US3566175A - Electron transparent shield for separating regions of different field intensities - Google Patents

Electron transparent shield for separating regions of different field intensities Download PDF

Info

Publication number
US3566175A
US3566175A US778549A US3566175DA US3566175A US 3566175 A US3566175 A US 3566175A US 778549 A US778549 A US 778549A US 3566175D A US3566175D A US 3566175DA US 3566175 A US3566175 A US 3566175A
Authority
US
United States
Prior art keywords
electric field
electrons
field intensity
region
slats
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US778549A
Inventor
George C Baldwin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Application granted granted Critical
Publication of US3566175A publication Critical patent/US3566175A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation

Definitions

  • the shield is constructed of an array of thin equipotential members arranged in a particular pattern, either parallel to each other and to the incident electron path, or a cylindrical array of members arranged radially. The spacing between the members is completely unobstructed along the electron flight path to prevent any scattering of electrons especially in the low energy range.
  • My invention relates to a novel electrical shielding element for separating regions of unequal electric field intensities, and more particularly, to a shield which permits electrons to pass therethrough while separating a region of strong electric field from a substantially field-free region.
  • An additional problem which then arises is that of providing a field configuration which will not so deflect the paths of the electrons travelling from the field-free region into the high field region so as to prevent their reaching the detector.
  • One particular shielding device commonly employed for separating two regions of unequal electric field intensity uses grids of parallel wires that have circular cross-sectional areas, which are evenly arrayed in one or more parallel planes, and maintained at an electric potential appropriate to establish the required electric field conditions on each side thereof.
  • Very slow electrons which are often those desired to be measured, are the ones most readily scattered or turned back by the transverse and reverse components of this electric field.
  • the scattering and dispersion, especially of the slow energy electrons occurs to such an extent that no useful function can be performed with the low energy electrons.
  • the shielding element transmit even low energy electrons without scattering them. It is also useful for the shielding element to focus the electrons that pass therethrough, as in the case where a collector or detector is located on one side of the shield, the shielding element serving to focus the electrons to the most sensitive part of the detector for most effective operation thereof.
  • the principal object of my invention is the provision of a novel electrical field separator that readily permits the passage of electrons therethrough.
  • Another object of my invention is the provision of such a separator that causes each electron that has passed through to follow a prescribed path, i.e., to focus the electrons.
  • Another object of my invention is the provision of such a separator that prevents mixing of the differing electric fields on both sides thereof.
  • a still further object of my invention is the provision of such a device which separates a high field region from a field-free region.
  • I provide a highly efficient shielding element that permits all electrons, even slowly moving ones, to pass through while separating regions of differing electric field intensity so effectively that there is an abrupt division between the fields with substantially no mixing therebetween. That is to say, the field intensity on the low field side is not appreciably increased by the presence of an intense field on the other side of the shielding element.
  • the shield comprises an array of thin equipotential members or surfaces of electrically conductive material, each generated by the movement of a straight line.
  • an array of thin rectangular slats are arranged parallel to each other and to a beam of electrons incident on the shield.
  • the pattern of the electric field formed around and between the slats is such as to aid the electrons travelling through the shielding element into the region of higher electrical intensity.
  • the direction of electrical force lines within the grid also tends to align the electrons in the desired flight path, the path parallel to the slats, if their incident flight paths differ slightly therefrom.
  • the alignment thus serves to focus the electrons passing through the shielding element toward a particular object, such as an electron detector whereby the focusing serves to insure registration by the detector of all electrons passing through the shield, even very slowly moving low energy ones.
  • FIG. 1 is a perspective view of the electron transparent separating shield of my invention.
  • FIG. 2 is a cross-sectional diagrammatic side view of the path of electrons through the shield of FIG. 1.
  • FIG. 3 is a perspective view of a second embodiment of my invention.
  • FIG. 1 there is shown a perspective view of the shielding element of my invention showing a grid or array of planar surfaces in the form of slats 2, and upper and lower annular plates l which hold the slats together in proper alignment.
  • the slats 2 are thin flat strips of a planar configuration constructed of an electrically conductive material such as gold-plated molybdenum, which may be coated with colloidal graphite to obtain a more nearly uniform electric contact potential.
  • the slats may be rectangular in shape as illustrated, with a length dimension L much greater than the width W, but it will be understood that the rectangular configuration is merely one of many that successfully embody my invention.
  • the length dimension L is normal to the direction of electron flight which enters the shield from region 21, and exits into region 25 as in dicated by the arrows associated with numerals 21, 25.
  • the circular plates 4 positioned above and below the slats are provided to secure the slats in a desired parallel position.
  • the means for retaining the slats in parallel position is not limited to two annular plates, but may, as further examples, comprise a single cylinder around the outer edges of the slats, or rectangular end plate members, depending upon the outline of the slat array in a plane normal to important aspect of the plates is that they firmly secure the slats together in a parallel array without interfering with electrons traveling therethrough.
  • the shield comprising the slat grid illustrated is intended for use with the spectrometer described in the aforementioned patent application, the grid 7 being placed in a tubular member.
  • FIG. 2 is a side view of two adjacent slats in FIG. 1, and indicates the manner in which the lines of an electric field terminate on the slats of the grid of FIG. 1. Substantially no electric field is present in region 21 of the grid.
  • the lines of force 22 due to a high voltage applied to detector, or other member 23 run between member 23 and the faces 24 of the slats 20, constituting a relatively intense electric field in region 25 of the grid. Since lines of force are always substantially perpendicular to the conducting surfaces which they contact, the lines of force extending between the surface of member 23 and surfaces 24 of slots are perpendicular to both surfaces.
