US3560318A - Fibrous pulp containing partially hydrolyzed polyvinyl acetate - Google Patents
Fibrous pulp containing partially hydrolyzed polyvinyl acetate Download PDFInfo
- Publication number
- US3560318A US3560318A US693144A US3560318DA US3560318A US 3560318 A US3560318 A US 3560318A US 693144 A US693144 A US 693144A US 3560318D A US3560318D A US 3560318DA US 3560318 A US3560318 A US 3560318A
- Authority
- US
- United States
- Prior art keywords
- fibers
- paper
- vinyl
- ester
- polymers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920002689 polyvinyl acetate Polymers 0.000 title abstract description 24
- 239000011118 polyvinyl acetate Substances 0.000 title abstract description 17
- 239000000835 fiber Substances 0.000 abstract description 36
- 229920005992 thermoplastic resin Polymers 0.000 abstract description 10
- 229920000642 polymer Polymers 0.000 description 32
- 229920001567 vinyl ester resin Polymers 0.000 description 30
- 239000000203 mixture Substances 0.000 description 28
- 229920003023 plastic Polymers 0.000 description 20
- 239000004033 plastic Substances 0.000 description 20
- 229920001290 polyvinyl ester Polymers 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 16
- 229920002554 vinyl polymer Polymers 0.000 description 15
- -1 polyethylene Polymers 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 238000006136 alcoholysis reaction Methods 0.000 description 12
- 229920001577 copolymer Polymers 0.000 description 12
- 229920002678 cellulose Polymers 0.000 description 11
- 239000001913 cellulose Substances 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 11
- 150000002148 esters Chemical class 0.000 description 11
- 230000007062 hydrolysis Effects 0.000 description 11
- 238000006460 hydrolysis reaction Methods 0.000 description 11
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000002245 particle Substances 0.000 description 10
- 239000004698 Polyethylene Substances 0.000 description 9
- 229920000573 polyethylene Polymers 0.000 description 9
- 239000004793 Polystyrene Substances 0.000 description 8
- 206010061592 cardiac fibrillation Diseases 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 8
- 239000003085 diluting agent Substances 0.000 description 8
- 230000002600 fibrillogenic effect Effects 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 229920002223 polystyrene Polymers 0.000 description 7
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 238000012674 dispersion polymerization Methods 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 238000010009 beating Methods 0.000 description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- SZNYYWIUQFZLLT-UHFFFAOYSA-N 2-methyl-1-(2-methylpropoxy)propane Chemical compound CC(C)COCC(C)C SZNYYWIUQFZLLT-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical group C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010622 cold drawing Methods 0.000 description 2
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229920002466 Dynel Polymers 0.000 description 1
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Estrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- STIAPHVBRDNOAJ-UHFFFAOYSA-N carbamimidoylazanium;carbonate Chemical compound NC(N)=N.NC(N)=N.OC(O)=O STIAPHVBRDNOAJ-UHFFFAOYSA-N 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- ZFTFAPZRGNKQPU-UHFFFAOYSA-N dicarbonic acid Chemical class OC(=O)OC(O)=O ZFTFAPZRGNKQPU-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000009986 fabric formation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Chemical group 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- XONPDZSGENTBNJ-UHFFFAOYSA-N molecular hydrogen;sodium Chemical compound [Na].[H][H] XONPDZSGENTBNJ-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- SRSFOMHQIATOFV-UHFFFAOYSA-N octanoyl octaneperoxoate Chemical compound CCCCCCCC(=O)OOC(=O)CCCCCCC SRSFOMHQIATOFV-UHFFFAOYSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- BDAWXSQJJCIFIK-UHFFFAOYSA-N potassium methoxide Chemical compound [K+].[O-]C BDAWXSQJJCIFIK-UHFFFAOYSA-N 0.000 description 1
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 1
- 238000004537 pulping Methods 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000012966 redox initiator Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- OWSBHFWSKFIEGF-UHFFFAOYSA-M sodium;methyl carbonate Chemical compound [Na+].COC([O-])=O OWSBHFWSKFIEGF-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H5/00—Special paper or cardboard not otherwise provided for
- D21H5/12—Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials
- D21H5/20—Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials of organic non-cellulosic fibres too short for spinning, with or without cellulose fibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/903—Microfiber, less than 100 micron diameter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/2964—Artificial fiber or filament
- Y10T428/2967—Synthetic resin or polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2973—Particular cross section
- Y10T428/2978—Surface characteristic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/298—Physical dimension
Definitions
- This invention relates to plastic paper particularly paper made from fibrous plastic pulp.
