US3573528A - Color picture tube grid structure with nonuniform generally parallel slits - Google Patents
Color picture tube grid structure with nonuniform generally parallel slits Download PDFInfo
- Publication number
- US3573528A US3573528A US798635A US3573528DA US3573528A US 3573528 A US3573528 A US 3573528A US 798635 A US798635 A US 798635A US 3573528D A US3573528D A US 3573528DA US 3573528 A US3573528 A US 3573528A
- Authority
- US
- United States
- Prior art keywords
- grid
- slits
- slit
- plate
- grid structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003491 array Methods 0.000 claims description 2
- 238000010894 electron beam technology Methods 0.000 abstract description 17
- 230000005389 magnetism Effects 0.000 abstract description 7
- 230000005540 biological transmission Effects 0.000 abstract description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 5
- 230000002939 deleterious effect Effects 0.000 abstract description 4
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 230000005624 perturbation theories Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/80—Arrangements for controlling the ray or beam after passing the main deflection system, e.g. for post-acceleration or post-concentration, for colour switching
- H01J29/803—Arrangements for controlling the ray or beam after passing the main deflection system, e.g. for post-acceleration or post-concentration, for colour switching for post-acceleration or post-deflection, e.g. for colour switching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2229/00—Details of cathode ray tubes or electron beam tubes
- H01J2229/07—Shadow masks
- H01J2229/0727—Aperture plate
- H01J2229/075—Beam passing apertures, e.g. geometrical arrangements
- H01J2229/0755—Beam passing apertures, e.g. geometrical arrangements characterised by aperture shape
- H01J2229/0761—Uniaxial masks having parallel slit apertures, i.e. Trinitron type
Definitions
- Eslinger and Alvin Sinderbrand ABSTRACT A grid structure for color picture tubes adapted to decrease undesirable deviation of electrons away from the 1 Claim 4 Drawing Figs phosphor screen of a color picture tube.
- the slits between the [52] US. Cl 313/85, grid wires are formed narrower at the upper and lower por- 313/349, 313/86 tions and wider in the central portion to increase the funda- [51] lnt.Cl ..H01j 29/06, mental vibration frequency and increase the electron beam HOlj 29/46,H0lj 29/56 transmission factor.
- the latter grid structure eliminates the [50] Field of Search 313/87, 92 deleterious effects of (a) grid vibration caused by accidental (PDF), 85 impact and (b) earth magnetism.
- Color cathode ray tubes employ, for electron beam post deflection and focusing, a grid structure in which a plurality of grid wires are stretched across a frame which is generally in the form of a parallelogram. These grid structures are produced by stretching a plurality of parallel grid wires across opposed portions on a master frame under a predetermined amount of tension.
- a grid frame is then put on the grid wires from inside the master frame and then the grid wires are fixed to a pair of opposed supports on the grid frame, thereafter being severed along the margins of the grid frame.
- the grid frame is prestressed inwardly by a tumbuckle to apply maximum tension to the grid wires secured to the central portion of the opposed supports of the grid frame and a lesser amount of tension to those wires fixed to the end portions of the supports, insuring that all the grid wires are subjected to substantially uniform tension by the restoring force of the prestressed grid frame after disassembling it from the master frame.
- Such a grid structure may be regarded as one in which a plurality of grid wires are stretched at substantially uniform tcnsion on a frame which is prestressed in a manner to be displaced the most at the central portion of the frame.
- a predetermined positive potential is applied to such grid structure and electron beams are emitted from the electron gun of a cathode ray tube toward the fluorescent screen thereof, electron beams of several to l-odd percent strike the grid wires and are discharged therethrough to thereby heat the grid wires.
- the temperature of the grid wires is raised sufficiently to cause the wires to expand.
- This invention seeks to overcome the drawbacks of the prior art by constructing the grid elements and the spacing therebetween in such a manner that the electron beam transmission factor is greatest at the central portion of the grid structure.
- the individual grid elements are relatively narrow at the intermediate portion of their length and are wider at their end portions thereof.
- the spacing between the grid elements is widest at the intermediate portion of the slit forming the space and narrowest at the end portions thereof.
- Another object of the invention is to provide a color picture tube which is virtually free of the deleterious effects of magnetism.
- a further object of the invention is to provide a color picture tube which utilizes a grid structure having a high resistance to vibration caused by an external force.
- An additional object of the invention is to provide a color picture tube in which the electron beam transmission factor is high at the central portion of the grid to provide increased luminance.