  • a potential is preferably applied to the grid by means of conductor 1 l suitably connected to plate 4 so as to bring it to the same voltage level as the region 21 from where the electrons enter the grid.
  • conductor 1 l suitably connected to plate 4 so as to bring it to the same voltage level as the region 21 from where the electrons enter the grid.
  • the individual grid slats 20 are all at the same potential (equipotential), there is no field therebetween.
  • the field that is set up between the grid and member 23 is caused solely by the potential difference between the two.
  • the lines of the field extend only from a grid slat to member 23, since these are the only surfaces which differ in potential.
  • slot elements 20 are spaced apart by a distance d short compared with their common width W, and it is found by the use of this equation that the two electric field components in the spaces between parallel slats 20 are very closely represented by equations of the form in which x is a coordinate measuring distance parallel to the slats 20 from the plane of ends 27, and y is the coordinate measuring distance from the midplane of any adjacent pair of slats 20, and E is a constant determined by the magnitude of the potential applied to member 23.
  • the motion of an electron entering a field with this configuration can be computed by standard methods of particle dynamics, employing either numerical or analogue techniques, and it can thereby be demonstrated rigorously that'the trajectory 26 of an electron which is incident on the grid from region 21 is a curved path 26 which may be regarded as an oscillation with diminishing amplitude in the y-coordinate accompanied by a translation at increasing velocity in the x-coordinate, the oscillation in the y-coordinate taking place only while the electron is within the grid. It can toward member 23.
  • the directional effect of the lines of force is such that electrons that are slightly misdirected when enter trons are directed toward the midplane of the grid and emerge therefrom very nearly parallel to the intended path toward detector or other recording means 23.
  • the electric field configuration within the space between adjacent slat elements 20 may be described mathematically by the aid of Laplaces also be verified by inspection of the equation for the x-component of the electric field intensity, E that this component is greatly attenuated by the grid if the width Wof slats 20 is appreciably greater than the spacing d of adjacent slats.
  • width W is preferably at least 5 to 10d, and the slat spacing d is much greater than the slat thickness t. It should be emphasized that the spacing d between adjacent slats need not be equal for each pair of adjacent slats, but is so employed for ease in manufacture.
  • the grid thus efficiently separates a region of intense field strength from a region having no or substantially no field present therein, while focusing the electrons that pass therethrough. It is also significant that the component of electric field parallel to the slats 20 helps to speed electrons toward their destination, member 23, as they are traveling therethrough. Guard structures (focusing means) which extend upward from the grid in region 25 may be mounted adjacent thereto as described in the copending application to impart a slight convergence to the field in region 25 between the grid and the detector 23 so that electrons emerging from between any of the slats are focused toward the center of the detector or toward any other point desired.
  • FIG. 3 An alternative configuration useful for other purposes is illustrated in FIG. 3 and consists of a cylindrical array of long, electrically conductive planar slats 30, arranged radially, so that their planes, if extended, would intersect in a common axis 32.
  • An electric field-free interior region 34 is established, while at the same time a strong outward field is maintained in exterior region 36 between the outer parts of the arrayand a coaxial, cylindrical, electrically conductive magnetic shield 38 which encloses the array.
  • the spacing between adjacent slats is sufficiently small to prevent electric field penetration into region 34.
  • This radial configuration is useful with the spectrometer previously mentioned as a drift tube element wherein properly directed electrons pass longitudinally through fieldfree region 34 and misdirected electrons migrate to the shield, that is, the radial array of slats 30 extends parallel to and coaxial with the desired electron drift path.
  • a second application of a radial configuration of planar slats is in investigations of the angular distribution of slow scattered or secondary particles which must subsequently pass through an electric field region before they can be detected. For example, electrons emitted from suitable surfaces which are heated, bombarded with fast particles, illuminated with radiation of short wavelength, or which contain a radioactive material, may scatter in many directions. Furthermore, a
  • each grid configuration comprising a pair of adjacent slat grids (or greater number of adjacent slat grids, depending upon the angular resolution desired) being maintained at an electric potential of appropriate magnitude relative to a corresponding suitable detector associated therewith.
  • the angular distribution of emissions of the electrons is then determined by the relative response of the detectors which are positioned in the region exterior of the slat grids.
  • Apparatus embodying my invention is sturdy in construction and well adapted for use in conjunction with the study of the properties of electrons.
  • the grid effectively separates fields of differing intensity and provides a focusing action without undesirably interfering with the flight of electrons passing therethrough.
  • planar surfaces comprise thin slats each having a length dimension which is normal to the direction of electron flight and greater than the width dimension thereof.
  • width dimension is at least 5 times greater than the spacing between adjacent slats to thereby greatly attenuate a component of the electric field intensity between adjacent slats which causes translation of the electron path at increasing velocity in a direction normal to a plane containing the length dimension ends of said slats.
  • planar surfaces comprise thin slats each having a length dimension which is normal to the direction of electron flight and greater than the width dimension thereof, said thin slats constructed of gold-plated molybdenum coated with colloidal graphite.
  • the width dimension is greater than the spacing between adjacent slats to thereby greatly attenuate a component of the electric field intensity between adjacent slats which cause translation of the electron path at increasing velocity in a direction normal to a plane containing the length dimension ends of said slats.
  • an array of equipotential planar surfaces constructed of electrically conductive material, said surfaces being spaced apart and parallel to the directions of flight of electrons passing between adjacent pairs of said surfaces from a low electric field intensity region to a higher electric field intensity region whereby the two regions are separated with substantially n interaction between the fields in the two regions, the spacing between said surfaces including the ends thereof being open along the electron flight path to prevent any scattering of electrons especially low energy electrons;