- plastic paper of high strength that has paper-like properties such as writability, flexibility, and the like.
- the plastic paper of the invention which contains a hydrophilic polymer as bonding agent, is tear-resistant, durable and does not yellow with age or crumble.
- the invention provides a fibrous plastic pulp and the resulting plastic paper which comprises fibrillated fibers of at least three incompatible polymers, which polymers include a polymerized vinyl ester having a molar degree of hydrolysis of from 1 to 99 percent and at least two other thermoplastic resins having overlapping orientation temperature ranges.
- Polyvinyl alcohol while highly water soluble is not wholly suitable in the process of the present invention because it is not readily extrudable.
- Polyvinyl ester while extrudable is not water soluble,
- partially hydrolized polyvinyl ester such as polyvinyl acetate is both extrudable and provides the hydrophilic property so important in paper making.
- the ester is further highly effective in interfiber bonding and can bond with one or more other polymers to produce high strength plastic paper.
- the incompatible polymers are mixed, at an appropriate blending temperature which can be at room temperature but typically is at an elevated temperature as dictated by the physical properties of the material.
- the polymers are mixed by mechanical mixing, e.g. a kneader or a Banbury mixer, solvent mixing and the like and then extruded as one or more filaments or sheets.
- the mixture can be extruded in any conventional extruder operated at a temperature low enough to prevent decomposition and high enough to be consistent with processing viscosity. It is only necessary to heat the mixture hot enough to maintain all components in a melt extrudable state. One or more components are heated only enough to achieve workable plasticity. Hot drawing of the plastic mixture as it emerges from the extruder is not necessary but may be done if a reduction in size of each filament is desired. Cold drawing to induce molecular orientation in the fibrils comprising the filament is desirable however if a product which will fibrillate readily is to be produced. The optimum degree of orientation induced will vary depending on the composition of the filament. Generally 350 to 550 percent orientation is adequate but orientation up to 2,000 percent may sometimes be advantageous.
- molecular orientation imparts improved physical properties to a large number of fiber forming polymers such as polyamides, polyesters, polyurethanes, and vinyl and acrylic type polymers, and as a consequence, improves the paper made from them.
- Each filament is composed of individual fibrils having longitudinal axes essentially parallel to each other and are weakly attached in a lateral direction, i.e., contact of one fibril with another is along a line running longitudinally along the outer surface of the fibrils.
- Fibril groups comprised of several fibrils of each of the incompatible resin making up the monofilament, when split off from the monofilament are designated as fibers.
- the number of fibrils comprising each fiber may be in the range of about 2 to 100.
- Fibrillation of the thus produced filaments can be advantageously carried out by mechanical beating or working.
- Chopped filaments /s to inch in length are generally suitable for any of the numerous mechanical methods available.
- a typical fibrillation operation may be carried out in a commercial Holland paper beater which consists of a cylinder of knives or bars and an adjustable bed plate. Chopped monofilament in a water media is circulated repeatedly under the beater roll by flowing around a circular trough. The filaments immediately begin to break up and within a few hours the plastic pulp resembles normal cellulose pulp.
- the dimensions of the staple fibers i.e., those fibers relatively short in length produced from chopped filament, depend somewhat on the fibrillation method employed and are normally in the range of .1 to 100 microns in diameter. Fibers with diameter in the range of to 30 microns are easily produced in a Holland paper beater.
- a wide variety of polymers which are incompatible with partially hydrolyzed polyvinyl acetate are suitable for the paper of the present invention, i.e. one or more incompatible polymers, copoylmers or mixtures thereof. These include all of the normally solid fiber-forming resins from which conventional size fibers used in the textile and paper industries may be produced by ordinary melt extrusion operations.
