation, the best combination is apparently a paper which has a maximum sensitivity below 400 nm. and a radiation source which emits a strong ultraviolet radiation.
- the master to be copied must transmit or reflect the radiation. It has been found that many documents are made from paper which transmits and/or reflects ultraviolet radiation comparatively poorly. In view of the contradictory requirements for documentcopying machines, a compromise must therefore be made: it is therefore preferred to use light-sensitive papers the maximum sensitivity of which lies between 380 and 440 nm. and a radiation source having a maximum of the emitted radiation between these two values.
- Document-copying machines generally use as radiation sources mercury vapour discharge lamps including a luminescent layer provided on a support, which layer converts a great part of the ultraviolet radiation produced in the mercury vapour discharge into radiation of longer wavelength.
- the maximum emitted radiation energy must preferably be in the wavelength range between 380 and 440 nm. This is, for example, the case with the very frequently used substance, calcium tungstate.
- the conversion efficiency of the ultraviolet radiation of the mercury vapour discharge into radiation between 380 and 440 nm. is however, comparatively small for this substance, because the emission spectrum is very wide and hence much radiation energy is emitted at wavelength outside this range.
- the absorption spectrum of most light-sensitive papers is considerably narrower than this range. As a result of these two Patented June 22, 1971 ice causes only a comparatively small part of the total radiation energy emitted by the calcium tungstate is efficiently used by the sensitive paper.
- a further luminescent substance which is very frequently used, is a lead-activated silicate of strontium, barium and magnesium.
- the emission spectrum of this substance is not very wide when excited by the ultraviolet radiation of a mercury vapour discharge and hence is more suitable for adaptation to the absorption spectrum of a radiation-sensitive paper; the maximum emission of this substance lies, however, at 355 nm. and is therefore less suitable to be transmitted or reflected by the paper of most documents. In spite of this fact, the substance is very frequently used on account of the narrow emission band and the strong radiation.
- a low-pressure mercury vapour discharge lamp includes a luminescent material provided on a support and is characterized in that this luminescent material is an alkaline earth borate-phosphate activated by bivalent europium and having the following composition.
- the substances according to the invention have a good temperature dependence, that is to say, their conversion efficiency decreases only slightly as the temperature increases. They are thus very suitable for use in high-power, low-pressure mercury vapour discharge lamps, whose wall temperature assumes a high value during operation.
- a luminescent material according to the invention consists of a bivalent europium-activated borate-phosphate of barium and/or strontium, wherein the barium and/or strontium may be partly replaced by calcium.
- the fundamental lattices of the borate-phosphates of the alkaline earth metals barium, strontium and calcium are isomorphous.
- the pure barium borate-phosphate activated by bivalent europium is preferred because this substance has the highest light output. This substance has its maximum emission at a wavelength of approximately 385 nm.
- the pure strontium borate-phosphate activated by bivalent europium has its maximum emission at a wavelength of approximately 390 nm.
- the barium-strontium borate-phosphates according to the invention have their maximum emission at wavelength between the above-mentioned values and a light output which is approximately equal to that of the pure strontium borate-phosphate.
- FIG. 1 shows a low-pressure mercury vapour discharge lamp which includes an envelope 1. Electrodes 2 and 3 between which the discharge takes place during opera-' 5 limits because otherwise luminescent substances are obtion of the lamp, are provided at the ends of the lamp. tained which are not usable for practice.
- the envelope 1 by bringing a suspension of the luminescent
- the material and nitrocellulose in butyl acetate into contact materials according to the present invention it is to be with the inner side of the envelope, whereby a thin layer noted that the substances are only slightly affected by oxiof the suspension is left on the envelope.
- the nitrocelludation. This is of great importance in the manufacture lose serves as a temporary adhesive.
- the envelope of the mercury vapour discharge lamps because they are is subjected to a thermal treatment by which the temthen often exposed for a short period to a heat treatment porary adhesive is removed and a satisfactory adhesion in air at a fairly high temperature, for example, 600 C. of the luminescent layer is obtained.
- curve b shows the spectral energy disbe described with reference to one table, one example tribution of the known calcium tungstate. These curves and one drawing. are shown for comparison both for the spectral distribu- TABLE Location Composition firing mixture in grams max. Rel. emission light Formula BaCO 81-00 CaCO E1120; H3130; (NHOQHPO; (nm.) output Example:
- a mixture was made of the substances indicated in the table in the quantities indicated for each example in the table. Since the boric acid partly evaporates during the reaction, an excess of H BO of approximately 20% relative to the stoichiometric quantity is always used.
- the mixture was heated at a temperature between 400 and 600 C. for approximately 4 hours. After cooling of the firing product obtained, it was ground and again heated at a temperature between 800 and 900 C. for 4 hours. In both cases the heat treatment took place in a mixture of nitrogen and hydrogen. The ratio of nitrogen to hydrogen is then not critical, 2. ratio of, for example, 20:1 was found to be quite useable.