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

An abrupt transition-shielding device for permitting electron passage therethrough while separating a strong electric field from a field-free region. The shield is constructed of an array of thin equipotential members arranged in a particular pattern, either parallel to each other and to the incident electron path, or a cylindrical array of members arranged radially. The spacing between the members is completely unobstructed along the electron flight path to prevent any scattering of electrons especially in the low energy range.

Description

United States Patent Inventor George C. Baldwin Schenectady, N .Y.
Nov. 25,1968
Division of Ser. No. 519,158, Jan. 6, 1966, Patent No. 3,482,091.
Feb. 23, 1971 General Electric Company App]. No. Filed Patented Assignee ELECTRON TRANSPARENT SHIELD FOR SEPARATING REGIONS OF DIFFERENT FIELD INTENSITIES 10 Claims, 3 Drawing Figs.
US. Cl 313/74, 313/86, 313/348, 313/355 Int. Cl H0lj 33/00, H01j 1/46 Field of Search 250/41.9
References Cited UNITED STATES PATENTS 2,070,816 2/1937 Von Wedel 313/106 2,296,885 9/1942 Vance 313/348 2,886,499 5/1959 Schaer et a1. 204/41 2,894,169 7/1959 Kreuchen 3l3/106X FOREIGN PATENTS 962,621 l/1964 Great Britain 313/348 Primary Examiner.lohn Kominski.
Assistant Examiner-E. R. LaRoche Attorneys-Paul A. Frank, Richard R. Brainard, John F.
Ahern, Louis A. Moucha, Frank L. Neuhauser, Oscar B. Waddell and Melvin M. Goldenberg ABSTRACT: An abrupt transition-shielding device for permitting electron passage therethrough while separating a strong electric field from a field-free region. The shield is constructed of an array of thin equipotential members arranged in a particular pattern, either parallel to each other and to the incident electron path, or a cylindrical array of members arranged radially. The spacing between the members is completely unobstructed along the electron flight path to prevent any scattering of electrons especially in the low energy range.
PATENTEU FEB23 lsn M Z? 65 t Z MMJJA mwi 3 y b ELECTRON TRANSPARENT SHHELD FOR SEFARA'IING REGTONS F DIFFERENT WELD HNTENSITHES This application is a continuation of my copending application Ser. No. 519,158, now U.S. Pat. No. 3,482,091 filed Jan. 6, 1966, having the same title and assigned to the assignee of the parent application. I
My invention relates to a novel electrical shielding element for separating regions of unequal electric field intensities, and more particularly, to a shield which permits electrons to pass therethrough while separating a region of strong electric field from a substantially field-free region.
in many fields of modern technology it is desirable to maintain a field-free region adjacent to a region which has an electric or magnetic field therein. The problem becomes more difficult when it is desired for electrons to travel from one region, especially the field-free one, into the other, a high electric field region, while maintaining the fields in their desired relationship. The problem arises in electronic devices, such as exemplified by the electron time-of-flight spectrometer disclosed in concurrently filed application Ser. No. 519,024, now US. Pat. No. 3,435,207, entitled Method and Apparatus for Measuring Velocity of Low Energy Electrons" by George C. Baldwin, the inventor of the present application, and which is assigned to the assignee of the present application. In this spectrometer, slowly moving low energy electrons travelling in a fieldfree region (an area of substantially no electric or magnetic field) over a measured flight path, pass into a region having an intense electric field of such intensity that sufficient energy is imparted to them in a short distance for them to actuate an electron detector so as to be properly registered and counted. As an essential requisite for proper operation, transition between the field-free drift region and the adjacent electric field region must be abrupt, in order that the measured flight path be precisely defined. Also, the abruptness is necessary so that the electron is given the energy needed to effect registration in a time short in comparison with its time of flight over the measured path. Both the distance and the time required by the electron to traverse the path are then accurately known so that the electron velocity can be precisely determined. An additional problem which then arises is that of providing a field configuration which will not so deflect the paths of the electrons travelling from the field-free region into the high field region so as to prevent their reaching the detector. One particular shielding device commonly employed for separating two regions of unequal electric field intensity uses grids of parallel wires that have circular cross-sectional areas, which are evenly arrayed in one or more parallel planes, and maintained at an electric potential appropriate to establish the required electric field conditions on each side thereof. Since, the electric field surrounding each wire is, in its immediate vicinity, perpendicular to its surface, then an electric field which is uniform at some distance from the grid but which terurinates on circular cross-sectional wire members becomes in the vicinity of the wire member, a radial field with its lines of force converging upon the element from all sides in the vicinity of the wire. Thus, reverse and transverse field components exist in the electric field near the wire. Even perfectly directed slow electrons trying to pass through such a nonuniform electric field will be scattered by such a field, especially by the reverse and the transverse components of the field. The scattering is to an extent dependent on the energies of the electrons. Very slow electrons, which are often those desired to be measured, are the ones most readily scattered or turned back by the transverse and reverse components of this electric field. The scattering and dispersion, especially of the slow energy electrons occurs to such an extent that no useful function can be performed with the low energy electrons. it is desirable that the shielding element transmit even low energy electrons without scattering them. It is also useful for the shielding element to focus the electrons that pass therethrough, as in the case where a collector or detector is located on one side of the shield, the shielding element serving to focus the electrons to the most sensitive part of the detector for most effective operation thereof. The need then arises for a shielding element which separates regions of differing electric field intensities in such a manner that even though there is an abrupt transition, there is no significant mixing between the two fields, and slow electrons may thus readily pass through the hielding element to bedirected in a desired manner.