- Typical resins are polyolefins such as polyethylene, polypropylene and the like, the polymers of styrene, both atactic and isotactic, and the alkyl and halogen substituted styrenes, polymers of methacrylic esters such as polymethylmethacrylate, polymers of vinyl esters such as polyvinylacetate and polyvinyl butyrate, vinyl halide polymers such as polyvinylchloride, polyamides such as the nylon, fluoro vinyl polymers such as polytrifiuorochloroethylene (a fluoroethene), polyesters, polyethers, polyurethanes, copolymers of styrene such as styrene and acrylonitrile copolymers, copolymers of vinyl halides and vinyl esters such as a coplymer of vinyl chloride and vinyl acetate, and copolymers of vinylidene halides and vinyl halides such as a copolymer
- the pulp and paper composition contain at least two incompatible polymers of similar or overlapping orientation temperature ranges so that when an extruded composite strand of the two polymers is oriented, both polymers will be oriented and result in better and finer fibrillation and fibers.
- the composition of the present invention includes at least two polymers of overlapping orientation temperature ranges. It is possible that the composition could include partially hydrolyzed polyvinyl ester and one other resin incompatible therewith. However, certain esters such as partially hydrolyzed polyvinyl acetate have an orientation temperature range that the composition could include partially hydrolyzed such as those listed above.
- the composition of the invention to include partially hydrolyzed polyvinyl ester e.g. polyvinyl butyrate and one other incompatible polymer, provided the two polymers have overlapping orientation temperature ranges, preferably the composition includes the above ester and at least two other incompatible resins, which resins have overlapping orientation temperature ranges.
- the preferred fiber composition has three or more incompatible polymers, at least two of which can be highly oriented in a composite strand and segmented to produce ultra fine fibers for paper and fabric formation.
- Any partially hydrolyzed, polymerized vinyl ester that can be obtained is suitable for use in the present invention, preferably an ester having a degree of hydrolysis of from 30 to 60 weight percent.
- ploymerized vinyl ester preferred in the present invention is not the type that is presently commercially available in that it has a degree of hydrolysis of from about 1 to about 99 percent by weight, preferably from about 30 to 60 percent by weight, and the individual particles thereof have an outer layer of polymeric, organic interfacial agent described in detail herein.
- the hydrolyzed polyvinyl ester preferred herein is prepared by a method, described below, which produces the ester in the form of fine particles each of which has an outer layer of organic interfacial agent as described above. It should be understood that in mixing the polyvinyl ester particles with other polymers as described herein and processing the resulting composition using conventional plastic forming techniques such as extrusion and the like, this outer layer can become partly or completely admixed with the ester but nonetheless remains associated therewith.
- the hydrolyzed polyvinyl ester used herein is prepared by a method which comprises contacting a non-aqueous dispersion of the ester having an average particle size of about 0.05 to about 50 microns and up to 20 carbon atoms per vinyl ester monomer unit, dispersed in an inert hydrocarbon diluent by means of a polymeric organic interfacial agent with about 0.01 to 10.0 moles, per mole of the polymerized vinyl ester, of an aliphatic alcohol having from 1 to about 6 carbon atoms and about 0.001 to 0.10 mole per mole of the polymerized vinyl ester, of an alcoholysis catalyst for at least 5 minutes at a temperature of about 15 to about 100 C., preferably from about 20 to about 50 C., and recovering the polyvinyl ester.
- the preferred polymerized vinyl ester is polyvinyl acetate although other esters such as polyvinyl formate, polyvinyl propionate, polyvinyl butyrate and the like having up to 20 carbon atoms can be used if desired.
- non-aqueous dispersion of polymerized vinyl ester one which has been obtained by the dispersion polymerization of vinyl ester monomer although polymerized vinyl esters made by other methods such as bead, emulsion or solution polymerization can also be used and then converted to a non-aqueous dispersion with a polymeric organic interfacial agent if desired.
- the average particle size of the polymerized vinyl ester used in the dispersions can range from about 0.05 to 50 microns it is preferred to use particles in the range of about 0.1-5 microns and it is particularly preferred to use particle sizes in the range of about 0.l1 micron.
