US3562008A - Method for producing a ruthenium coated titanium electrode - Google Patents
Method for producing a ruthenium coated titanium electrode Download PDFInfo
- Publication number
- US3562008A US3562008A US767281A US3562008DA US3562008A US 3562008 A US3562008 A US 3562008A US 767281 A US767281 A US 767281A US 3562008D A US3562008D A US 3562008DA US 3562008 A US3562008 A US 3562008A
- Authority
- US
- United States
- Prior art keywords
- titanium
- electrode
- ruthenium
- coating
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010936 titanium Substances 0.000 title abstract description 56
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title abstract description 55
- 229910052719 titanium Inorganic materials 0.000 title abstract description 55
- 238000004519 manufacturing process Methods 0.000 title abstract description 10
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 title description 26
- 229910052707 ruthenium Inorganic materials 0.000 title description 25
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 34
- 238000010438 heat treatment Methods 0.000 abstract description 23
- 239000000203 mixture Substances 0.000 abstract description 23
- 150000003609 titanium compounds Chemical class 0.000 abstract description 6
- 239000004408 titanium dioxide Substances 0.000 abstract description 5
- 239000005416 organic matter Substances 0.000 abstract description 4
- 150000002736 metal compounds Chemical class 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 abstract 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 abstract 1
- 238000000576 coating method Methods 0.000 description 58
- 239000011248 coating agent Substances 0.000 description 52
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 35
- 239000002585 base Substances 0.000 description 29
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 28
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 25
- 229910052751 metal Inorganic materials 0.000 description 24
- 239000002184 metal Substances 0.000 description 24
- 238000000034 method Methods 0.000 description 22
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- 229910000510 noble metal Inorganic materials 0.000 description 18
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 18
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 15
- -1 alkali metal chlorate Chemical class 0.000 description 15
- 238000002441 X-ray diffraction Methods 0.000 description 14
- 229910052697 platinum Inorganic materials 0.000 description 13
- 239000000460 chlorine Substances 0.000 description 9
- 229910044991 metal oxide Inorganic materials 0.000 description 9
- 150000004706 metal oxides Chemical class 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 229910052763 palladium Inorganic materials 0.000 description 8
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 7
- 229910052753 mercury Inorganic materials 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 6
- XTEGARKTQYYJKE-UHFFFAOYSA-M chlorate Inorganic materials [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910001092 metal group alloy Inorganic materials 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000001680 brushing effect Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000008199 coating composition Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910000497 Amalgam Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229940045985 antineoplastic platinum compound Drugs 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical compound OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 150000003058 platinum compounds Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 150000003304 ruthenium compounds Chemical class 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 150000003608 titanium Chemical class 0.000 description 2
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 1
- KTXWGMUMDPYXNN-UHFFFAOYSA-N 2-ethylhexan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCCC(CC)C[O-].CCCCC(CC)C[O-].CCCCC(CC)C[O-].CCCCC(CC)C[O-] KTXWGMUMDPYXNN-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- JFXKHDYTACRKLL-UHFFFAOYSA-J C(CCCCCCCCCCCCCCCCC)(=O)[O-].O[Ti+3].C(CCCCCCCCCCCCCCCCC)(=O)[O-].C(CCCCCCCCCCCCCCCCC)(=O)[O-] Chemical compound C(CCCCCCCCCCCCCCCCC)(=O)[O-].O[Ti+3].C(CCCCCCCCCCCCCCCCC)(=O)[O-].C(CCCCCCCCCCCCCCCCC)(=O)[O-] JFXKHDYTACRKLL-UHFFFAOYSA-J 0.000 description 1
- ITUPIWSEJOQEFR-UHFFFAOYSA-K CC(C)O[Ti+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O Chemical compound CC(C)O[Ti+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O ITUPIWSEJOQEFR-UHFFFAOYSA-K 0.000 description 1
- NDSXSCFKIAPKJG-UHFFFAOYSA-N CC(C)O[Ti] Chemical compound CC(C)O[Ti] NDSXSCFKIAPKJG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 241000779819 Syncarpia glomulifera Species 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- QFJPQEKQIKSNBU-UHFFFAOYSA-M [Ti]O Chemical compound [Ti]O QFJPQEKQIKSNBU-UHFFFAOYSA-M 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- VNBCLZZFHLADIG-UHFFFAOYSA-K butanoate ruthenium(3+) Chemical compound [Ru+3].CCCC([O-])=O.CCCC([O-])=O.CCCC([O-])=O VNBCLZZFHLADIG-UHFFFAOYSA-K 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HRSOSLBSWOHVPK-UHFFFAOYSA-L diiodoruthenium Chemical compound I[Ru]I HRSOSLBSWOHVPK-UHFFFAOYSA-L 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- FJIUUBZGIYMKFS-UHFFFAOYSA-N dioxoruthenium oxygen(2-) titanium(4+) Chemical compound [Ru](=O)=O.[O-2].[O-2].[Ti+4] FJIUUBZGIYMKFS-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- AUFGVSIFIZFJMO-UHFFFAOYSA-N nitrosyl bromide ruthenium Chemical compound N(=O)Br.[Ru] AUFGVSIFIZFJMO-UHFFFAOYSA-N 0.000 description 1
- KQJBQMSCFSJABN-UHFFFAOYSA-N octadecan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCCCCCCCCCCCCCCCC[O-].CCCCCCCCCCCCCCCCCC[O-].CCCCCCCCCCCCCCCCCC[O-].CCCCCCCCCCCCCCCCCC[O-] KQJBQMSCFSJABN-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- GFNGXEPRHYGJQP-UHFFFAOYSA-J phthalate;titanium(4+) Chemical compound [Ti+4].[O-]C(=O)C1=CC=CC=C1C([O-])=O.[O-]C(=O)C1=CC=CC=C1C([O-])=O GFNGXEPRHYGJQP-UHFFFAOYSA-J 0.000 description 1
- 239000001739 pinus spp. Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 150000003303 ruthenium Chemical class 0.000 description 1
- OJLCQGGSMYKWEK-UHFFFAOYSA-K ruthenium(3+);triacetate Chemical compound [Ru+3].CC([O-])=O.CC([O-])=O.CC([O-])=O OJLCQGGSMYKWEK-UHFFFAOYSA-K 0.000 description 1
- LJZVDOUZSMHXJH-UHFFFAOYSA-K ruthenium(3+);triiodide Chemical compound [Ru+3].[I-].[I-].[I-] LJZVDOUZSMHXJH-UHFFFAOYSA-K 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- MUSFRELEIXGPKU-UHFFFAOYSA-N selanylidenepalladium Chemical compound [Pd]=[Se] MUSFRELEIXGPKU-UHFFFAOYSA-N 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229940036248 turpentine Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/093—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/02—Amorphous compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
Definitions
- FIG. 2 TL BITE 4.55. 2C. mmmmwmfl INVENTOR ALEKSANDRS MABTINSONS FIG. 2
- This invention relates to electrodes for electrolytic cells and, more particularly, to a method of providing a corrosion-resistant, dimensionally-stable anode for electrolysis of aqueous alkali metal chloride in the production of elemental chlorine or alkali metal chlorate.
