US3584193A - Water vaporizers - Google Patents

Water vaporizers Download PDF

Info

Publication number
US3584193A
US3584193A US818730A US3584193DA US3584193A US 3584193 A US3584193 A US 3584193A US 818730 A US818730 A US 818730A US 3584193D A US3584193D A US 3584193DA US 3584193 A US3584193 A US 3584193A
Authority
US
United States
Prior art keywords
water
evaporator
vessel
overflow
evaporator vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US818730A
Inventor
Hans Badertscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CARNES COMPANY Inc A WISCONSIN CORP
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3584193A publication Critical patent/US3584193A/en
Assigned to CARNES COMPANY, INC., A WISCONSIN CORP. reassignment CARNES COMPANY, INC., A WISCONSIN CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: WEHR CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/28Methods of steam generation characterised by form of heating method in boilers heated electrically
    • F22B1/30Electrode boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air

Definitions

  • An air humidifier is provided with an enclosed evaporator wherein electrodes extend into water within the evaporator and electrical conduction between the electrodes occurs through the water.
  • the heat so generated converts the water to steam and the evaporator has a steam chamber connected, by a nozzle equipped steam line, to the air which is to be humidified.
  • the water sump of the evaporator is connected to a water supply by means of a feed line through which a constant quantity of water is supplied in an amount exceeding the amount of water evaporated.
  • the sump is also connected to an overflow discharge line.
  • a discharge orifice, communicating with the feed line and the overfiow'discharge line, is arranged in the bottom of the evaporator and the overflow is vertically adjustable to control the water level in the evaporator.
  • WATER VAPORIZERS BACKGROUND OF INVENTION This invention relates to humidifiers and, more specifically, to the evaporator portion of a humidifier.
  • humidifiers incorporating evaporators of the type described above are well known, that is evaporators wherein water is converted into steam by electrical conduction through the water between electrodes extending into the water.
  • evaporators are described in Swiss Pat. No. 389,208 and US. Pat. No 3,219,796.
  • SUMMARY OF INVENTION Among the objects of this invention are to provide for control of the power input to the evaporator and thereby control steam generation, and also to hold the electrical conductivity of the water relatively constant.
  • this invention proposes an arrangement wherein the water level within the evaporator is responsive to the position of an overflow discharge line which communicates with the evaporator sump.
  • the overflow discharge line is adjustable vertically to control the sump water level and in so doing controls the area of the electrodes immersed in the water and correspondingly the power input to the evaporator.
  • a discharge orifice through which water circulates from the evaporator is located in the bottom of the evaporator. Salt concentrations and dirt collecting in the bottom of the evaporator are conducted away through the discharge orifice to thereby maintain the electrical conductivity of the water relatively constant.
  • FIG. 1 shows a vertical section through an embodiment of this invention
  • FIG. 2 shows a vertical section through an alternative embodiment
  • FIG. 3 represents a section generally along line III-III of FIG. 2.
  • an enclosed evaporator vessel 1 of a humidifier is illustrated in connection with a part of the humidifier water supply and an overflow discharge line.
  • the remainder of the humidifier has not been illustrated as it is not essential to an understanding of this invention but reference may be had to the aforementioned US. patent should a more complete description thereof become necessary.
  • the evaporator vessel contains two generally cylindrical, concentrically arranged electrodes 2 and 3, which may be made of metal wire mesh for example. Leads 4 and 5 are conductively connected to an electrical source.
  • the cover of the vessel 1 carries steam line 6, which includes a replaceable or adjustable nozzle 7 through which steam is directed into the air being humidified.
  • Opening 60 forms the inlet to steam line 6 from the interior of the vessel.
  • Water feed line 8 opens into vessel 1 through inlet 80 located at the bottom of vessel 1.
  • line 8 may be provided with a filter (not shown), if desired, a pressure-reducing valve (not shown) and an input valve 10.
  • the entire line 8 and all its components are constructed and adapted in such a way that the input of water to evaporator vessel 1 per unit time is greater than the amount of water which can be evaporated in the vessel during that same time interval.
  • An overflow discharge line communicates with the evaporator vessel through an opening in the bottom of the vessel.
  • Overflow part 14 consists of overflow 14a having an overflow orifice 14b positioned above funnel I5, and vent 140.
  • the evaporator vessel has a wall 21.
  • the two electrodes 29 and 30 are attached to the lid 19 of the evaporator vessel and are planar in shape, although, other electrode forms could be used.
  • Steam line 32 communicates with the interior of the evaporator vessel and carries a nozzle 33 similar in construction and operation to nozzle 7.
  • Water feed line 22 opens into the vessel through inlet port 220 in the vessel bottom 20. Slightly above bottom 20 a distributor plate 23, having a plurality of spaced openings 23a therein, serves to distribute the incoming fresh water uniformly over the entire cross section of the vessel.
  • the wall 21 of the vessel has two or more openings 24 through which the incoming water may enter a second vessel defined by walls 21 and 25. Both walls 21 and 25 create a hollow-cylindrical or annular space 35 therebetween into which an overflow tube 26 is inserted from the bottom. Tube 26 has a watertight connection at the vessel bottom but is vertically adjustable. Hollow cylindrical space 35 has a vent opening 27 in lid 19 and, if desired, a connecting line 28 can be provided to return condensate from the nozzle exit.
  • a hollow cylinder 31 fastened to the lid 19 and protruding into the evaporator vessel down approximately to the level of the openings 24 to the overflow line created by the annular space 35 and the tube 26.
  • the hollow cylinder may be an integral part of the lid 19.
  • the water overflow (due to delivering water in excess of that which can be evaporated) maintains the electrical conductivity of the water inside the evaporator relatively constant, because the constant through-flow at the bottom of the vessel carries off whatever particles or impurities which might tend to collect there.
  • a water evaporator comprising, in combination, an evaporator vessel,
  • water supply means opening into said evaporator vessel in the lowermost portion of said evaporator vessel for admitting water into said vessel to immerse said electrodes so that the electrical circuit between said electrodes is made through water in said vessel, current in said water heating said water to convert said water to steam and said water supply means further operative to provide water in excess of the evaporation capability of said evaporator, means communicating with the interior of said vessel above the level of said water for conveying steam to air to be humidified, means defining a water overflow line communicating, through a water discharge from said evaporator vessel located in the lowermost portion of said evaporator vessel and through which excess water supplied to said evaporator vessel is discharged, with the interior of said vessel and having a vertically adjustable overflow point so that the level of water in said vessel, and accordingly the amount of electrode immersion in water, can be controlled by varying the vertical position of said overflow point,
  • a distribution plate arranged above the level of the opening of said water supply means into said evaporator vessel extending between the walls of said evaporator vessel and having means defining a plurality of apertures therein so that said distributor plate distributes water uniformly over the cross section of said evaporator vessel,
  • said water discharge comprising at least one opening above the level of said distribution plate in the lowermost area of said evaporator vessel and said water discharge opening communicating with said water overflow
  • the water evaporator of claim 1 including an outer wall surrounding said evaporator vessel and defining therewith an overflow space communicating with the interior of said evaporator vessel through said discharge opening and providing a part of said water overflow,
  • said overflow includes a generally cylindrical member extending through the bottom of the space between said outer wall and evaporator vessel wall into said overflow space with the upper end of said cylindrical member providing the overflow point for said overflow.
  • the water evaporator of claim 2 including means defining a nozzle in said means for conveying steam from said evaporator vessel and operative to retard the flow of steam from said evaporator vessel and thereby produce a back pressure on the water in said evaporator vessel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Humidification (AREA)