- the preferred inert organic diluents are aliphatic or cycloaliphatic hydrocarbons having from about 5 to 12 carbon atoms therein with pentane, isopentane, hexane, heptane, and isoctane being preferred aliphatic hydrocarbons and cyclopentane, cyclohexane, and methylcyclohexane being preferred cycloaliphatic hydrocarbons, as well as mixtures of the above.
- aromatic hydrocarbons, ethers, esters, and other polar group containing diluents inert towards free radical initiators cannot be used alone, they may be if mixed with aliphatic or cycloaliphatic hydrocarbons such as those enumerated above.
- the inert organic diluent or diluent mixture employed must be a solvent for the vinyl ester monomer but a non-solvent for the polymerized vinyl ester.
- the polymeric organic interfacial agent used must be one which has a backbone that is soluble in inert hydrocarbon .diluents and which has at least one site for grafting or anchoring to polymerized vinyl esters.
- the preferred interfacial agents include copolymers and graft copolymers of alpha olefins and vinyl esters, alpha olefins with polar group containing vinyl monomers, polyvinyl alkyl ethers, propylene oxide rubbers, butadiene-styrene rubbers, ethylene-propylene terpolymers, and the like.
- ethylene/vinyl acetate copolymer or vinyl acetate graft polymerized onto ethylene/vinyl acetate copolymer ethylene/vinyl acetate copolymer or vinyl acetate graft polymerized onto ethylene/vinyl acetate copolymer.
- ethylene/vinyl acetate copolymers and graft copolymers preferably contain from about 5 to 80 percent vinyl acetate being particularly preferred.
- the preferred alkyl vinyl ether polymer for the interfacial agent is polyvinyl ethyl ether, although others such as polyvinyl isobutyl ether, polyvinyl propyl ether and the like can also be used.
- the preferred oxide rubber polymer for the interfacial agent is polypropylene oxide rubber.
- the concentration of interfacial agent should be at least 0.1 percent based on the weight of the dispersed polymer. It is preferred to use at least 0.2 percent, up to about percent and if desired, even higher concentrations can be used.
- the minimum alcoholysis time has been given above as about 5 minutes. There is no maximum time since no further reaction occurs once essentially complete alcoholysis has taken place, the actual time used in any one run will depend upon the degree of alcoholysis desired.
- the preferred alcoholysis catalysts are basic or acidic alcoholysis catalysts. It is preferred to use a basic alcoholysis catalyst of an alkali metal although other agents such as guanidine carbonate, sodium methyl carbonate, organic amines and the like can also be used.
- the preferred basic catalysts are hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, and lithium hydroxide and alkoxides of alkali metals such as sodium methoxide, potassium methoxide, sodium ethoxide, and the like.
- Acidic alcoholysis catalysts which can be used include sulfuric acid, hydrogen chloride, sulfonic and phosphonic acids, sulfur dioxide and the like.
- alcoholysis catalysts which can be used include alkyl orthotitanates such as tetraethyl orthotitanate, tetrabutyl orthotitanate and the like as Well as derivatives thereof such as sodium hydrogen titanate, organic silicates, titanium tetrahalides and the like.
- Hydrolyzed polymerized vinyl esters made by the dispersion techniques disclosed herein have many advantages over polyvinyl esters made by the prior methods.
- the esters are easily isolated from the reaction media by such methods as filtration, spray drying, Centrifugation, and the like. Since these are prepared in dispersion there is no increase in viscosity during the alcoholysis step and the product may be obtained in high solids content of approximately 60 to 80 percent.
- This provides a means of obtaining a wide variety of polyvinyl esters of varying degrees of alcoholysis or hydrolysis, that is to say, products having degrees of hydrolysis of about 1 to 99%.
- the thus produced polyvinyl esters endow plastic paper produced therefrom with high uniformity, texture and bond strength.
- the non-aqueous dispersions of the polymerized vinyl esters be prepared by a non-aqueous dispersion polymerization of the vinyl ester monomer used.
- the inert organic hydrocarbon diluent and interfacial agents given above as well as the concentrations given may be used for the non-aqueous dispersion polymerization of vinyl ester monomers.