- Such electrode has a metallic oxide coating.
- alkali metal chloride solutions such as solutions of sodium chloride or potassium chloride
- anodes and cathodes, or bipolar electrodes which when arranged in a spaced electrical series in an electrolytic cell may serve as both anode and cathode, are immersed in an aqueous solution of the sodium chloride or the like and an electric potential is established between the electrodes.
- graphite or carbon electrodes have been used as anodes or as the bipolar electrodes in series. In consequence of the electrochemical reactions which occur, alkali metal chlorate is produced either directly in the cell or outside the cell after the solution is allowed to stand.
- the electrolysis of alkali metal chloride to produce elemental chlorine and alkali metal hydroxide is conducted in two general types of cells-the diaphragm and the mercury cathode cell.
- the diaphragm cell the cell is divided into two compartments-the anode compartment and the cathode compartment-which are separated by a porous diaphragm usually of asbestos.
- the cathode is of perforate metal and the asbestos diaphragm is in contact with the cathode.
- the anode usually of carbon or graphite, is disposed centrally in the anode compartment.
- the cathode In the mercury cathode cell, the cathode is a flowing stream of mercury which flows along a solid metal base connected to the negative pole of a power source.
- the anode again of carbon or graphite, is spaced from the mercury cathode and, as electric current flows, the sodium or like alkali metal is evolved and collected in the mercury as an amalgam which is removed from the cell. Outside the cell the mercury amalgam is contacted with water in a denuder to remove the sodium as sodium hydroxide solution and the mercury is then recycled.
- the present invention is directed to the provision of an improved method of producing such stable electrodes, to the improved electrode thus produced, and to electrolytic cells, particularly to cells of the type described above which contain such electrodes as the anode or anodic surface thereof.
- Electrodes herein contemplated normally should possess a certain degree of rigidity and, in any event, they must have surfaces which exhibit good electrolytic characteristics. These characteristics, particularly in the case of anodes, include low oxygen and chlorine overvoltage, resistance to corrosion and decomposition in the course of use as anodes in the electrolytic cell, and minimum loss of coating during such use. It is well known that certain metals, metallic oxides, and alloys are stable during electrolysis and have other superior properties when used as anodes. Such metals typically include the members of the platinum group; namely, ruthenium, rhodium, palladium, osmium, iridium, and platinum. These metals are not satisfactory for construction of the entire electrode since, for example, their cost is prohibitive. Therefore, these metals, metallic oxides, and alloys are commonly applied as a thin layer over a strength or support member such as a base member comprising titanium,
- tantalum, niobium and alloys thereof These support members have good chemical and electrochemical resistance but may be lacking in good surface electroconductivity because of their tendency to form on their surface an oxide having poor electroconductivity. Even when the platinum metals are applied in a thin layer, the cost is still substantial. Therefore, it is highly desirable to provide a coating having good electrolytic characteristics as is typical of the platinum metals and yet a coating which is less expensive.
- the procedure used in applying the layer of noble metal, metal oxide, or alloy material ly affects the adhesion between the layer and the titanium base member, thus affecting the durability and life span of the electrode.
- One approach to improving the adhesion between the layer and the base member is that of etching the base member prior to coating.
- Another approach is that of oxidizing the surface of the titanium base member, thereby forming a porous titanium oxide layer.
- the adhesion is greater between the noble metal and titanium oxide than bewteen the noble metal and the titanium metal. Irregular results can be obtained with either method.
- the present invention provides an electrode having superior electrolytic characteristics and superior bonding of the noble metal or noble metal oxide coating on the titanium base member as well as providing a more economical coating.
- a thermallydecomposable organic mixture containing a noble metal compound and a titanium compound is applied to the base member.
- the electrode is heated to decompose and/ or to volatilize the organic matter and other components, leaving a deposit of amorphous titanium oxide and the noble metal or noble metal oxide.
- the titanium oxide being mixed with the noble metal or noble metal oxide serves to bond the noble metal or noble metal oxide to the titanium base member.
- the electrode of the present invention has a low chlorine and oxygen over-voltage.
- FIG. 1 shows an X-ray diffraction pattern of an electrode of the present invention produced as described in Example III.
- FIG. 2 shows an X-ray diffraction pattern of the electrode of Example IV prior to final heating.
- FIG. 3 shows an X-ray diffraction pattern of another electrode of Example IV following final heating.