- FIG. I is a plan view of a grid plate
- FIG. 2 is a cross-sectional view showing the manner in which grid elements are mounted on a grid frame
- H6. 3 is a plan view, partly cut away, showing details of the grid plate.
- F l0. 4 is a schematic diagram showing the width of slits formed in the grid plate.
- FIG. ll there is shown a grid plate 10 which can be made by photoetching or the like to remove selected areas of a sheet metal plate ill of stainless steel, for example.
- the grid plate ill can be a parallelogram such as a rectangle, square or any other desired shape and can be manufactured using any known process.
- Grid elements 113 are arranged parallel to each other across the face of the plate Ill and are arranged at a predetermined desired pitch. Peripherally arranged along the edges bordering the upper and lower ends of the grid elements respectively are slits M. Each slit 14 corresponds to a plurality of grid elements 113 (three in the illustrated example). A slot 15 is provided on opposed ends of the plate 111 which is parallel to the grid elements 13. The slits M serve to separate a series of tabs 16.
- the grid frame may take the form of a pair of bars 118 as disclosed in the aforementioned copending US. Pat. application.
- the tabs 116 separated by the slits M are respectively held by opposed chucks 19 such that each tab is held by a chuck.
- Either one set or both sets of chucks are placed under moderate tension in accordance with the length and the quality of the tab material so as to obtain a predetermined distribution of tension which will be ultimately applied to the grid elements 113.
- each chuck is placed under tension by means of a coiled spring 20.
- the chucks 19 are disposed in accordance with the configuration of the grid frame, so that the grid plate W is maintained taut and the plate conforms to the shape of the grid frame. While the grid plate is held taut, the grid plate is welded to a pair of bar supports llfl which are placed in a predetermined position on the grid plate.
- the tabs 116 which have a portion projecting beyond the bar supports 118 are cut off.
- the slot which facilitates the cutting of the plate 10 can also be cut off. In this manner, the grid elements 13 can readily be mounted on the bar supports 11% of the frame under a predetermined distribution of tension.
- the slits 11d prevent the grid plate 110 from bending or buckling when applying a predetermined tension to the tabs 16.
- Grid structures which are manufactured by the aforementioned process do not fully insure that the electron beam will impinge on the color tube because of the influence of the earth's magnetism. This is especially true at the upper and lower portions of the grid structure. Also, when the grid structure is subjected to an external force such as mechanical vibration or the like, the grid elements will oscillate, which also causes deviation of the electron beam at the central portion of the grid structure.
- the slits 17 so as to be wide at the central portion thereof and to gradually decrease in width toward the edges of the plate 10.
- the shape of the slit 17 being somewhat like a spindle as clearly shown in FIG. 3, the adjacent grid elements 13 are exactly the opposite, that'is, the grid element is narrow at the central portion of its length and it gradually increases in size as one approaches theopposite edges of the plate 10.
- the slits 17 are narrower at the upper and lower end portions than at the central portion, so that deviation of the electron beam is not caused even under the influence of the horizontal component of the earth's magnetism.
- the central portion of each slit 17 is relatively larger in width than the opposed ends, and accordingly the electron beam transmission factor at the central portion is highJ
- This appreciably increases the luminance at the central portion of the reproduced picture produced by a color picture tube equipped with the grid structure of this type.
- the viewer has a feeling that the luminance of the entire screen area of the reproduced picture has been increased from the nature of vision. The viewer thereby obtains an impression similar to that given by a bright and vivid reproduced picture.
- the formation of the spindle-shaped slits 17 makes the grid elements 13 narrow at the central portion.
- the resonant frequency of each grid element is raised which insures an appreciable decrease in electron beam deviation.
- the movement of the grid elements in a direction perpendicular to the X-axis is given by the following equation, if the displacement is taken as I (x,t).
- T is the curvature of the grid during some instant of vibration.
- each slit 17 wide at the central portion thereof and narrower at the upper and lower end portions.
- the resonant frequency of the grid elements 13- becomes high to substantially decrease electron beam deviation and, in addition, the electron beam transmission factor increases at the central portion of the grid structure to increase the luminance of the reproduced picture at the central portion thereof.
- the deviation of the electron beam which is caused by the influence of earth magnetism at the upper and lower areas of the reproduced picture, is negligible with my new and improved grid structure.
- the slits 17 formed such as depicted in FIG. 4.