The principal object of my invention is the provision of a novel electrical field separator that readily permits the passage of electrons therethrough.
Another object of my invention is the provision of such a separator that causes each electron that has passed through to follow a prescribed path, i.e., to focus the electrons.
Another object of my invention is the provision of such a separator that prevents mixing of the differing electric fields on both sides thereof.
A still further object of my invention is the provision of such a device which separates a high field region from a field-free region.
In carrying out the objects of my invention, I provide a highly efficient shielding element that permits all electrons, even slowly moving ones, to pass through while separating regions of differing electric field intensity so effectively that there is an abrupt division between the fields with substantially no mixing therebetween. That is to say, the field intensity on the low field side is not appreciably increased by the presence of an intense field on the other side of the shielding element. The shield comprises an array of thin equipotential members or surfaces of electrically conductive material, each generated by the movement of a straight line. As: one example, an array of thin rectangular slats are arranged parallel to each other and to a beam of electrons incident on the shield. The pattern of the electric field formed around and between the slats is such as to aid the electrons travelling through the shielding element into the region of higher electrical intensity. The direction of electrical force lines within the grid also tends to align the electrons in the desired flight path, the path parallel to the slats, if their incident flight paths differ slightly therefrom. The alignment thus serves to focus the electrons passing through the shielding element toward a particular object, such as an electron detector whereby the focusing serves to insure registration by the detector of all electrons passing through the shield, even very slowly moving low energy ones.
The attached drawing illustrates a preferred embodiment of my invention in which:
FIG. 1 is a perspective view of the electron transparent separating shield of my invention.
FIG. 2 is a cross-sectional diagrammatic side view of the path of electrons through the shield of FIG. 1.
FIG. 3 is a perspective view of a second embodiment of my invention.
In FIG. 1 there is shown a perspective view of the shielding element of my invention showing a grid or array of planar surfaces in the form of slats 2, and upper and lower annular plates l which hold the slats together in proper alignment. The slats 2 are thin flat strips of a planar configuration constructed of an electrically conductive material such as gold-plated molybdenum, which may be coated with colloidal graphite to obtain a more nearly uniform electric contact potential. The slats may be rectangular in shape as illustrated, with a length dimension L much greater than the width W, but it will be understood that the rectangular configuration is merely one of many that successfully embody my invention. The length dimension L is normal to the direction of electron flight which enters the shield from region 21, and exits into region 25 as in dicated by the arrows associated with numerals 21, 25.
The circular plates 4 positioned above and below the slats are provided to secure the slats in a desired parallel position. It should be understood that the means for retaining the slats in parallel position is not limited to two annular plates, but may, as further examples, comprise a single cylinder around the outer edges of the slats, or rectangular end plate members, depending upon the outline of the slat array in a plane normal to important aspect of the plates is that they firmly secure the slats together in a parallel array without interfering with electrons traveling therethrough. The shield comprising the slat grid illustrated is intended for use with the spectrometer described in the aforementioned patent application, the grid 7 being placed in a tubular member.
FIG. 2 is a side view of two adjacent slats in FIG. 1, and indicates the manner in which the lines of an electric field terminate on the slats of the grid of FIG. 1. Substantially no electric field is present in region 21 of the grid. The lines of force 22 due to a high voltage applied to detector, or other member 23 run between member 23 and the faces 24 of the slats 20, constituting a relatively intense electric field in region 25 of the grid. Since lines of force are always substantially perpendicular to the conducting surfaces which they contact, the lines of force extending between the surface of member 23 and surfaces 24 of slots are perpendicular to both surfaces. In a typical application, for example in the electron time-offlight spectrometer, a potential is preferably applied to the grid by means of conductor 1 l suitably connected to plate 4 so as to bring it to the same voltage level as the region 21 from where the electrons enter the grid. Thus, there is no field produced between the grid and region 21. Also, since the individual grid slats 20 are all at the same potential (equipotential), there is no field therebetween. Hence, the field that is set up between the grid and member 23 is caused solely by the potential difference between the two. Thus, the lines of the field extend only from a grid slat to member 23, since these are the only surfaces which differ in potential. These lines are parallel and uniformly spaced near member 23, that is to say, the electric field is uniform. In the space within two adjacent grid elements 20, the electric field intensity grows weaker as the distance from the voltage source member 23 increases, thus any lines of force which extend to end 27 of the grid slats or beyond are so few as to be insignificant.