- the present invention provides a method for applying a layer or coating on an electrode which layer exhibits improved electrolytic characteristics and improved adhesion.
- the invention includes the steps of applying to the titanium electrode base one or a plurality of layers of a mixture of certain thermally-decomposable metal organic compounds such as organic salts and esters of both titanium and a platinum group metal.
- a mixture of certain thermally-decomposable metal organic compounds such as organic salts and esters of both titanium and a platinum group metal.
- the resulting coating if comprising a mixture of ruthenium oxide and titanium oxide, should have a ruthenium oxide to titanium oxide ratio of at least 1 to 1 and preferably at least 1.8 to 1 by Weight.
- Resinates of this type are manufactured by the Hanovia Division of Englehart Industries.
- the metallic resinates may be mixed with an organic solvent or diluent, such as terpenes and aromatics, typically, oil of turpentine, xylene and toluene, before being applied to the
- the coating is applied as a series of thin layers in order to promote maximum adhesion of the coating to the base.
- the layers are then heated between coating operations to volatilize or drive off the organic matter, solvent, decomposition products, etc., and to form the oxides of the metals as a thin film on the base member.
- a coating comprising an evenly dispersed mixture of amorphous or essentially noncrystalline titanium oxide and the noble metal or noble metal oxide. Furthermore, the titanium oxide extend-s throughout the coating.
- the type titanium oxide having only a minor amount or no crystallinity not only serves to bond the noble metal or noble metal oxide to the titanium base member but also provides an exposed surface of high electroconductivity and low or even substantially no chlorine overvoltage.
- the electrode produced has excellent electrolytic characteristics and greatly improved adhesion.
- the electrode is heated to an unduly high temperature, the titanium is converted to highly crystalline titanium oxide and a very unsatisfactory electrode is produced having high chlorine overvoltage and a surface which does not conduct electricity satisfactorily.
- the exact temperature to which the electrode coating should be heated depends upon the time of heating and temperature at which the titanium and platinum compounds decompose. It should be high enough to cause formation of the titanium oxide, normally as Tl02, and
- the electrode may be heated to a higher temperature without adversely affecting the overvoltage characteristics of the electrode.
- FIGS. 2 and 3 These drawings are charts of an X-ray diffraction pattern obtained by analyzing the particular electrode on a Philips defractometer.
- the detector was a sealed proportional counter which was operated at 35 kv., 15 milliamperes on the X-ray tube and at 1000 counts per second full scale. Copper radiation was used and the Philips defractometer was adjusted as follows: 1 divergence slit, 0.006 inch receiving slit, and 1 scatter lit.
- the rate at which the detector is rotated is equal to degrees two theta which in this case was equal to a rotation of 2 degrees two theta per minute with a time constant of 2 seconds.
- the detector beam was rotated at twice this rate thus the X-ray diffraction patterns shown in FIGS. 1-3 are at degrees two theta.
- the chart shows background signal over the entire chart and that there is a small peak at an angle of about 27.2 to 28.5 and another at about 34.8 to 36. These peaks reflect a ruthenium oxide having a small degree of crystallinity.
- FIG. 3 shows the graph of an X-ray diffraction pattern of an electrode coated in the same way as the electrode of FIG. 2 except that whereas the electrode of FIG. 2 was heated only to 550 C. the electrode of FIG. 3 was heated to 700 C. for 15 minutes after its last coating was applied.
- the high peak referred to in FIG. 3 shows higher (and unduly high) crystallinity.
- the anode of FIG. 3 was substantially poorer in electrical properties than the anodes of FIGS. 1 and 2.
- the ruthenium oxide shows a small but detectible degree of crystallization in the electrodes of FIGS. 1 and 2 and masks to a degree a small amount of crystallinity of TiO
- the TiO crystallinity was raised substantially by the 700 C. heat treatment as shown by FIG. 3.
- the titanium oxide crystallinity when so measured, should not be above 700% over background and generally should be below 200% to 400% above background. However, rarely is it below 100% above background with the best bonded electrodes.
- the temperature of heating should not exceed about 650 C. and generally should be 600 C. or below.
- heating below C. is suitable particularly because of the unduly long periods of heating which are required and, preferably heating is conducted at 200 C. to 600 C.
- the heating step described above is most advantageously conducted in an atmosphere containing elemental oxygen such as air or other oxygen-inert gas mixtures or even in an atmosphere of pure oxygen. With easily decomposable compounds and at relatively high temperatures the heating may be conducted in an inert atmosphere. However in such a case the tendency is to produce a coating containing ruthenium metal rather than ruthenium oxide.
- the organic compounds may, if desired, be applied by brushing a coating on the titanium base member or alternatively by any other method of application such as spraying or dipping.
- the electrode must then be heated to a temperature sufficient to drive off the organic material and to form the ruthenium oxide and the type of tianium oxide described above.
- the temperature of the electrode may be raised at a continuous, steady rate or raised in a series of incremental steps.
- a coating of the metal organic compound may be applied to the titanium base member While at room temperature.
- the temperature may be raised between 25 C. and 75 C. and held at that point for between 2 and 10 minutes.
- the temperature may then be raised a similar increment and held for a like period of time and repeating until the ultimate temperature is reached.
- the following examples are illustrative.
- EXAMPLE I An electrode was prepared starting with a titanium metal strip x x and brushing on a first coating of a mixture comprising 5 grams ruthenium resinate (4.0% ruthenium), 2 grams titanium resinate (4.2% titanium) and 3 grams toluene, thus providing a RuO TiO ratio of 1.87 by weight. The electrode was then heated to 400 C. by starting at room temperature and sequentially raising the temperature 50 C. every 5 minutes. The electrode was held at 400 C. for minutes and then cooled to room temperature. In like manner, a total of 13 coatings were applied to the titanium base member. The final layer was further raised to 450 C. and retained at that temperature for 10 minutes. X-ray investigation indicated a satisfactory electrode coating.