Abstract

An air humidifier is provided with an enclosed evaporator wherein electrodes extend into water within the evaporator and electrical conduction between the electrodes occurs through the water. The heat so generated converts the water to steam and the evaporator has a steam chamber connected, by a nozzle equipped steam line, to the air which is to be humidified. The water sump of the evaporator is connected to a water supply by means of a feed line through which a constant quantity of water is supplied in an amount exceeding the amount of water evaporated. The sump is also connected to an overflow discharge line. A discharge orifice, communicating with the feed line and the overflow discharge line, is arranged in the bottom of the evaporator and the overflow is vertically adjustable to control the water level in the evaporator.

Description

United States Patent [72] Inventor Hans Bedertscher Emil Frey-Strasse 183, 4142 Muchenstein, Basel, Switzerland 21 Appl. No. 818,730 [22] Filed Apr. 23, 1969 [45] Patented June 8, 1971 [32] Priority Mar. 28, 1969 (3 3] Switzerland 31 6191/68 [54] WATER VAPORIZERS 3 Claims, 3 Drawing Figs.
[52] U.S.Cl 219/285, 219/275,219/289,219/362, 261/142 [51] 1nt.Cl 1105b 3/60 [50] Field of Search 219/284- [56] References Cited UNITED STATES PATENTS 1,462,350 7/1923 Merrill et al. 219/286 2,180,445 11/1939 Vickery 219/294 3,219,796 11/1965 Grafetal 219/285 FOREIGN PATENTS 516,087 12/1939 Great Britain 219/284 87,650 1/1921 Switzerland 219/284 OTHER REFERENCES Baudasse; German German Application 1,271,282
published 6/27/68, 219/286 ABSTRACT: An air humidifier is provided with an enclosed evaporator wherein electrodes extend into water within the evaporator and electrical conduction between the electrodes occurs through the water. The heat so generated converts the water to steam and the evaporator has a steam chamber connected, by a nozzle equipped steam line, to the air which is to be humidified. The water sump of the evaporator is connected to a water supply by means of a feed line through which a constant quantity of water is supplied in an amount exceeding the amount of water evaporated. The sump is also connected to an overflow discharge line. A discharge orifice, communicating with the feed line and the overfiow'discharge line, is arranged in the bottom of the evaporator and the overflow is vertically adjustable to control the water level in the evaporator.
WATER VAPORIZERS BACKGROUND OF INVENTION This invention relates to humidifiers and, more specifically, to the evaporator portion of a humidifier.
Generally, humidifiers incorporating evaporators of the type described above are well known, that is evaporators wherein water is converted into steam by electrical conduction through the water between electrodes extending into the water. For example, such evaporators are described in Swiss Pat. No. 389,208 and US. Pat. No 3,219,796.
SUMMARY OF INVENTION Among the objects of this invention are to provide for control of the power input to the evaporator and thereby control steam generation, and also to hold the electrical conductivity of the water relatively constant.
For the achievement of these and other objects, this invention proposes an arrangement wherein the water level within the evaporator is responsive to the position of an overflow discharge line which communicates with the evaporator sump. The overflow discharge line is adjustable vertically to control the sump water level and in so doing controls the area of the electrodes immersed in the water and correspondingly the power input to the evaporator. Furthermore, a discharge orifice through which water circulates from the evaporator is located in the bottom of the evaporator. Salt concentrations and dirt collecting in the bottom of the evaporator are conducted away through the discharge orifice to thereby maintain the electrical conductivity of the water relatively constant.
DESCRIPTION OF DRAWINGS FIG. 1 shows a vertical section through an embodiment of this invention;
FIG. 2 shows a vertical section through an alternative embodiment; and
FIG. 3 represents a section generally along line III-III of FIG. 2.
DESCRIPTION OF PREFERRED EMBODIMENT In the embodiment of FIG. 1, an enclosed evaporator vessel 1 of a humidifier is illustrated in connection with a part of the humidifier water supply and an overflow discharge line. The remainder of the humidifier has not been illustrated as it is not essential to an understanding of this invention but reference may be had to the aforementioned US. patent should a more complete description thereof become necessary. The evaporator vessel contains two generally cylindrical, concentrically arranged electrodes 2 and 3, which may be made of metal wire mesh for example. Leads 4 and 5 are conductively connected to an electrical source. The cover of the vessel 1 carries steam line 6, which includes a replaceable or adjustable nozzle 7 through which steam is directed into the air being humidified. Opening 60 forms the inlet to steam line 6 from the interior of the vessel. Water feed line 8 opens into vessel 1 through inlet 80 located at the bottom of vessel 1. In a conventional manner line 8 (not shown) may be provided with a filter (not shown), if desired, a pressure-reducing valve (not shown) and an input valve 10. The entire line 8 and all its components are constructed and adapted in such a way that the input of water to evaporator vessel 1 per unit time is greater than the amount of water which can be evaporated in the vessel during that same time interval. An overflow discharge line communicates with the evaporator vessel through an opening in the bottom of the vessel. Vertical section 9 of the overflow line opens into the bottom of vessel 1 and is closed at its free lower end by an outlet valve 11 which allows selective discharge of the contents of evaporator vessel 1 into funnel l2 and a drain line attached to the funnel. A further section 13 of the overflow discharge line extends from section 9 and an overflow discharge part 14 slides over the free upper end of section 13. The overflow J discharge part M has a watertight connection with section l3 but is vertically adjustable on that section. Overflow part 14 consists of overflow 14a having an overflow orifice 14b positioned above funnel I5, and vent 140.
As the water feed line 8 is opened, water will rise in vessel 1 to the level of overflow 14a and, thereafter, run off through the overflow orifice 14b. As electric voltage is applied across the electrodes 2 and 3 the water isheated between them and converted to steam. The generated steam rises into the upper part of vessel 1 which provides a steam chamber. Instant escape of the steam through line 6 is restricted by nozzle 7 and a back pressure is built up in the steam chamber by the accumulation of steam to thereby depress water level 16. In this way the amount of electrode surface immersed in water is reduced and the electrodes no longer contribute with all their surface to the generation of steam. This will thus reduce the amount of steam being generated. It'will be seen that by raising or lowering the overflow 14a one can raise or lower the water level 16 in the evaporator vessel 1 and, thereby, increase or decrease the generation of steam.