- the dispersion polymerization polyvinyl ester particles obtained are unique in that they contain an outer coating of polymer organic interfacial agent attached to the polyvinyl ester particle. This is believed to result from the graft polymerization of the vinyl ester to the backbone of the interfacial agent as the vinyl ester homopolymerizes.
- the dispersion polymerization of vinyl acetate using ethylene/ vinyl acetate copolymer as interfacial agent affords polyvinyl acetate particles with an outer coating of ethylene/ vinyl acetate grafted thereto.
- Any free radical polymerization initiator known in the art may be used to polymerize the vinyl ester monomer including organic peroxides such as, benzoyl peroxide, lauroyl peroxide, capryloyl peroxide, diacetyl peroxide; azo catalysts such as, aZo-bisisobutyronitrile; and dialkylperoxy dicarbonates, such as diisopropylperoxy dicarbonate as well as redox initiators and the like.
- organic peroxides such as, benzoyl peroxide, lauroyl peroxide, capryloyl peroxide, diacetyl peroxide
- azo catalysts such as, aZo-bisisobutyronitrile
- dialkylperoxy dicarbonates such as diisopropylperoxy dicarbonate as well as redox initiators and the like.
- Temperatures for the vinyl ester polymerization of about 0 to 150 C. may be used although a range of about 25 to C. is preferred and a temperature of about 50 to 100 C. is particularly preferred.
- polyvinyl esters other than those prepared by the non-aqueous dispersion technique are to be used they must be reduced in average particle size to a range of about 0.05 to 50 microns and then dispersed in the aforementioned diluents using one of the aforementioned interfacial agents to stabilize the dispersion.
- Pressure is not at all critical for any of the processes of this invention so that while atmospheric pressures are preferred for economic reasons, subatmospheric or superatmospheric pressures can also be used if desired.
- the plastic paper composition is formed of partially hydrolyzed polyvinyl ester and at least two other polymers e.g. by weight 10 to 60 parts of partially bydrolyzed polyvinyl acetate, 20 to 60 parts polyethylene and 20 to 40 parts polystyrene. Particularly preferred is a pulp composition of by weight, 50 parts of polyethylene, 30 parts polystyrene and 20 parts of partially hydrolyzed polyvinyl acetate. Polystyrene adds considerably to the tensile modulus of the paper and accordingly is preferred as a third component.
- fibrillation of the composite polymer filament is brought about by mechanical working, i.e. chopping and beating. Fibrillation is further accomplished by swelling in water of the hydrolyzed polyvinyl ester fiber component which promotes splitting of the strands and by dissolving in the water of a portion of the soluble hydrolyzed polyvinyl ester from the fibers during the pulping process, since voids left in the filbers by the dissolved ester hydroxy groups result in further fibrillation. Up to 30% or more weight loss of ester from extruded filament to paper product has been noted with no adverse effects on paper strength evident.
- EXAMPLE I Nine mixes were prepared from polyethylene (PE), polystyrene (PS), and partially hydrolyzed polyvinyl acetate (PVAc(OH)) of three different degrees of hydrolysis.
- the acetate included as interfacial agent 0.6% by weight (based on the acetate) of ethylene-vinyl acetate copolymer containing 28% vinyl acetate polymerized therein and having a melt index of 23.8 dg./min.
- the components for each mix were fiuxed together on hot rolls, extruded, and oriented by being stretched approximately 800% after immersion in a glycerine bath at C.
- plastic paper samples compared favorably with the cellulose paper samples, particularly those plastic paper samples having increased relative amounts of polyvinylacetate and increased degrees of hydrolysis. Also because of the lower comparative densities of the plastic sheet samples it is clear that the basic weight of a snythetic polymer sheet will be one-third less than that of a comparable cellulose sheet.
- the fibers or the pulp of the present invention can also serve as or part of, woven and non-woven textile fabrics including garments, drapes and the like.
- the fibers or the pulp can, within the scope of the present invention, be combined with cellulose to upgrade paper and other cellulose products. Note also US. Pat. 3,097,991 to W. A. Miller et al. issued July 16, 1963.