It is thus readily seen that all lines of force extend in directions such that they have one component perpendicular to surface 24 and another directed toward member 23, without any components thereof being oppositely directed away from the surface of member 23. This is the major problem with previous grids, especially wire ones, wherein some of the lines of force or components thereof extend for a slight distance in a direction away from member 23, and thus electrons trying to pass through the grid are scattered by these opposed lines of force. My invention thus completely eliminated this problem of reversed lines of force. As an electron, shown byline 26, enters the space between grid plates 20 it is acted upon by electric lines which direct it first toward the space midway between plates 20 and which then direct it equation, well-known in the theory of electric and magnetic fields. In all practically significant cases slot elements 20 are spaced apart by a distance d short compared with their common width W, and it is found by the use of this equation that the two electric field components in the spaces between parallel slats 20 are very closely represented by equations of the form in which x is a coordinate measuring distance parallel to the slats 20 from the plane of ends 27, and y is the coordinate measuring distance from the midplane of any adjacent pair of slats 20, and E is a constant determined by the magnitude of the potential applied to member 23. The motion of an electron entering a field with this configuration can be computed by standard methods of particle dynamics, employing either numerical or analogue techniques, and it can thereby be demonstrated rigorously that'the trajectory 26 of an electron which is incident on the grid from region 21 is a curved path 26 which may be regarded as an oscillation with diminishing amplitude in the y-coordinate accompanied by a translation at increasing velocity in the x-coordinate, the oscillation in the y-coordinate taking place only while the electron is within the grid. It can toward member 23. The directional effect of the lines of force is such that electrons that are slightly misdirected when enter trons are directed toward the midplane of the grid and emerge therefrom very nearly parallel to the intended path toward detector or other recording means 23. Thus, a focusing action is readily achieved with the shielding element. The electric field configuration within the space between adjacent slat elements 20 may be described mathematically by the aid of Laplaces also be verified by inspection of the equation for the x-component of the electric field intensity, E that this component is greatly attenuated by the grid if the width Wof slats 20 is appreciably greater than the spacing d of adjacent slats. Thus, if W= 10d, the electric field intensity at the midplane is less in space 21 than that in space 25 by a factor cosh (1011-). In general, width W is preferably at least 5 to 10d, and the slat spacing d is much greater than the slat thickness t. It should be emphasized that the spacing d between adjacent slats need not be equal for each pair of adjacent slats, but is so employed for ease in manufacture.
The grid thus efficiently separates a region of intense field strength from a region having no or substantially no field present therein, while focusing the electrons that pass therethrough. It is also significant that the component of electric field parallel to the slats 20 helps to speed electrons toward their destination, member 23, as they are traveling therethrough. Guard structures (focusing means) which extend upward from the grid in region 25 may be mounted adjacent thereto as described in the copending application to impart a slight convergence to the field in region 25 between the grid and the detector 23 so that electrons emerging from between any of the slats are focused toward the center of the detector or toward any other point desired.
An alternative configuration useful for other purposes is illustrated in FIG. 3 and consists of a cylindrical array of long, electrically conductive planar slats 30, arranged radially, so that their planes, if extended, would intersect in a common axis 32. An electric field-free interior region 34 is established, while at the same time a strong outward field is maintained in exterior region 36 between the outer parts of the arrayand a coaxial, cylindrical, electrically conductive magnetic shield 38 which encloses the array. The spacing between adjacent slats is sufficiently small to prevent electric field penetration into region 34. This radial configuration is useful with the spectrometer previously mentioned as a drift tube element wherein properly directed electrons pass longitudinally through fieldfree region 34 and misdirected electrons migrate to the shield, that is, the radial array of slats 30 extends parallel to and coaxial with the desired electron drift path.
A second application of a radial configuration of planar slats is in investigations of the angular distribution of slow scattered or secondary particles which must subsequently pass through an electric field region before they can be detected. For example, electrons emitted from suitable surfaces which are heated, bombarded with fast particles, illuminated with radiation of short wavelength, or which contain a radioactive material, may scatter in many directions. Furthermore, a