Due to the fact that electrodes 2 and 3 do not extend to the bottom of vessel 1, the water in the area of the vessel bottom remains essentially unheated. As a result, the overflowing water passing through vertical section 9 of the overflow line (which results from supplying water to vessel 1 in excess of that which the electrodes can evaporate) carries out dirt particles, salt concentrations, and other deposits which collect at the bottom of the vessel, but does not carry off a significant amount of heat energy.
In alternate embodiment shown in FIGS. 2 and 3, the evaporator vessel has a wall 21. The two electrodes 29 and 30 are attached to the lid 19 of the evaporator vessel and are planar in shape, although, other electrode forms could be used. Steam line 32 communicates with the interior of the evaporator vessel and carries a nozzle 33 similar in construction and operation to nozzle 7. Water feed line 22 opens into the vessel through inlet port 220 in the vessel bottom 20. Slightly above bottom 20 a distributor plate 23, having a plurality of spaced openings 23a therein, serves to distribute the incoming fresh water uniformly over the entire cross section of the vessel. Above the distributor plate 23 the wall 21 of the vessel has two or more openings 24 through which the incoming water may enter a second vessel defined by walls 21 and 25. Both walls 21 and 25 create a hollow-cylindrical or annular space 35 therebetween into which an overflow tube 26 is inserted from the bottom. Tube 26 has a watertight connection at the vessel bottom but is vertically adjustable. Hollow cylindrical space 35 has a vent opening 27 in lid 19 and, if desired, a connecting line 28 can be provided to return condensate from the nozzle exit.
As can be seen from the drawing, there is also a hollow cylinder 31 fastened to the lid 19 and protruding into the evaporator vessel down approximately to the level of the openings 24 to the overflow line created by the annular space 35 and the tube 26. The hollow cylinder may be an integral part of the lid 19.
As water flows into the empty vessel from the fresh water line 22, it rises inside cylinder 31 and rises as well in space 35 up to the upper rim of the overflow tube 26. The space between walls 31 and 21 is generally closed except at its bottom end and air in the space will be compressed slightly while the space stays essentially waterfree. This air space provides good thermal insulation between the water inside the evaporator vessel and the water in space 35.
Steam is generated when the electrodes are connected to an electrical source and that steam is delivered through the steam line 32 to the air which is to be humidified. The nozzle 33 within steam line 32, however, retards the flow of steam and causes a slight overpressure within the steam generator (above water level 34 in the evaporator) which lowers water level 34 and, thereby, reduces the effective area of electrodes 29 and 30. By adjusting the vertical position of overflow tube 26, the operating level 34 of the water can be varied and thereby control the output of the device. It should be noted that, here too, the water overflow (due to delivering water in excess of that which can be evaporated) maintains the electrical conductivity of the water inside the evaporator relatively constant, because the constant through-flow at the bottom of the vessel carries off whatever particles or impurities which might tend to collect there.
lclaim: 1. A water evaporator comprising, in combination, an evaporator vessel,
spaced electrodes each having a length exposed in the interior of said vessel, water supply means opening into said evaporator vessel in the lowermost portion of said evaporator vessel for admitting water into said vessel to immerse said electrodes so that the electrical circuit between said electrodes is made through water in said vessel, current in said water heating said water to convert said water to steam and said water supply means further operative to provide water in excess of the evaporation capability of said evaporator, means communicating with the interior of said vessel above the level of said water for conveying steam to air to be humidified, means defining a water overflow line communicating, through a water discharge from said evaporator vessel located in the lowermost portion of said evaporator vessel and through which excess water supplied to said evaporator vessel is discharged, with the interior of said vessel and having a vertically adjustable overflow point so that the level of water in said vessel, and accordingly the amount of electrode immersion in water, can be controlled by varying the vertical position of said overflow point,
a distribution plate arranged above the level of the opening of said water supply means into said evaporator vessel extending between the walls of said evaporator vessel and having means defining a plurality of apertures therein so that said distributor plate distributes water uniformly over the cross section of said evaporator vessel,
said water discharge comprising at least one opening above the level of said distribution plate in the lowermost area of said evaporator vessel and said water discharge opening communicating with said water overflow,
a top on said evaporator vessel,
and a hollow generally cylindrical wall extending from said top into said evaporator vessel and terminating at the level of said water discharge opening, said cylindrical wall spaced from said evaporator vessel and defining therewith a generally closed space open only at the bottom.
2. The water evaporator of claim 1 including an outer wall surrounding said evaporator vessel and defining therewith an overflow space communicating with the interior of said evaporator vessel through said discharge opening and providing a part of said water overflow,
and wherein said overflow includes a generally cylindrical member extending through the bottom of the space between said outer wall and evaporator vessel wall into said overflow space with the upper end of said cylindrical member providing the overflow point for said overflow.
3. The water evaporator of claim 2 including means defining a nozzle in said means for conveying steam from said evaporator vessel and operative to retard the flow of steam from said evaporator vessel and thereby produce a back pressure on the water in said evaporator vessel.