- a fibrous pulp comprising oriented fibers of at least three incompatible melt-extrudable thermoplastic TABLE II [Properties of hand sheets containing a high proportion of PVAc(OH)] Composition, PS- Stock Sheet Bur t, Tear, Tensile, Elongation PE-PVAc(OH) agitation density p.s.i./rnil gm./rnil p.s.i. percent 5030 20(48) Gentle 40 2. 3 80 960 12 501040(52.5) Waring 49 5. 3 1. 25 2, 450 22 Gentle 48 4. 3 1. 19 l, 633 16 401050(52.5) Waring 51 6. 2 l. 00 2, 632 30 Gentle- 50 4. 6 94 2, 962 29 4()060(52.5) Waring 54 5. 7 1. 09 3, 154 26 Gentle 56 5. 6 94 2, 429 21 Cellulose Waring 61 2. 2 2. 3 1, 500 1. 8
- thermoplastic resins (a) that one of said thermoplastic resins is a partially hydrolyzed polyvinyl acetate having a degree of hydrolysis of from about 30 to 60 percent based on the mole percent of hydroxyl, and
- a fibrous pulp comprising oriented fibers of a thermoplastic mix comprising at least three incompatible meltextrudable thermoplastic resins, said fibers having fibrillated surfaces and having diameters of from about 0.1 to 100 microns and lengths of from about A; to A inch, which further comprises:
- thermoplastic resins is from about 10 to 30 percent by weight of partially hydrolyzed polyvinyl acetate, having a degree of hydrolysis of from about 30 to 60 percent based on the mole percent of hydroxyl, and
- thermoplastic resins are polyethylene and polystyrene; so that said pulp is capable of being formed into a sheet product having a tensile strength of from about 400 to 1200 p.s.1.
- fibrous pulp of claim 3 wherein there is from about 20 to 60 percent by weight of partially hydrolyzed polyvinyl acetate, having a degree of hydrolysis from about 45 to 60 percent based on the mole percent of 1O mer is ethylene-vinyl acetate.
Landscapes
- Paper (AREA)
- Artificial Filaments (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69314467A | 1967-12-26 | 1967-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3560318A true US3560318A (en) | 1971-02-02 |
Family
ID=24783497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US693144A Expired - Lifetime US3560318A (en) | 1967-12-26 | 1967-12-26 | Fibrous pulp containing partially hydrolyzed polyvinyl acetate |
Country Status (3)
Country | Link |
---|---|
US (1) | US3560318A (enrdf_load_stackoverflow) |
FR (1) | FR1599384A (enrdf_load_stackoverflow) |
GB (1) | GB1264624A (enrdf_load_stackoverflow) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3847728A (en) * | 1972-05-31 | 1974-11-12 | Toyo Seikan Kaisha Ltd | Resinous compositions having improved gas permeation resistance and molded structures thereof |
US3855056A (en) * | 1969-03-19 | 1974-12-17 | Hitachi Chemical Co Ltd | Process for producing synthetic pulp-like materials and producing synthetic papers therefrom |
US4062818A (en) * | 1975-03-21 | 1977-12-13 | International Paper Company | Composition for imparting flame resistance and water repellency to textiles |
US4279979A (en) * | 1978-11-09 | 1981-07-21 | The Dexter Corporation | Nonwoven fibrous substrate for battery separator |
US4392861A (en) * | 1980-10-14 | 1983-07-12 | Johnson & Johnson Baby Products Company | Two-ply fibrous facing material |
US4425126A (en) | 1979-12-28 | 1984-01-10 | Johnson & Johnson Baby Products Company | Fibrous material and method of making the same using thermoplastic synthetic wood pulp fibers |
US4439561A (en) * | 1982-03-24 | 1984-03-27 | Union Carbide Corporation | Sealant composition and method |
US5733603A (en) * | 1996-06-05 | 1998-03-31 | Kimberly-Clark Corporation | Surface modification of hydrophobic polymer substrate |
-
1967
- 1967-12-26 US US693144A patent/US3560318A/en not_active Expired - Lifetime
-
1968
- 1968-12-20 FR FR1599384D patent/FR1599384A/fr not_active Expired
- 1968-12-23 GB GB1264624D patent/GB1264624A/en not_active Expired