beam of electrons passing through a gas may scatter as described in the aforementioned copending application. The directions in which scattered electrons proceed from their points of origin is often of scientific or technological interest. in the case wherein the points of origin of the electrons lie within a field-free drift region or volume 34, such region is partially or completely (depending upon the surface of electron emission and other considerations) surrounded by an array (plurality) of radial slat grid configurations similar to that of FIG. 3, or comprising concentric conical members, each grid configuration comprising a pair of adjacent slat grids (or greater number of adjacent slat grids, depending upon the angular resolution desired) being maintained at an electric potential of appropriate magnitude relative to a corresponding suitable detector associated therewith. The angular distribution of emissions of the electrons is then determined by the relative response of the detectors which are positioned in the region exterior of the slat grids.
it is apparent from the foregoing that my invention attains the objectives set forth. Apparatus embodying my invention is sturdy in construction and well adapted for use in conjunction with the study of the properties of electrons. The grid effectively separates fields of differing intensity and provides a focusing action without undesirably interfering with the flight of electrons passing therethrough.
While specific embodiment of my invention have been described, the invention is not limited thereto, since many modifications may be made by one skilled in the art and the appended claims are intended to cover all such modifications as fall within the true spirit and scope of my invention.
lclaim:
1. Apparatus for separating regions of low and high electric field intensity while permitting electrons including very low energy electrons to travel therethrough in focused relationship comprising:
an array of equipotential planar surfaces constructed of electrically conductive material, said surfaces being spaced apart and parallel to each other and to the directions of flight of electrons passing through the apparatus, the spacing between said surfaces being completely unobstructed along the electron flight path through the apparatus to prevent any scattering of electrons especially in the low energy range; and
means for applying a voltage to said surfaces for maintaining said surfaces at the voltage level of the region from where the electrons enter the array to thereby obtain an electric field free region between adjacent said surfaces and also between the array and electron entrance region and develop a uniform electric field in the region to which the electrons exit from the array.
2. The apparatus set forth in claim 1 wherein said planar surfaces comprise thin slats each having a length dimension which is normal to the direction of electron flight and greater than the width dimension thereof.
3. The apparatus set forth in claim 2 wherein the width dimension is at least 5 times greater than the spacing between adjacent slats to thereby greatly attenuate a component of the electric field intensity between adjacent slats which causes translation of the electron path at increasing velocity in a direction normal to a plane containing the length dimension ends of said slats.
4. The apparatus set forth in claim 2 wherein said thin slats are constructed of a material which obtains a nearly uniform electric contact potential.
5. The apparatus set forth in claim gold-plated molybdenum coated with 6. In an apparatus for measuring the velocity of low energy electrons passing from a low electric field intensity passageway to a higher electric field intensity region:
an array of equipotential planar surfaces constructed of electrically conductive material, said surfaces being spaced apart and parallel to each other and to the directionsof flight of electrons passing between adjacent pairs ofsard sur aces from a low electric field intensity region to a higher electric field intensity region whereby the two regions are abruptly separated with substantially no interaction between the fields :in the two regions, the spacing between said surfaces being completely unobstructed along the electron flight path through the apparatus to prevent any scattering of electrons especially in the low energy range; and
means for applying a voltage to said surfaces for maintaining said surfaces at the voltage level of the low electric field intensity region to thereby provide parallel and uniformly spaced lines of electric field in the higher electric field intensity region and thereby eliminate the problem of opposed lines of force therein.
7. In the apparatus set forth in claim 6 wherein said planar surfaces comprise thin slats each having a length dimension which is normal to the direction of electron flight and greater than the width dimension thereof, said thin slats constructed of gold-plated molybdenum coated with colloidal graphite.
8. In the apparatus set forth in claim 7 wherein the width dimension is greater than the spacing between adjacent slats to thereby greatly attenuate a component of the electric field intensity between adjacent slats which cause translation of the electron path at increasing velocity in a direction normal to a plane containing the length dimension ends of said slats.
9. The apparatus set forth in claim 8 and further comprising means for securing the array of thin slats in a desired position.
10. In an apparatus for measuring the velocity of low energy electrons which employs a low electric field intensity passageway and a higher electric field intensity region:
an array of equipotential planar surfaces constructed of electrically conductive material, said surfaces being spaced apart and parallel to the directions of flight of electrons passing between adjacent pairs of said surfaces from a low electric field intensity region to a higher electric field intensity region whereby the two regions are separated with substantially n interaction between the fields in the two regions, the spacing between said surfaces including the ends thereof being open along the electron flight path to prevent any scattering of electrons especially low energy electrons;
means for securing the array of surfaces in a desired position, and
voltage means connected to said array securing means for maintaining said equipotential planar surfaces at the voltage level of the low electric field intensity region to thereby provide parallel and uniformly spaced lines of electric field in the higher electric field intensity region and thereby eliminate the problem of opposed lines of force therein.
4 wherein the material is colloidal graphite.