- the hydrogen serves for reducing the trivalent europium to bivalent europium. After cooling subsequent to the second heat treatment the reaction product obtained was ground and sieved, if necessary. The product was then ready for use.
- the last two columns of the table state the wavelengths of the maximum of the emission band (in nm.) and the relative light-outputs in arbitrary units for the different substances.
- FIG. 1 diagrammatically shows a low-pressure mercury vapour discharge lamp according to the invention
- FIG. 2 is a graphic representation of the radiation intensities of a few substances according to the invention, and of two 'known substances as a function of the wavelength;
- FIG. 3 is a graphic representation of the variation of The maximum intensity of the curve a is fixed at 100.
- the curves 2., 6, 12 and 13 relate to the materials of Examples 2, 6, 12 and 13 of the table.
- the luminescent materials according to the invention have higher peak values and a narrower emission range as compared with the known silicate and the known tungstate, while they have a more favourable location of the maximum emission in the spectrum as compared with the known silicate.
- the curve 2 in the graph of FIG. 3 shows the temperature dependence of the radiation intensity of the material of Example 2.
- the temperature is plotted in C. on the abscissa.
- the maximum intensity is fixed at 100.
- the figure shows that the borate-phosphates according to the invention have a very good temperature dependence.
- the barium borate-phosphate still shows an intensity of the luminescent radiation at approximately 300 C. which is equal to half the maximum value. It may be noted for comparison that already at 75 C. the intensity of the known calcium tungstate has decreased to half the value at room temperature.
- the luminescent substances according to the invention may also be excited by electrons. In that case they have the same emission as when excited by ultraviolet radiation.
- a luminescent material consisting essentially of an alkaline earth bore-phosphate activated by bivalent europium and having the formula (Ba, Sr) Ca Eu BPO wherein 1 1 i 2 05x0.5, and 00033115015 6 2.
- the luminescent material of claim 1 wherein 5 0.005SP0.05 ROBERT D. EDMONDS, Primary Examiner 4.
- the luminescent material of claim 2 wherein 0.005SPS0.05
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Luminescent Compositions (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL6808846A NL6808846A (enrdf_load_stackoverflow) | 1968-06-22 | 1968-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3586637A true US3586637A (en) | 1971-06-22 |
Family
ID=19803969
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US834285A Expired - Lifetime US3586637A (en) | 1968-06-22 | 1969-06-18 | Europium activated barium and strontium borophosphate luminescent material |
US00115787A Expired - Lifetime US3748516A (en) | 1968-06-22 | 1971-02-16 | Low-pressure mercury vapour discharge lamp |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00115787A Expired - Lifetime US3748516A (en) | 1968-06-22 | 1971-02-16 | Low-pressure mercury vapour discharge lamp |
Country Status (9)
Country | Link |
---|---|
US (2) | US3586637A (enrdf_load_stackoverflow) |
JP (1) | JPS495426B1 (enrdf_load_stackoverflow) |
AT (1) | AT286450B (enrdf_load_stackoverflow) |
BE (1) | BE734960A (enrdf_load_stackoverflow) |
DE (1) | DE1927455B2 (enrdf_load_stackoverflow) |
FR (1) | FR2011479A1 (enrdf_load_stackoverflow) |
GB (1) | GB1197279A (enrdf_load_stackoverflow) |
NL (1) | NL6808846A (enrdf_load_stackoverflow) |
SE (1) | SE340666B (enrdf_load_stackoverflow) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3884249A (en) * | 1972-10-20 | 1975-05-20 | Gte Sylvania Inc | Process for cleaning halophosphate furnaces |
US3905912A (en) * | 1974-09-25 | 1975-09-16 | Gte Sylvania Inc | Rare earth activated hafnium phosphate luminescent materials |
US4174294A (en) * | 1977-12-20 | 1979-11-13 | Mitsubishi Denki Kabushiki Kaisha | Fluorescent material |
US4185222A (en) * | 1978-01-13 | 1980-01-22 | U.S. Philips Corporation | Luminescent bivalent europium-activated barium borophosphate and discharge lamp containing the same |
CN103237867A (zh) * | 2010-10-26 | 2013-08-07 | 发光物质工厂布赖通根有限责任公司 | 硼磷酸盐磷光体和光源 |
CN110229668A (zh) * | 2019-06-24 | 2019-09-13 | 云南大学 | 一种铕掺杂的橙红色荧光材料及其制备方法与应用 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3973691A (en) * | 1974-10-21 | 1976-08-10 | Gte Sylvania Incorporated | Fluorescent lamp having improved phosphor coating |