Claims (3)

1. A water evaporator comprising, in combination, an evaporator vessel, spaced electrodes each having a length exposed in the interior of said vessel, water supply means opening into said evaporator vessel in the lowermost portion of said evaporator vessel for admitting water into said vessel to immerse said electrodes so that the electrical circuit between said electrodes is made through water in said vessel, current in said water heating said water to convert said water to steam and said water supply means further operative to provide water in excess of the evaporation capability of said evaporator, means communicating with the interior of said vessel above the level of said water for conveying steam to air to be humidified, means defining a water overflow line communicating, through a water discharge from said evaporator vessel located in the lowermost portion of said evaporator vessel and through which excess water supplied to said evaporator vessel is discharged, with the interior of said vessel and having a vertically adjustable overflow point so that the level of water in said vessel, and accordingly the amount of electrode immersion in water, can be controlled by varying the vertical position of said overflow point, a distribution plate arranged above the level of the opening of said water supply means into said evaporator vessel extending between the walls of said evaporator vessel and having means defining a plurality of apertures therein so that said distributor plate distributes water uniformly over the cross section of said evaporator vessel, said water discharge comprising at least one opening above the level of said distribution plate in the lowermost area of said evaporator vessel and said water discharge opening communicating with said water overflow, a top on said evaporator vessel, and a holLow generally cylindrical wall extending from said top into said evaporator vessel and terminating at the level of said water discharge opening, said cylindrical wall spaced from said evaporator vessel and defining therewith a generally closed space open only at the bottom.
2. The water evaporator of claim 1 including an outer wall surrounding said evaporator vessel and defining therewith an overflow space communicating with the interior of said evaporator vessel through said discharge opening and providing a part of said water overflow, and wherein said overflow includes a generally cylindrical member extending through the bottom of the space between said outer wall and evaporator vessel wall into said overflow space with the upper end of said cylindrical member providing the overflow point for said overflow.
3. The water evaporator of claim 2 including means defining a nozzle in said means for conveying steam from said evaporator vessel and operative to retard the flow of steam from said evaporator vessel and thereby produce a back pressure on the water in said evaporator vessel.
US818730A 1968-04-25 1969-04-23 Water vaporizers Expired - Lifetime US3584193A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH619168A CH489758A (en) 1968-04-25 1968-04-25 Water evaporator

Publications (1)

Publication Number Publication Date
US3584193A true US3584193A (en) 1971-06-08

Family

ID=4305689

Family Applications (1)

Application Number Title Priority Date Filing Date
US818730A Expired - Lifetime US3584193A (en) 1968-04-25 1969-04-23 Water vaporizers

Country Status (3)