- EXAMPLE II An electrode was prepared having 23 coats of the mixture used in Example I. The electrode was heated to 400 C. following each of the first 22 coatings and the heated to 500 C. following the final coating. The electrode was 1%" X 1%" x and the total thickness of ruthenium was a little over 23 microinches. The electrode was placed as an anode in series with other platinum metal surfaced or ruthenium oxide surfaced electrodes in a cell in which the anode-cathode spacing was /2 inch. A brine solution having a concentration of 100 to 125 grams per liter NaCl and 500 to 600 grams per liter NaClO was added to the cell. The cell was operated, maintaining the above NaCl concentration, at a current density of 500 amps per sq.
- EXAMPLE III An electrode was prepared by brushing onto a 1%" x 1% x A titanium base member 11 layers of a mixture comprising 5 grams ruthenium resinate containing 4 percent by weight Ru, 2 grams titanium resinate containing 4.2 percent by weight Ti, and 3 grams toluene. The electrode was heated to a temperature of 400 C. following the application of each of the layers 1 through 6, 8 and 9. The electrode was heated to 500 C. following the application of layers 7 and 10 and then heated to 550 C. following application of layer 11. An X-ray analysis disclosed that the apparent ruthenium oxide thickness was '12 microinches or 3.8 grams per square meter.
- the electrode had an X-ray diffraction pattern as shown by the chart of FIG. 1.
- the X-ray diffraction pattern had a broad main peak for ruthenium dioxide with a breadth at half maximum of approximately 1.3 degrees two theta. This peak possibly may include some crystalline titanium dioxide (rutile form), such being hidden in the ruthenium dioxide peak. No substantial amount of crystalline titanium oxide was shown. The peak height above background for this main ruthenium dioxide peak is at about 600 percent above background. The other peaks on the chart are ruthenium dioxide and titanium.
- the electrode was tested in a small high-temperature chlorate cell, identical to that described in Example II, Where it was compared with a standard platinum coated electrode.
- the following table shows a comparison of voltages in the cell using the ruthenium-coated anode and the standard platinum electrode which as a titanium metal strip coated with platinum.
- EXAMPLE IV An electrode was prepared by applying 10 layers of a mixture comprising 5 grams ruthenium resinate, 2 grams titanium resinate, and 3 grams toluene. The electrode was heated to a temperature of 400 C. following each of the layers 1 through 6, 8, and 9. The electrode was then heated to a temperature of 500 C. following layers 7 and 10 and further heated to 700 C. following layer 11. An X-ray analysis disclosed that the apparent thickness of ruthenium was 11.1 microinches or 3.5 grams per square meter. The X-ray diffraction pattern for this electrode following layer 10, thus prior to heating to 700 C. (FIG. 2), shows a moderate crystalline peak for ruthenium oxide at twenty-eight degrees two theta.
- This peak has a breadth at half-maximum intensity of approximately 2.1 degrees two theta.
- the peak height above background for this peak is at about 400 percent of background.
- the other peaks in FIG. 2 are for ruthenium oxide and titanium.
- the X-ray diffraction pattern for this electrode following heating to 700 C. (FIG. 3) shows several changes.
- the main ruthenium oxide peak indicates more crystallinity with a half-maximum intensity of approximately 0.5 degree two theta.
- the peak height above background for this peak is at about 640 percent of background.
- a strong pattern for titanium oxide (rutile fonn) has developed of approximately 1430 percent.
- This electrode was also tested in the abovedescribed, hightemperature chlorate cell and, after two hours of testing, the electrode was disconnected because of an excessivelyhigh voltage of 7.02.
- anodes having a titanium dioxide-ruthenium dioxide coating on a titanium metal base particularly using a coating composition comprising a mixture of a titanium resinate and a ruthenium resinate.
- the composition is very effective in producing a coated anode or electrode in which the exposed or outside surface thereof is a mixture of these oxides with the minimum degree of crystallinity desired as described above.
- other compounds usually solids or high body liquids
- titanium and ruthenium which form a solid or essentially nonvolatile residue when applied to the base and which decompose or hydrolyze upon heating in oxygen including inert air to produce the corresponding metal oxide may be used in lieu of the resinate in the above examples or in other procedures.
- the titanium esters or alcoholates or organic acid salts thereof or other organo titanates which can be readily oxidized in air or oxygen at temperatures of 300 C. to 650 C. or below may be used.
- Such compounds include tetraethyl titanate, tetra or butyl titanate, tetra stearyl titanate, tetra (2 ethyl hexyl) titanate, polyoctylene glycol titanate, diethylene glycol titanates or other titanates or polytitanates or titanium acylates such as hydroxyl titanium stearate, isopropoxy titanium stearate, titanium diphthalate, hydroxyl titanium linseed acylate, isopropoxy titanium oleate, or polymers of titanium esters such as polymeric tetra-n-butyl titanate, polymeric tetra isopropyl titanate, and like polymers including those which may be formed by partial hydrolysis of alkyl tetracycloalkyl or t
- ruthenium compounds which decompose or hydrolyze on heating in an oxygen atmosphere in the presence or absence of air can be applied as a coating to leave a residue or deposit which on heating converts to oxide, preferably ruthenium dioxide, may be used in lieu of ruthenium resinate.
- Such compounds include ruthenium nitroso bromide, ruthenium trichloride, ruthenium amino nitrite [Ru(NH (NO disulfide, RuO(OH) calcium ruthenate or ruthenite or ruthenium diiodide, ruthenium triiodide like ruthenate or ruthenate of an alkaline earth metal, ruthenium titanate, or titanium ruthenium oxalate, the ruthenium salts of organic acid such as ruthenium acetate, ruthenium butyrate, ruthenium diphthalate, or the like may be used in the above examples or in other procedures in lieu or ruthenium resinate.