- a sheet of stainless steel which was 0.15 mm. thick was used in which the pitch of the slits 17 was 600 microns, the width of each phosphor strip of the phosphor screen was 210 microns and the phosphor strips were arranged in the direction of the slits 17 in the order of red, green and blue.
- the width B of the slits 17 was selected at points x, ybased upon the following equation.
- the grid element assembly 10 can readily be produced by a photoetching process, for example, there is no problem in the manufacture of the grid structure.
- the grid element assembly can also be produced by arranging metal strips at a predetermined pitch, in which case slits similar to the aforementioned ones are formed between adjacent ones of the metal strips. It should be understood that the shape, material and size of the grid elements, plate and the width of the slits may be suitably changed if desired and that the method of manufacture of the plate and for mounting it on the grid frame are not limited by that disclosed herein.
Landscapes
- Electrodes For Cathode-Ray Tubes (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP904368 | 1968-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3573528A true US3573528A (en) | 1971-04-06 |
Family
ID=11709600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US798635A Expired - Lifetime US3573528A (en) | 1968-02-12 | 1969-02-12 | Color picture tube grid structure with nonuniform generally parallel slits |
Country Status (11)
Country | Link |
---|---|
US (1) | US3573528A (en)) |
AT (1) | AT284218B (en)) |
BE (1) | BE728214A (en)) |
CH (1) | CH497785A (en)) |
CS (1) | CS155197B2 (en)) |
DK (1) | DK123953B (en)) |
FR (1) | FR2001776A1 (en)) |
GB (1) | GB1248532A (en)) |
NL (1) | NL148438B (en)) |
NO (1) | NO122853B (en)) |
SE (1) | SE349892B (en)) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3652895A (en) * | 1969-05-23 | 1972-03-28 | Tokyo Shibaura Electric Co | Shadow-mask having graduated rectangular apertures |
US3686525A (en) * | 1969-05-31 | 1972-08-22 | Sony Corp | Cathode ray tube having shadow mask apertures aligned along curved horizontal and vertical lines |
US4810928A (en) * | 1982-12-06 | 1989-03-07 | Hitachi, Ltd. | Cathode-ray tube for constituting large picture display apparatus |
US6225736B1 (en) | 1999-04-01 | 2001-05-01 | Thomson Licensing S.A. | Color picture tube having a low expansion tension mask attached to a higher expansion frame |
US6274975B1 (en) | 1999-04-01 | 2001-08-14 | Thomson Licensing S.A. | Color picture tube having a tension mask attached to a frame |
US6511048B1 (en) * | 1998-07-16 | 2003-01-28 | Hitachi, Ltd. | Electron beam lithography apparatus and pattern forming method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3158297B2 (ja) * | 1991-12-06 | 2001-04-23 | ソニー株式会社 | アパーチャーグリル |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2722623A (en) * | 1953-03-31 | 1955-11-01 | Rca Corp | Color-kinescopes etc. |
US2729760A (en) * | 1953-03-17 | 1956-01-03 | Chromatic Television Lab Inc | Electrode structure for cathode-ray tubes for image production in natural color |
US2733366A (en) * | 1956-01-31 | Grimm ctal | ||
US2859438A (en) * | 1955-01-31 | 1958-11-04 | Hughes Aircraft Co | Range-height parallel-type radar system |
US2862107A (en) * | 1951-04-06 | 1958-11-25 | Gen Electric | Means for and method of controlling the generation of x-rays |
US2889483A (en) * | 1954-09-01 | 1959-06-02 | Sylvania Electric Prod | Glass base grid |
-
1969
- 1969-02-06 AT AT120169A patent/AT284218B/de not_active IP Right Cessation
- 1969-02-06 CS CS78769*#A patent/CS155197B2/cs unknown
- 1969-02-08 NO NO0496/69A patent/NO122853B/no unknown
- 1969-02-11 DK DK72469AA patent/DK123953B/da not_active IP Right Cessation
- 1969-02-11 CH CH202269A patent/CH497785A/de not_active IP Right Cessation
- 1969-02-11 BE BE728214D patent/BE728214A/xx not_active IP Right Cessation
- 1969-02-11 SE SE01829/69A patent/SE349892B/xx unknown
- 1969-02-12 GB GB7735/69A patent/GB1248532A/en not_active Expired
- 1969-02-12 FR FR6903375A patent/FR2001776A1/fr active Pending