Country Link
US (1) US3584193A (en)
CH (1) CH489758A (en)
DE (2) DE6914550U (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916891A (en) * 1973-07-14 1975-11-04 Draegerwerk Ag Device for moistenning respiratory air for collecting the condensate
FR2300292A1 (en) * 1975-02-05 1976-09-03 Eaton Williams Raymond ELECTRODE BOILER
US4146775A (en) * 1976-09-16 1979-03-27 Armstrong Machine Works Automatic control system for an electrode-type air humidifier
US4394561A (en) * 1981-04-06 1983-07-19 Wehr Corporation Tank structure for an air humidifying electrode steam generator
DE3308819A1 (en) * 1983-03-12 1984-09-13 Drägerwerk AG, 2400 Lübeck VENTILATOR WITH HIGH FREQUENCY VENTILATION
US4705936A (en) * 1985-01-17 1987-11-10 Masco Corporation Electronically controlled electric steam humidifier
US4841122A (en) * 1984-03-02 1989-06-20 Atlas Air (Australia) Pty, Limited Humidifier having a heating chamber with a continuously open drain and flushing outlet
US4943704A (en) * 1989-02-06 1990-07-24 Ryder International Corporation Humidifier apparatus
US5037585A (en) * 1988-06-03 1991-08-06 Industrielle Du Ponant Sa Air conditioning humidifier
FR2707734A1 (en) * 1993-07-16 1995-01-20 Thirode Grandes Cuisines Poligny Method for continuously producing circulating steam, steam generator and installation making application thereof
US5616115A (en) * 1994-06-15 1997-04-01 Ohmeda Inc. Heated humidifier for incubator
US5833812A (en) * 1996-02-21 1998-11-10 Hartman; Michael Orban Low maintenance water distiller
US20040074493A1 (en) * 2000-03-21 2004-04-22 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US20040149284A1 (en) * 2000-03-21 2004-08-05 Fisher & Paykel Healthcare Limited Humidified gases delivery apparatus
US7111624B2 (en) 2000-03-21 2006-09-26 Fisher & Paykel Healthcare Limited Apparatus for delivering humidified gases
US7120354B2 (en) 2000-03-21 2006-10-10 Fisher & Paykel Healthcare Limited Gases delivery conduit
US20070079826A1 (en) * 2002-09-17 2007-04-12 Fisher & Paykel Healthcare Limited Apparatus for delivering humidified gases
US20090139277A1 (en) * 2005-03-25 2009-06-04 Lg Electronics Inc Steam generator , and laundry device and method thereof
US20090190907A1 (en) * 2006-07-26 2009-07-30 Venta-Luftwascher Gmbh Apparatus for utilizing water
US20110138864A1 (en) * 2005-03-25 2011-06-16 Lg Electronics Inc. Laundry machine
US20120235312A1 (en) * 2009-12-28 2012-09-20 Koninklijke Philips Electronics N.V. Humidity control in apressure support system
DE102014107553B3 (en) * 2014-05-28 2015-04-23 Binder Gmbh Method for controlling a device for air humidification and device for air humidification
US20160354573A1 (en) 2012-11-14 2016-12-08 Matthew Liam Buswell Zone heating for respiratory circuits
EP3208537A1 (en) * 2016-02-19 2017-08-23 Helo Oy A steam generator element for a sauna electric heater and a sauna electric heater
JP6211729B1 (en) * 2017-04-13 2017-10-11 俊洋 都留 Depressurized water circulation type heating device and air conditioning unit
US10293121B2 (en) 2000-10-16 2019-05-21 Fisher & Paykel Healthcare Limited Apparatus used for the humidification of gases in medical procedures
US10751498B2 (en) 2014-03-17 2020-08-25 Fisher & Paykel Healthcare Limited Medical tubes for respiratory systems
US10814091B2 (en) 2013-10-24 2020-10-27 Fisher & Paykel Healthcare Limited System for delivery of respiratory gases
US10828482B2 (en) 2013-12-20 2020-11-10 Fisher & Paykel Healthcare Limited Humidification system connections
US10960167B2 (en) 2015-09-09 2021-03-30 Fisher & Paykel Healthcare Limited Zone heating for respiratory circuits
US11007340B2 (en) 2004-08-20 2021-05-18 Fisher & Paykel Healthcare Limited Apparatus for measuring properties of gases supplied to a patient
US11047567B2 (en) * 2017-08-22 2021-06-29 Technologies Steamovap Inc. Steam generator
US11058844B2 (en) 2012-12-04 2021-07-13 Fisher & Paykel Healthcare Limited Medical tubes and methods of manufacture
US11311695B2 (en) 2016-12-22 2022-04-26 Fisher & Paykel Healthcare Limited Medical tubes and methods of manufacture
US11318270B2 (en) 2011-06-03 2022-05-03 Fisher & Paykel Healthcare Limited Medical tubes and methods of manufacture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH622604A5 (en) * 1977-11-08 1981-04-15 Turmix Ag

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH87650A (en) * 1920-04-16 1921-01-03 Oerlikon Maschf Method and device for blow-down of electrode steam boilers.
US1462350A (en) * 1922-02-15 1923-07-17 Gen Electric Electric steam boiler
US2180445A (en) * 1938-04-08 1939-11-21 Ralph W E Vickery Electric steam generator
GB516087A (en) * 1938-07-12 1939-12-21 Donald Hugh Smith An improved electric water heater
US3219796A (en) * 1962-01-04 1965-11-23 Badertscher Apparatus for moistening air

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH87650A (en) * 1920-04-16 1921-01-03 Oerlikon Maschf Method and device for blow-down of electrode steam boilers.
US1462350A (en) * 1922-02-15 1923-07-17 Gen Electric Electric steam boiler
US2180445A (en) * 1938-04-08 1939-11-21 Ralph W E Vickery Electric steam generator
GB516087A (en) * 1938-07-12 1939-12-21 Donald Hugh Smith An improved electric water heater
US3219796A (en) * 1962-01-04 1965-11-23 Badertscher Apparatus for moistening air

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Baudasse; German German Application 1,271,282 published 6/27/68, 219/286 *