- conductive coatings can be applied on a titanium anode base so long as such coatings comprise a mixture of titanium oxide, preferably titanium dioxide and the platinum group metal or platinum group metal oxide.
- platinum group resinates including the resinates of platinum, palladium, osmium, rhodium, and irridium since these readily form a well bonded coating of excellent conductivity and electrochemical resistance.
- platinum group compounds may be applied with the titanium organic compound including palladium dichloride, palladium trichloride, platinum di-n-butylamine nitrite, Pt(NH NO, palladium amine, palladium iodide, palladium selenide, palladium disulfide, and the organic salts and esters or alcoholates and amino or nitro compounds of platinum group compounds corresponding to the ruthenium or titanium compounds listed above may be used in lieu of part or all of the ruthenium resinate in the above examples.
- the resulting coating after heating in air or oxygen at 300 C. to 650 C. generally contains platinum in metallic state and, in such a case, the coating is a mixture or intimate mosaic of platinum metal and titanium dioxide. Where it is desirable to convert the platinum to oxide, this may be done by immersing the thus-formed electrode in molten potassium nitrate at 400 C. for 1 to hours.
- Typical of formulations which may be used in lieu of those set forth in the above examples include grams isopropyl alcohol 5 grams palladium resinate 2 grams titanium resinate 2 grams titanium resinate 4 grams palladium chlorate3 grams toluene 10 grams toluene
- the ratio of titanium oxide to platinum group metal oxide in the coating applied to the titanium base should be sufliciently high to insure good adhesion of the coating to the titanium but not so high as to impair the electroconductivity of the coating. Poor conductibility is achieved when the film contains 60 percent or more by weight of titanium (as oxide) based on the total metal content of the coating or coating composition.
- the titanium content should, in any event, not be less than 10 percent thereof and, in general, best coatings contain 15 to 50 percent of Ti as oxide, substantially the entire balance being a platinum group metal as oxide.
- Small amounts of other oxides may be incorporated for example by adding to the coating composition (such as identified above, particularly in the examples hereof) a resinate of rhenium, lead, silicon, tantalum, tungsten, molybdenum, calcium, and zirconium, and heating the coating as described above.
- a method of providing an electroconductive anode for electrolysis of aqueous alkali metal chloride which comprises applying a coating of an organic mixture containing a thermally-decomposable organic titanium compound and a thermally-decomposable noble metal compound to an electroconductive base and heating the coated base at a temperature sufficiently high to decompose the organic component of the coating and to form as a coating the noble metal oxide and an oxide of titanium, said temperature being sufiiciently low to avoid formation of substantial crystalline titanium dioxide.
- the resulting coating comprises a mixture of ruthenium oxide and titanium oxide, the ratio by weight of ruthenium oxide to titanium oxide being at least 1 to l.
- a method of coating an electrode is defined in claim 1 wherein said solution includes 5 parts ruthenium resinate, 2 parts titanium resinate, and 3 parts toluene by weight, wherein said solution is applied in a plurality of layers and wherein said electrode is heating to 400 C. following each of said layers and is further heated to a temperature in the range of 500 C. to 550 C. following the final layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US76728168A | 1968-10-14 | 1968-10-14 | |
US8603370A | 1970-11-02 | 1970-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3562008A true US3562008A (en) | 1971-02-09 |
Family
ID=26774286
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US767281A Expired - Lifetime US3562008A (en) | 1968-10-14 | 1968-10-14 | Method for producing a ruthenium coated titanium electrode |
US00086033A Expired - Lifetime US3718551A (en) | 1968-10-14 | 1970-11-02 | Ruthenium coated titanium electrode |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00086033A Expired - Lifetime US3718551A (en) | 1968-10-14 | 1970-11-02 | Ruthenium coated titanium electrode |
Country Status (6)
Country | Link |
---|---|
US (2) | US3562008A (enrdf_load_stackoverflow) |
BE (1) | BE740198A (enrdf_load_stackoverflow) |
DE (1) | DE1951484A1 (enrdf_load_stackoverflow) |
FR (1) | FR2020680A1 (enrdf_load_stackoverflow) |
GB (1) | GB1231995A (enrdf_load_stackoverflow) |
NL (1) | NL6914899A (enrdf_load_stackoverflow) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3671415A (en) * | 1969-09-02 | 1972-06-20 | Ici Ltd | Continuous lead-in core for an electrode assembly |
US3775284A (en) * | 1970-03-23 | 1973-11-27 | J Bennett | Non-passivating barrier layer electrodes |
US3853739A (en) * | 1972-06-23 | 1974-12-10 | Electronor Corp | Platinum group metal oxide coated electrodes |
US3864237A (en) * | 1972-01-26 | 1975-02-04 | Diamond Shamrock Corp | Bipolar diaphragmless electrolytic cells |