- 1969-02-12 NL NL696902220A patent/NL148438B/xx not_active IP Right Cessation
- 1969-02-12 US US798635A patent/US3573528A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2733366A (en) * | 1956-01-31 | Grimm ctal | ||
US2862107A (en) * | 1951-04-06 | 1958-11-25 | Gen Electric | Means for and method of controlling the generation of x-rays |
US2729760A (en) * | 1953-03-17 | 1956-01-03 | Chromatic Television Lab Inc | Electrode structure for cathode-ray tubes for image production in natural color |
US2722623A (en) * | 1953-03-31 | 1955-11-01 | Rca Corp | Color-kinescopes etc. |
US2889483A (en) * | 1954-09-01 | 1959-06-02 | Sylvania Electric Prod | Glass base grid |
US2859438A (en) * | 1955-01-31 | 1958-11-04 | Hughes Aircraft Co | Range-height parallel-type radar system |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3652895A (en) * | 1969-05-23 | 1972-03-28 | Tokyo Shibaura Electric Co | Shadow-mask having graduated rectangular apertures |
US3686525A (en) * | 1969-05-31 | 1972-08-22 | Sony Corp | Cathode ray tube having shadow mask apertures aligned along curved horizontal and vertical lines |
US4810928A (en) * | 1982-12-06 | 1989-03-07 | Hitachi, Ltd. | Cathode-ray tube for constituting large picture display apparatus |
US6511048B1 (en) * | 1998-07-16 | 2003-01-28 | Hitachi, Ltd. | Electron beam lithography apparatus and pattern forming method |
US6225736B1 (en) | 1999-04-01 | 2001-05-01 | Thomson Licensing S.A. | Color picture tube having a low expansion tension mask attached to a higher expansion frame |
US6274975B1 (en) | 1999-04-01 | 2001-08-14 | Thomson Licensing S.A. | Color picture tube having a tension mask attached to a frame |
Also Published As
Publication number | Publication date |
---|---|
DE1907010B2 (de) | 1972-09-14 |
GB1248532A (en) | 1971-10-06 |
NO122853B (en)) | 1971-08-23 |
FR2001776A1 (en)) | 1969-10-03 |
NL6902220A (en)) | 1969-08-14 |
DE1907010A1 (de) | 1969-09-11 |
BE728214A (en)) | 1969-07-16 |
CS155197B2 (en)) | 1974-05-30 |
AT284218B (de) | 1970-09-10 |
DK123953B (da) | 1972-08-21 |
CH497785A (de) | 1970-10-15 |
NL148438B (nl) | 1976-01-15 |
SE349892B (en)) | 1972-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3638063A (en) | Grid structure for color picture tubes | |
US3808493A (en) | Low thermal coefficient shadow masks with resilient supports for use in color picture tubes | |
US3573528A (en) | Color picture tube grid structure with nonuniform generally parallel slits | |
US3872345A (en) | Colour picture tubes | |
EP0018688B1 (en) | Cathode-ray tube for displaying coloured pictures | |
US4767962A (en) | Color cathode ray tube and tensible shadow mask blank for use therein | |
US3617787A (en) | Bimetallic spring support for a shadow mask | |
US2832911A (en) | Thermal compensating grid frame | |
EP0228110B1 (en) | Colour display tube and colour selection electrode for use in such a colour display tube | |
US3936691A (en) | Color cathode ray tube frame-color selection electrode support structure | |
US2736832A (en) | Hoop electrode structure | |
US3831051A (en) | Color picture tube with deflection center control | |
US4429028A (en) | Color picture tube having improved slit type shadow mask and method of making same | |
JP3152370B2 (ja) | カラー映像管 | |
US2643352A (en) | Color kinescope | |
US2939981A (en) | Grid frame support structures for cathode ray tubes | |
US3487250A (en) | Vidicon grid consisting of set of parallel wires | |
GB2064212A (en) | Colour television picture tube with colour selection structure and method of operation thereof | |
CA1125348A (en) | Cathode-ray tube having corrugated mask with increased mask-to-screen spacing | |
US2796546A (en) | Damp rod construction for cathode ray tube grid structure | |
US3567986A (en) | Cathode ray tube shadow mask supporting structure having straight springs mounted upon struck-out portions of the shadow mask frame | |
US3822453A (en) | Method of making cathode ray tube internal shields | |
CA1200273A (en) | Crt with quadrupolar-focusing color-selection structure | |
KR100731661B1 (ko) | 프레임에 부착된 장력 마스크를 구비하는 컬러 수상관 | |
PL126028B1 (en) | Picture tube with luminescent stripted screen |