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916891A (en) * 1973-07-14 1975-11-04 Draegerwerk Ag Device for moistenning respiratory air for collecting the condensate
FR2300292A1 (en) * 1975-02-05 1976-09-03 Eaton Williams Raymond ELECTRODE BOILER
US4092519A (en) * 1975-02-05 1978-05-30 Eaton Williams Raymond H Electrode boiler
US4146775A (en) * 1976-09-16 1979-03-27 Armstrong Machine Works Automatic control system for an electrode-type air humidifier
US4394561A (en) * 1981-04-06 1983-07-19 Wehr Corporation Tank structure for an air humidifying electrode steam generator
DE3308819A1 (en) * 1983-03-12 1984-09-13 Drägerwerk AG, 2400 Lübeck VENTILATOR WITH HIGH FREQUENCY VENTILATION
US4841122A (en) * 1984-03-02 1989-06-20 Atlas Air (Australia) Pty, Limited Humidifier having a heating chamber with a continuously open drain and flushing outlet
US4705936A (en) * 1985-01-17 1987-11-10 Masco Corporation Electronically controlled electric steam humidifier
US5037585A (en) * 1988-06-03 1991-08-06 Industrielle Du Ponant Sa Air conditioning humidifier
US4943704A (en) * 1989-02-06 1990-07-24 Ryder International Corporation Humidifier apparatus
FR2707734A1 (en) * 1993-07-16 1995-01-20 Thirode Grandes Cuisines Poligny Method for continuously producing circulating steam, steam generator and installation making application thereof
US5616115A (en) * 1994-06-15 1997-04-01 Ohmeda Inc. Heated humidifier for incubator
US5833812A (en) * 1996-02-21 1998-11-10 Hartman; Michael Orban Low maintenance water distiller
US7111624B2 (en) 2000-03-21 2006-09-26 Fisher & Paykel Healthcare Limited Apparatus for delivering humidified gases
US20040074493A1 (en) * 2000-03-21 2004-04-22 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US6918389B2 (en) 2000-03-21 2005-07-19 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US9555210B2 (en) 2000-03-21 2017-01-31 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US7120354B2 (en) 2000-03-21 2006-10-10 Fisher & Paykel Healthcare Limited Gases delivery conduit
US20060237012A1 (en) * 2000-03-21 2006-10-26 Mohammad Thudor Apparatus for Delivering Humidified Gases
US7146979B2 (en) 2000-03-21 2006-12-12 Fisher & Paykel Healthcare Limited Humidifier with parallel gas flow paths
US9750917B2 (en) 2000-03-21 2017-09-05 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US10525225B2 (en) 2000-03-21 2020-01-07 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US8550072B2 (en) 2000-03-21 2013-10-08 Fisher & Paykel Healthcare Limited Apparatus for delivering humidified gases
US7588029B2 (en) 2000-03-21 2009-09-15 Fisher & Paykel Healthcare Limited Humidified gases delivery apparatus
US20040149284A1 (en) * 2000-03-21 2004-08-05 Fisher & Paykel Healthcare Limited Humidified gases delivery apparatus
US8091547B2 (en) 2000-03-21 2012-01-10 Fisher & Paykel Healthcare Limited Apparatus for delivering humidified gases
US8235041B2 (en) 2000-03-21 2012-08-07 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US11197967B2 (en) 2000-10-16 2021-12-14 Fisher & Paykel Healthcare Limited Apparatus used for the humidification of gases in medical procedures
US10293121B2 (en) 2000-10-16 2019-05-21 Fisher & Paykel Healthcare Limited Apparatus used for the humidification of gases in medical procedures
US20070079826A1 (en) * 2002-09-17 2007-04-12 Fisher & Paykel Healthcare Limited Apparatus for delivering humidified gases
US11007340B2 (en) 2004-08-20 2021-05-18 Fisher & Paykel Healthcare Limited Apparatus for measuring properties of gases supplied to a patient