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3855056A (en) * | 1969-03-19 | 1974-12-17 | Hitachi Chemical Co Ltd | Process for producing synthetic pulp-like materials and producing synthetic papers therefrom |
US3847728A (en) * | 1972-05-31 | 1974-11-12 | Toyo Seikan Kaisha Ltd | Resinous compositions having improved gas permeation resistance and molded structures thereof |
US4062818A (en) * | 1975-03-21 | 1977-12-13 | International Paper Company | Composition for imparting flame resistance and water repellency to textiles |
US4279979A (en) * | 1978-11-09 | 1981-07-21 | The Dexter Corporation | Nonwoven fibrous substrate for battery separator |
US4425126A (en) | 1979-12-28 | 1984-01-10 | Johnson & Johnson Baby Products Company | Fibrous material and method of making the same using thermoplastic synthetic wood pulp fibers |
US4392861A (en) * | 1980-10-14 | 1983-07-12 | Johnson & Johnson Baby Products Company | Two-ply fibrous facing material |
US4439561A (en) * | 1982-03-24 | 1984-03-27 | Union Carbide Corporation | Sealant composition and method |
US5733603A (en) * | 1996-06-05 | 1998-03-31 | Kimberly-Clark Corporation | Surface modification of hydrophobic polymer substrate |
US5998023A (en) * | 1996-06-05 | 1999-12-07 | Kimberly-Clark Worldwide, Inc. | Surface modification of hydrophobic polymer substrate |
Also Published As
Publication number | Publication date |
---|---|
GB1264624A (enrdf_load_stackoverflow) | 1972-02-23 |
DE1813732A1 (de) | 1969-07-03 |
FR1599384A (enrdf_load_stackoverflow) | 1970-07-15 |
DE1813732B2 (de) | 1976-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3097991A (en) | Synthetic fibrous products | |
US3047455A (en) | Paper manufacture from synthetic non-cellulosic fibers | |
US5167764A (en) | Wet laid bonded fibrous web | |
US3047456A (en) | Manufacture of paper products from fibers wet spun from polymer blends | |
US5167765A (en) | Wet laid bonded fibrous web containing bicomponent fibers including lldpe | |
US3674621A (en) | Process of making a sheet paper | |
US4210487A (en) | Process for making synthetic paper pulp | |
US3935344A (en) | Sizing composition and glass fibers treated therewith | |
DE69202420T2 (de) | Vinylalkoholeinheiten enthaltende Polymerfasern mit grosser Feuchtigkeitsabsorption und hoher Wasserabsorption sowie Verfahren zu deren Herstellung. | |
US4600545A (en) | Process for the preparation of fibers from polymeric materials | |
US3223581A (en) | Process for the production of a sheet of synthetic polymer fibrous material | |
US4162996A (en) | Fibrous materials useful as leather substitutes and consisting essentially of leather fibers, fibrils or fibrides of synthetic polymers and cellulose fibers | |
US3560318A (en) | Fibrous pulp containing partially hydrolyzed polyvinyl acetate | |
US3494826A (en) | Polymer bonded cellulose and its preparation | |
US2972560A (en) | Method of manufacturing paper | |
US3795575A (en) | Cellulosic sheet material and process for its preparation | |
US3125462A (en) | Textile fabrics treated with ethylene- | |
US3826712A (en) | Acrylic synthetic paper and method for producing the same acrylic fibers wet spun from a blend of hydrolyzed and unhydrolyzed acrylic polymers having at least 60 % acrylonitriles by weight and paper made from such fibers | |
US2784135A (en) | Process for the manufacture of polyacrylonitrile films and laminates | |
US4246066A (en) | Method for producing fibrous sheet | |
US3855056A (en) | Process for producing synthetic pulp-like materials and producing synthetic papers therefrom | |
US4332749A (en) | Process for the production of polyolefine-based fibrids, and the fibrids obtained | |
US3093534A (en) | Papermaking process and product | |
US2810645A (en) | Method of making textile webs | |
CA1082861A (en) | Aggregate of fibrous material used for synthetic pulp and process for preparing same |