JPS5919412B2 (ja) * | 1978-01-30 | 1984-05-07 | 三菱電機株式会社 | けい光ランプ |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3205394A (en) * | 1960-04-06 | 1965-09-07 | Sylvania Electric Prod | Fluorescent lamp having a sio2 coating on the inner surface of the envelope |
US3522191A (en) * | 1966-12-21 | 1970-07-28 | Owens Illinois Inc | Luminophors and method |
US3516940A (en) * | 1967-12-15 | 1970-06-23 | Sylvania Electric Prod | Europium activated bao.mgo.p2o5 phosphors |
-
1968
- 1968-06-22 NL NL6808846A patent/NL6808846A/xx unknown
-
1969
- 1969-05-29 DE DE19691927455 patent/DE1927455B2/de active Granted
- 1969-06-18 US US834285A patent/US3586637A/en not_active Expired - Lifetime
- 1969-06-18 SE SE08711/69A patent/SE340666B/xx unknown
- 1969-06-19 GB GB31023/69A patent/GB1197279A/en not_active Expired
- 1969-06-19 JP JP44047975A patent/JPS495426B1/ja active Pending
- 1969-06-19 AT AT581069A patent/AT286450B/de not_active IP Right Cessation
- 1969-06-20 FR FR6920813A patent/FR2011479A1/fr not_active Withdrawn
- 1969-06-20 BE BE734960D patent/BE734960A/xx unknown
-
1971
- 1971-02-16 US US00115787A patent/US3748516A/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3884249A (en) * | 1972-10-20 | 1975-05-20 | Gte Sylvania Inc | Process for cleaning halophosphate furnaces |
US3905912A (en) * | 1974-09-25 | 1975-09-16 | Gte Sylvania Inc | Rare earth activated hafnium phosphate luminescent materials |
US4174294A (en) * | 1977-12-20 | 1979-11-13 | Mitsubishi Denki Kabushiki Kaisha | Fluorescent material |
US4185222A (en) * | 1978-01-13 | 1980-01-22 | U.S. Philips Corporation | Luminescent bivalent europium-activated barium borophosphate and discharge lamp containing the same |
CN103237867A (zh) * | 2010-10-26 | 2013-08-07 | 发光物质工厂布赖通根有限责任公司 | 硼磷酸盐磷光体和光源 |
CN103237867B (zh) * | 2010-10-26 | 2014-11-19 | 发光物质工厂布赖通根有限责任公司 | 硼磷酸盐磷光体和光源 |
CN110229668A (zh) * | 2019-06-24 | 2019-09-13 | 云南大学 | 一种铕掺杂的橙红色荧光材料及其制备方法与应用 |
CN110229668B (zh) * | 2019-06-24 | 2022-02-22 | 云南大学 | 一种铕掺杂的橙红色荧光材料及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
FR2011479A1 (enrdf_load_stackoverflow) | 1970-02-27 |
DE1927455A1 (de) | 1970-01-02 |
AT286450B (de) | 1970-12-10 |
NL6808846A (enrdf_load_stackoverflow) | 1969-12-24 |
US3748516A (en) | 1973-07-24 |
DE1927455B2 (de) | 1976-11-25 |
SE340666B (enrdf_load_stackoverflow) | 1971-11-29 |
GB1197279A (en) | 1970-07-01 |
BE734960A (enrdf_load_stackoverflow) | 1969-12-22 |
JPS495426B1 (enrdf_load_stackoverflow) | 1974-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4837481A (en) | Cerium and terbium activated luminescent material and mercury vapor discharge lamp containing the same | |
EP0023068B1 (en) | Luminescent screen | |
US4088923A (en) | Fluorescent lamp with superimposed luminescent layers | |
US3586637A (en) | Europium activated barium and strontium borophosphate luminescent material | |
US4150321A (en) | Luminescent aluminates and mercury vapor discharge lamp containing the same | |
BR8401858A (pt) | Lampada a vapor de mercurio de baixa pressao | |
US3602757A (en) | Multiple-luminescent layer improved lumen maintenance combination | |
US3599028A (en) | Mercury vapor discharge lamp employing europium activated calcium and/or strontium pyrophosphate luminescent material | |
US3595802A (en) | Divalent europium activated bariumstrontium aluminate luminescent material | |
US4315191A (en) | Luminescent material with alkaline earth metal silicate aluminate host lattice and low-pressure mercury vapor discharge lamp containing the same | |
US3723339A (en) | Luminescent phosphor | |
US2476681A (en) | Fluorescent material and electric discharge device | |
US3575879A (en) | Bivalent europium activated barium octaborate luminescent material | |
US4003845A (en) | Luminescent material | |
US4371810A (en) | Plant growth type fluorescent lamp | |
US2494883A (en) | Cascaded fluorescent material | |
US4185222A (en) | Luminescent bivalent europium-activated barium borophosphate and discharge lamp containing the same | |
EP0057026B1 (en) | Luminescent screen | |
US4174294A (en) | Fluorescent material | |
US3555336A (en) | Cadmium vapor discharge lamp containing a europium activated phosphor | |
CA1061102A (en) | Luminescent screen | |
US3513346A (en) | Phosphors and process of producing the same | |
US4049992A (en) | Beryllium-containing europium activated phosphate phosphor, luminescent screen and discharge lamp containing same | |
US4757233A (en) | Efficient UV-emitting phosphors based on cerium-activated calcium pyrophosphate and lamps containing the same | |
US3956663A (en) | Luminescent screen with thallium activated aluminate |