US11458273B2 (en) 2004-08-20 2022-10-04 Fisher & Paykel Healthcare Limited Apparatus for measuring properties of gases supplied to a patient
US11679224B2 (en) 2004-08-20 2023-06-20 Fisher & Paykel Healthcare Limited Apparatus for measuring properties of gases supplied to a patient
US11911564B2 (en) 2004-08-20 2024-02-27 Fisher & Paykel Healthcare Limited Apparatus for measuring properties of gases supplied to a patient
US8522578B2 (en) * 2005-03-25 2013-09-03 Lg Electronics Inc. Steam generator , and laundry device and method thereof
US20090139277A1 (en) * 2005-03-25 2009-06-04 Lg Electronics Inc Steam generator , and laundry device and method thereof
US9982380B2 (en) * 2005-03-25 2018-05-29 Lg Electronics Inc. Laundry machine
US20110138864A1 (en) * 2005-03-25 2011-06-16 Lg Electronics Inc. Laundry machine
US8233783B2 (en) * 2006-07-26 2012-07-31 Venta-Luftwäscher GmbH Apparatus for utilizing water
US20090190907A1 (en) * 2006-07-26 2009-07-30 Venta-Luftwascher Gmbh Apparatus for utilizing water
US9302068B2 (en) * 2009-12-28 2016-04-05 Koninklijke Philips N.V. Humidity control in a pressure support system
US20120235312A1 (en) * 2009-12-28 2012-09-20 Koninklijke Philips Electronics N.V. Humidity control in apressure support system
US11318270B2 (en) 2011-06-03 2022-05-03 Fisher & Paykel Healthcare Limited Medical tubes and methods of manufacture
US11129954B2 (en) 2012-11-14 2021-09-28 Fisher & Paykel Healthcare Limited Zone heating for respiratory circuits
US10589050B2 (en) 2012-11-14 2020-03-17 Fisher & Paykel Healthcare Limited Zone heating for respiratory circuits
US20160354573A1 (en) 2012-11-14 2016-12-08 Matthew Liam Buswell Zone heating for respiratory circuits
US11058844B2 (en) 2012-12-04 2021-07-13 Fisher & Paykel Healthcare Limited Medical tubes and methods of manufacture
US10814091B2 (en) 2013-10-24 2020-10-27 Fisher & Paykel Healthcare Limited System for delivery of respiratory gases
US10828482B2 (en) 2013-12-20 2020-11-10 Fisher & Paykel Healthcare Limited Humidification system connections
US11826538B2 (en) 2013-12-20 2023-11-28 Fisher & Paykel Healthcare Limited Humidification system connections
US10751498B2 (en) 2014-03-17 2020-08-25 Fisher & Paykel Healthcare Limited Medical tubes for respiratory systems
DE102014107553B3 (en) * 2014-05-28 2015-04-23 Binder Gmbh Method for controlling a device for air humidification and device for air humidification
CN105299823A (en) * 2014-05-28 2016-02-03 宾德有限公司 Method of controlling a device that for the humidification of the air and device for the humidification of air
CN105299823B (en) * 2014-05-28 2019-02-22 宾德有限公司 Equipment of the control for the method for the equipment of air humidification and for air humidification
US10960167B2 (en) 2015-09-09 2021-03-30 Fisher & Paykel Healthcare Limited Zone heating for respiratory circuits
EP3208537A1 (en) * 2016-02-19 2017-08-23 Helo Oy A steam generator element for a sauna electric heater and a sauna electric heater
US11311695B2 (en) 2016-12-22 2022-04-26 Fisher & Paykel Healthcare Limited Medical tubes and methods of manufacture
JP2018179413A (en) * 2017-04-13 2018-11-15 俊洋 都留 Pressure-reduced water circulation-type heating apparatus and air conditioner
JP6211729B1 (en) * 2017-04-13 2017-10-11 俊洋 都留 Depressurized water circulation type heating device and air conditioning unit
US11047567B2 (en) * 2017-08-22 2021-06-29 Technologies Steamovap Inc. Steam generator