US3869312A (en) * | 1971-03-18 | 1975-03-04 | Ici Ltd | Electrodes and electrochemical processes |
US3873437A (en) * | 1972-11-09 | 1975-03-25 | Diamond Shamrock Corp | Electrode assembly for multipolar electrolytic cells |
US3910828A (en) * | 1972-02-01 | 1975-10-07 | Nora International Company | Production of chlorine |
US3926773A (en) * | 1970-07-16 | 1975-12-16 | Conradty Fa C | Metal anode for electrochemical processes and method of making same |
US3945907A (en) * | 1974-09-16 | 1976-03-23 | Basf Wyandotte Corporation | Electrolytic cell having rhenium coated cathodes |
US4003817A (en) * | 1967-12-14 | 1977-01-18 | Diamond Shamrock Technologies, S.A. | Valve metal electrode with valve metal oxide semi-conductive coating having a chlorine discharge in said coating |
US4005003A (en) * | 1975-04-15 | 1977-01-25 | Olin Corporation | Multi-component metal electrode |
US4032427A (en) * | 1975-11-03 | 1977-06-28 | Olin Corporation | Porous anode separator |
US4049532A (en) * | 1971-06-02 | 1977-09-20 | Solvay & Cie. | Electrodes for electrochemical processes |
US4072585A (en) * | 1974-09-23 | 1978-02-07 | Diamond Shamrock Technologies S.A. | Valve metal electrode with valve metal oxide semi-conductive coating having a chlorine discharge catalyst in said coating |
US4072586A (en) * | 1975-12-10 | 1978-02-07 | Diamond Shamrock Technologies S.A. | Manganese dioxide electrodes |
US4140813A (en) * | 1973-01-05 | 1979-02-20 | Hoechst Aktiengesellschaft | Method of making long-term electrode for electrolytic processes |
US4149956A (en) * | 1969-06-25 | 1979-04-17 | Diamond Shamrock Technologies, S.A. | Anode structure |
US4234405A (en) * | 1971-09-16 | 1980-11-18 | Imperial Chemical Industries Limited | Electrode for electrochemical processes |
US4269670A (en) * | 1980-03-03 | 1981-05-26 | Bell Telephone Laboratories, Incorporated | Electrode for electrochemical processes |
US4294608A (en) * | 1980-03-27 | 1981-10-13 | General Electric Company | Catalytic alloys |
US4431686A (en) * | 1980-02-05 | 1984-02-14 | Sigri Elektrographit Gmbh | Method for coating a porous electrode |
US4517068A (en) * | 1981-12-28 | 1985-05-14 | Eltech Systems Corporation | Electrocatalytic electrode |
GB2154248A (en) * | 1984-01-31 | 1985-09-04 | Permelec Electrode Ltd | Improvements in the manufacture of electrodes |
US5230712A (en) * | 1992-09-28 | 1993-07-27 | Matthews M Dean | Method for producing multi-cell solid state electrochemical capacitors and articles formed thereby |
US5380341A (en) * | 1993-09-27 | 1995-01-10 | Ventritex, Inc. | Solid state electrochemical capacitors and their preparation |
US5384685A (en) * | 1992-09-18 | 1995-01-24 | Pinnacle Research Institute, Inc. | Screen printing of microprotrusions for use as a space separator in an electrical storage device |
US5464453A (en) * | 1992-09-18 | 1995-11-07 | Pinnacle Research Institute, Inc. | Method to fabricate a reliable electrical storage device and the device thereof |
US5711988A (en) * | 1992-09-18 | 1998-01-27 | Pinnacle Research Institute, Inc. | Energy storage device and its methods of manufacture |
US5800857A (en) * | 1992-09-18 | 1998-09-01 | Pinnacle Research Institute, Inc. | Energy storage device and methods of manufacture |
US5821033A (en) * | 1992-09-18 | 1998-10-13 | Pinnacle Research Institute, Inc. | Photolithographic production of microprotrusions for use as a space separator in an electrical storage device |
US5867363A (en) * | 1992-09-18 | 1999-02-02 | Pinnacle Research Institute, Inc. | Energy storage device |
US5980977A (en) * | 1996-12-09 | 1999-11-09 | Pinnacle Research Institute, Inc. | Method of producing high surface area metal oxynitrides as substrates in electrical energy storage |
EP2397579A1 (de) | 2010-06-21 | 2011-12-21 | Bayer MaterialScience AG | Elektrode für die elektrolytische Chlorgewinnung |
EP2447395A2 (de) | 2010-10-28 | 2012-05-02 | Bayer MaterialScience AG | Elektrode für die elektrolytische Chlorherstellung |
US9761866B2 (en) | 2012-03-28 | 2017-09-12 | Sharp Laboratories Of America, Inc. | Battery electrode with metal particles and pyrolyzed coating |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE789853A (fr) * | 1971-10-07 | 1973-04-09 | Hoechst Ag | Electrode d'electrochimie a dimensions stables et resistant auxcorrosions |
BE790369A (fr) * | 1971-10-21 | 1973-04-20 | Diamond Shamrock Corp | Procede et appareil pour la preparation d'hydroxydes de metaux alcalins de haute purete dans une cuve electrolytique. |
IT955661B (it) * | 1972-05-19 | 1973-09-29 | Oronzio De Nora Impianti | Elettrodi perfezionati ricoperti di leghe contenenti metalli nobili |
US3976549A (en) * | 1973-02-26 | 1976-08-24 | Hooker Chemicals & Plastics Corporation | Electrolysis method |
US3899403A (en) * | 1973-11-01 | 1975-08-12 | Hooker Chemicals Plastics Corp | Electrolytic method of making concentrated hydroxide solutions by sequential use of 3-compartment and 2-compartment electrolytic cells having separating compartment walls of particular cation-active permselective membranes |
US3954579A (en) * | 1973-11-01 | 1976-05-04 | Hooker Chemicals & Plastics Corporation | Electrolytic method for the simultaneous manufacture of concentrated and dilute aqueous hydroxide solutions |