Claims (10)

1. Apparatus for separating regions of low and high electric field intensity while permitting electrons including very low energy electrons to travel therethrough in focused relationship comprising: an array of equipotential planar surfaces constructed of electrically conductive material, said surfaces being spaced apart and parallel to each other and to the directions of flight of electrons passing through the apparatus, the spacing between said surfaces being completely unobstructed along the electron flight path through the apparatus to prevent any scattering of electrons especially in the low energy range; and means for applying a voltage to said surfaces for maintaining said surfaces at the voltage level of the region from where the electrons enter the array to thereby obtain an electric field free region between adjacent said surfaces and also between the array and electron entrance region and develop a uniform electric field in the region to which the electrons exit from the array.
2. The apparatus set forth in claim 1 wherein said planar surfaces comprise thin slats each having a length dimension which is normal to the direction of electron flight and greater than the width dimension thereof.
3. The apparatus set forth in claim 2 wherein the width dimension is at least 5 times greater than the spacing between adjacent slats to thereby greatly attenuate a component of the electric field intensity between adjacent slats which causes translation of the electron path at increasing velocity in a direction normal to a plane containing the length dimension ends of said slats.
4. The apparatus set forth in claim 2 wherein said thin slats are constructed of a material which obtains a nearly uniform electric contact potential.
5. The apparatus set forth in claim 4 wherein the material is gold-plated molybdenum coated with colloidal graphite.
6. In an apparatus for measuring the velocity of low energy electrons passing from a low electric field intensity passageway to a higher electric field intensity region: an array of equipotential planar surfaces constructed of electrically conductive material, said surfaces being spaced apart and parallel to each other and to the directions of flight of electrons passing between adjacent pairs of said surfaces from a low electric field intensity region to a higher electric field intensity region whereby the two regions are abruptly separated with substantially no interaction between the fields in the two regions, the spacing between said surfaces being completely unobstructed along the electron flight path through the apparatus to prevent any scattering of electrons especially in the low energy range; and means for applying a voltage to said surfaces for maintaining said surfaces at the voltage level of the low electric field intensity region to thereby provide parallel and uniformly spaced lines of electric field in the higher electric field intensity region and thereby eliminate the problem of opposed lines of force therein.
7. In the apparatus set forth in claim 6 wherein said planar surfaces comprise thin slats each having a length dimension which is normal to the direction of electron flight and greater than the width dimension thereof, said thin slats constructed of gold-plated molybdenum coated with colloidal graphite.
8. In the apparatus set forth in claim 7 wherein the width dimension is greater than the spacing between adjacent slats to thereby greaTly attenuate a component of the electric field intensity between adjacent slats which cause translation of the electron path at increasing velocity in a direction normal to a plane containing the length dimension ends of said slats.
9. The apparatus set forth in claim 8 and further comprising means for securing the array of thin slats in a desired position.
10. In an apparatus for measuring the velocity of low energy electrons which employs a low electric field intensity passageway and a higher electric field intensity region: an array of equipotential planar surfaces constructed of electrically conductive material, said surfaces being spaced apart and parallel to the directions of flight of electrons passing between adjacent pairs of said surfaces from a low electric field intensity region to a higher electric field intensity region whereby the two regions are separated with substantially n interaction between the fields in the two regions, the spacing between said surfaces including the ends thereof being open along the electron flight path to prevent any scattering of electrons especially low energy electrons; means for securing the array of surfaces in a desired position, and voltage means connected to said array securing means for maintaining said equipotential planar surfaces at the voltage level of the low electric field intensity region to thereby provide parallel and uniformly spaced lines of electric field in the higher electric field intensity region and thereby eliminate the problem of opposed lines of force therein.
US778549A 1966-01-06 1968-11-25 Electron transparent shield for separating regions of different field intensities Expired - Lifetime US3566175A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US51915866A 1966-01-06 1966-01-06
US77854968A 1968-11-25 1968-11-25