Also Published As

Publication number Publication date
DE1918512B2 (en) 1971-11-11
DE1918512A1 (en) 1969-11-27
CH489758A (en) 1970-04-30
DE6914550U (en) 1969-08-14

Similar Documents

Publication Publication Date Title
US3584193A (en) Water vaporizers
US7068924B2 (en) Steam generator
US3219796A (en) Apparatus for moistening air
CA1168284A (en) Multi-electrode boiler
US3193261A (en) Humidifier
US5131070A (en) Portable humidifier
JP4286329B2 (en) Laundry ironing equipment
US3219795A (en) Electrically heated humidifier
US2804870A (en) Air furnace humidifier system
US3659078A (en) Electrode air humidifier
CA1038005A (en) Non-spitting electric room vaporizer
US5143460A (en) Portable humidifier
US2511721A (en) Self-regulating stock tank
US4382173A (en) System for automatically regulating water conductivity in an electrode-type humidifier evaporator
DE4005793A1 (en) Electric sauna heater with steam generator - has thermostat disconnecting power from water evaporating resistor when opening of water supply to evaporating space
DE102009055148A1 (en) A steam generating system for a domestic appliance and method of assembling such a steam generating system
US2885527A (en) Regulating device for electrical vaporizer
US3824372A (en) Low voltage electric boilers
US2180445A (en) Electric steam generator
US4423310A (en) Electrical steam generator having adjustable electrodes for an air humidifier
US3291964A (en) Immersion heater steam boilers
US2049899A (en) Electric vaporizer and humidifier
KR100398670B1 (en) The heating type humidifier with regulator of humidity amount
US3240205A (en) Humidifier for hot air furnace
US2920179A (en) Stored heat steam generators

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARNES COMPANY, INC., 448 SOUTH MAIN STREET STREET

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WEHR CORPORATION;REEL/FRAME:004725/0282

Effective date: 19861230