JPS551351B2 (enrdf_load_stackoverflow) * | 1974-03-07 | 1980-01-12 | ||
JPS5137877A (en) * | 1974-09-27 | 1976-03-30 | Asahi Chemical Ind | Denkaiyodenkyoku oyobi sonoseizoho |
US4012296A (en) * | 1975-10-30 | 1977-03-15 | Hooker Chemicals & Plastics Corporation | Electrode for electrolytic processes |
JPS5573884A (en) * | 1978-11-24 | 1980-06-03 | Asahi Chem Ind Co Ltd | Preparation of electrode |
US4426262A (en) | 1982-04-29 | 1984-01-17 | Engelhard Corporation | Promotion of Pt-Ir catalytic electrodes with lead, tantalum, ruthenium and oxygen |
US5017276A (en) * | 1989-12-26 | 1991-05-21 | Chemetics International Company Ltd. | Metal electrodes for electrochemical processes |
US5632833A (en) * | 1993-10-29 | 1997-05-27 | Nec Corporation | Method of manufacturing laminated ceramic capacitor |
US5600535A (en) * | 1994-12-09 | 1997-02-04 | The United States Of America As Represented By The Secretary Of The Army | Amorphous thin film electrode materials from hydrous metal oxides |
KR100407710B1 (ko) * | 2001-11-08 | 2003-12-01 | (주) 테크윈 | 고온 소결에 의한 촉매성 산화물 전극의 제조방법 |
CN102057081B (zh) * | 2008-06-09 | 2013-04-03 | 学校法人同志社 | 一种阳极在锌及钴的电解提取中的应用、以及电解提取方法 |
JP5013438B2 (ja) * | 2009-12-08 | 2012-08-29 | 学校法人同志社 | 金属の電解採取用陽極および電解採取方法 |
US20150053574A1 (en) * | 2012-06-08 | 2015-02-26 | The Doshisha | Metal electrowinning anode and electrowinning method |
CN102766882B (zh) * | 2012-08-10 | 2015-07-29 | 华南理工大学 | 一种三维结构的析氯dsa电催化电极的制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3616445A (en) * | 1967-12-14 | 1971-10-26 | Electronor Corp | Titanium or tantalum base electrodes with applied titanium or tantalum oxide face activated with noble metals or noble metal oxides |
-
1968
- 1968-10-14 US US767281A patent/US3562008A/en not_active Expired - Lifetime
-
1969
- 1969-10-02 NL NL6914899A patent/NL6914899A/xx unknown
- 1969-10-10 GB GB1231995D patent/GB1231995A/en not_active Expired
- 1969-10-13 DE DE19691951484 patent/DE1951484A1/de active Pending
- 1969-10-13 BE BE740198D patent/BE740198A/xx not_active IP Right Cessation
- 1969-10-14 FR FR6935178A patent/FR2020680A1/fr active Pending
-
1970
- 1970-11-02 US US00086033A patent/US3718551A/en not_active Expired - Lifetime
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4003817A (en) * | 1967-12-14 | 1977-01-18 | Diamond Shamrock Technologies, S.A. | Valve metal electrode with valve metal oxide semi-conductive coating having a chlorine discharge in said coating |
US4149956A (en) * | 1969-06-25 | 1979-04-17 | Diamond Shamrock Technologies, S.A. | Anode structure |
US3671415A (en) * | 1969-09-02 | 1972-06-20 | Ici Ltd | Continuous lead-in core for an electrode assembly |
US3775284A (en) * | 1970-03-23 | 1973-11-27 | J Bennett | Non-passivating barrier layer electrodes |
US3926773A (en) * | 1970-07-16 | 1975-12-16 | Conradty Fa C | Metal anode for electrochemical processes and method of making same |
US3869312A (en) * | 1971-03-18 | 1975-03-04 | Ici Ltd | Electrodes and electrochemical processes |
US4049532A (en) * | 1971-06-02 | 1977-09-20 | Solvay & Cie. | Electrodes for electrochemical processes |
US4234405A (en) * | 1971-09-16 | 1980-11-18 | Imperial Chemical Industries Limited | Electrode for electrochemical processes |
US4514274A (en) * | 1971-09-16 | 1985-04-30 | Imperial Chemical Industries Plc | Electrode for electrochemical processes |
US3864237A (en) * | 1972-01-26 | 1975-02-04 | Diamond Shamrock Corp | Bipolar diaphragmless electrolytic cells |
US3910828A (en) * | 1972-02-01 | 1975-10-07 | Nora International Company | Production of chlorine |
US3853739A (en) * | 1972-06-23 | 1974-12-10 | Electronor Corp | Platinum group metal oxide coated electrodes |
US3873437A (en) * | 1972-11-09 | 1975-03-25 | Diamond Shamrock Corp | Electrode assembly for multipolar electrolytic cells |
US4140813A (en) * | 1973-01-05 | 1979-02-20 | Hoechst Aktiengesellschaft | Method of making long-term electrode for electrolytic processes |
US3945907A (en) * | 1974-09-16 | 1976-03-23 | Basf Wyandotte Corporation | Electrolytic cell having rhenium coated cathodes |
US4072585A (en) * | 1974-09-23 | 1978-02-07 | Diamond Shamrock Technologies S.A. | Valve metal electrode with valve metal oxide semi-conductive coating having a chlorine discharge catalyst in said coating |
US4005003A (en) * | 1975-04-15 | 1977-01-25 | Olin Corporation | Multi-component metal electrode |
US4032427A (en) * | 1975-11-03 | 1977-06-28 | Olin Corporation | Porous anode separator |
US4072586A (en) * | 1975-12-10 | 1978-02-07 | Diamond Shamrock Technologies S.A. | Manganese dioxide electrodes |
US4431686A (en) * | 1980-02-05 | 1984-02-14 | Sigri Elektrographit Gmbh | Method for coating a porous electrode |
US4269670A (en) * | 1980-03-03 | 1981-05-26 | Bell Telephone Laboratories, Incorporated | Electrode for electrochemical processes |
US4294608A (en) * | 1980-03-27 | 1981-10-13 | General Electric Company | Catalytic alloys |
US4517068A (en) * | 1981-12-28 | 1985-05-14 | Eltech Systems Corporation | Electrocatalytic electrode |
GB2154248A (en) * | 1984-01-31 | 1985-09-04 | Permelec Electrode Ltd | Improvements in the manufacture of electrodes |