Publications (1)

Publication Number Publication Date
US3566175A true US3566175A (en) 1971-02-23

Family

ID=27059728

Family Applications (1)

Application Number Title Priority Date Filing Date
US778549A Expired - Lifetime US3566175A (en) 1966-01-06 1968-11-25 Electron transparent shield for separating regions of different field intensities

Country Status (1)

Country Link
US (1) US3566175A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2235480A1 (en) * 1973-06-26 1975-01-24 Philips Nv
EP0217226A1 (en) * 1985-09-30 1987-04-08 Siemens Aktiengesellschaft Collimator for a diagnostic X-ray apparatus
WO2018158422A1 (en) * 2017-03-03 2018-09-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Apparatus for generating accelerated electrons

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2235480A1 (en) * 1973-06-26 1975-01-24 Philips Nv
EP0217226A1 (en) * 1985-09-30 1987-04-08 Siemens Aktiengesellschaft Collimator for a diagnostic X-ray apparatus
US4710947A (en) * 1985-09-30 1987-12-01 Siemens Aktiengesellschaft Collimator for a radiation diagnostics apparatus
WO2018158422A1 (en) * 2017-03-03 2018-09-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Apparatus for generating accelerated electrons
US10806018B2 (en) 2017-03-03 2020-10-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus for generating accelerated electrons

Similar Documents

Publication Publication Date Title
Tromp et al. A new two‐dimensional particle detector for a toroidal electrostatic analyzer
US3445650A (en) Double focussing mass spectrometer including a wedge-shaped magnetic sector field
WO2002028153A1 (en) Apparatus for planar beam radiography and method of aligning an ionizing radiation detector with respect to a radiation source
AU2001290484A1 (en) Apparatus for planar beam radiography and method of aligning an ionizing radiation detector with respect to a radiation source
US5530249A (en) Electrode configuration and signal subtraction technique for single polarity charge carrier sensing in ionization detectors
JPH0736321B2 (en) Spectrometer-objective lens system for quantitative potential measurement
CN108873053B (en) Neutron and gamma ray combined detector
Huchital et al. Resolution and Sensitivity of the Spherical‐Grid Retarding Potential Analyzer
Langer et al. 7A11-Laser induced emission of electrons, ions, and X rays from solid targets
Nishimura et al. A new toroidal electrostatic analyzer and application to surface analysis
WO2017126089A1 (en) Retarding potential type energy analyzer
US3240931A (en) Spatial discriminator for particle beams
US3461285A (en) Mass spectrometer ion source with a two region ionization chamber to minimize energy spreading of the ions
US3566175A (en) Electron transparent shield for separating regions of different field intensities
JPS6329436A (en) Charged particle optical system with astigmation correction means
GB1304344A (en)
JPH0299846A (en) Energy analyzer
US3482091A (en) Electron transparent shield for separating regions of different field intensities
US3733483A (en) Electron spectroscopy
US3678267A (en) Ion source comprising a concave-shaped repeller
US3679896A (en) Electrostatic prism
US4081674A (en) Ion microprobe analyzer
US4680468A (en) Particle detector
US3217161A (en) Electrode means to electrostatically focus ions separated by a mass spectrometer on a detector
WO2018225563A1 (en) Radiation detector and radiation detection device