AU567789B2 (en) * | 1984-01-31 | 1987-12-03 | Permelec Electrode Ltd. | Electrode coated by organic metal complex |
US6514296B1 (en) | 1992-09-18 | 2003-02-04 | Pacific Shinfu Technologies Co., Ltd. | Method of making energy storage device having electrodes coated with insulating microprotrusions |
US6005764A (en) * | 1992-09-18 | 1999-12-21 | Pinnacle Research Institute, Inc. | Method to fabricate a reliable electrical storage device and the device thereof |
US5384685A (en) * | 1992-09-18 | 1995-01-24 | Pinnacle Research Institute, Inc. | Screen printing of microprotrusions for use as a space separator in an electrical storage device |
US5464453A (en) * | 1992-09-18 | 1995-11-07 | Pinnacle Research Institute, Inc. | Method to fabricate a reliable electrical storage device and the device thereof |
US5711988A (en) * | 1992-09-18 | 1998-01-27 | Pinnacle Research Institute, Inc. | Energy storage device and its methods of manufacture |
US5800857A (en) * | 1992-09-18 | 1998-09-01 | Pinnacle Research Institute, Inc. | Energy storage device and methods of manufacture |
US5821033A (en) * | 1992-09-18 | 1998-10-13 | Pinnacle Research Institute, Inc. | Photolithographic production of microprotrusions for use as a space separator in an electrical storage device |
US5867363A (en) * | 1992-09-18 | 1999-02-02 | Pinnacle Research Institute, Inc. | Energy storage device |
US5230712A (en) * | 1992-09-28 | 1993-07-27 | Matthews M Dean | Method for producing multi-cell solid state electrochemical capacitors and articles formed thereby |
US5380341A (en) * | 1993-09-27 | 1995-01-10 | Ventritex, Inc. | Solid state electrochemical capacitors and their preparation |
US5980977A (en) * | 1996-12-09 | 1999-11-09 | Pinnacle Research Institute, Inc. | Method of producing high surface area metal oxynitrides as substrates in electrical energy storage |
EP2397579A1 (de) | 2010-06-21 | 2011-12-21 | Bayer MaterialScience AG | Elektrode für die elektrolytische Chlorgewinnung |
DE102010030293A1 (de) | 2010-06-21 | 2011-12-22 | Bayer Materialscience Ag | Elektrode für die elektrolytische Chlorgewinnung |
US8430997B2 (en) | 2010-06-21 | 2013-04-30 | Bayer Materialscience Ag | Electrode for electrolytic production of chlorine |
EP2447395A2 (de) | 2010-10-28 | 2012-05-02 | Bayer MaterialScience AG | Elektrode für die elektrolytische Chlorherstellung |
DE102010043085A1 (de) | 2010-10-28 | 2012-05-03 | Bayer Materialscience Aktiengesellschaft | Elektrode für die elektrolytische Chlorherstellung |
US9761866B2 (en) | 2012-03-28 | 2017-09-12 | Sharp Laboratories Of America, Inc. | Battery electrode with metal particles and pyrolyzed coating |
Also Published As
Publication number | Publication date |
---|---|
US3718551A (en) | 1973-02-27 |
FR2020680A1 (enrdf_load_stackoverflow) | 1970-07-17 |
BE740198A (fr) | 1970-04-13 |
NL6914899A (enrdf_load_stackoverflow) | 1970-04-16 |
GB1231995A (enrdf_load_stackoverflow) | 1971-05-12 |
DE1951484A1 (de) | 1970-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3562008A (en) | Method for producing a ruthenium coated titanium electrode | |
US4140813A (en) | Method of making long-term electrode for electrolytic processes | |
US3882002A (en) | Anode for electrolytic processes | |
US3810770A (en) | Titanium or tantalum base electrodes with applied titanium or tantalum oxide face activated with noble metals or noble metal oxides | |
US4070504A (en) | Method of producing a valve metal electrode with valve metal oxide semi-conductor face and methods of manufacture and use | |
US3663414A (en) | Electrode coating | |
Comninellis et al. | Characterization of DSA®-type oxygen evolving electrodes: choice of a coating | |
US3773555A (en) | Method of making an electrode | |
US4003817A (en) | Valve metal electrode with valve metal oxide semi-conductive coating having a chlorine discharge in said coating | |
US3654121A (en) | Electrolytic anode | |
CA1105412A (en) | Production of spinel coated anodes from mixture of compounds of cobalt and other metal | |
US4005004A (en) | Electrode coating consisting of a solid solution of a noble metal oxide, titanium oxide, and zirconium oxide | |
US3776834A (en) | Partial replacement of ruthenium with tin in electrode coatings | |
US3177131A (en) | Method for the production of platinum coated titanium anodes | |
US7001494B2 (en) | Electrolytic cell and electrodes for use in electrochemical processes | |
CA1149777A (en) | Electrolytic electrode with coating of oxides of tin and bismuth | |
US3616446A (en) | Method of coating an electrode | |
US3801490A (en) | Pyrochlore electrodes | |
EP0014596B1 (en) | Method for producing electrodes having mixed metal oxide catalyst coatings | |
EP0163410A1 (en) | Electrolysis of halide-containing solutions with platinum based amorphous metal alloy anodes | |
US3986942A (en) | Electrolytic process and apparatus | |
US3917518A (en) | Hypochlorite production | |
US4318795A (en) | Valve metal electrode with valve metal oxide semi-conductor face and methods of carrying out electrolysis reactions | |
US4072585A (en) | Valve metal electrode with valve metal oxide semi-conductive coating having a chlorine discharge catalyst in said coating | |
US3720590A (en) | Method of coating an electrode |