US3560207A - Cyanine dyes containing a pyrazole nucleus as spectral sensitizers for organic photoconductors - Google Patents

Cyanine dyes containing a pyrazole nucleus as spectral sensitizers for organic photoconductors Download PDF

Info

Publication number
US3560207A
US3560207A US701828*A US3560207DA US3560207A US 3560207 A US3560207 A US 3560207A US 3560207D A US3560207D A US 3560207DA US 3560207 A US3560207 A US 3560207A
Authority
US
United States
Prior art keywords
nucleus
group
dye
dyes
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US701828*A
Other languages
English (en)
Inventor
Earl J Van Lare
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Application granted granted Critical
Publication of US3560207A publication Critical patent/US3560207A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/107The polymethine chain containing an even number of >CH- groups four >CH- groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • G03G5/067Dyes containing a methine or polymethine group containing only one methine or polymethine group containing hetero rings

Definitions

  • This invention relates to electrophotography, and more particularly to materials and elements useful in the electrophotographic process.
  • Elements useful in the electrophotographic process commonly comprise an electrically conductive support bearing a stratum including a photoconductive insulating layer which has a resistivity substantially greater in the dark than in light actinic thereto.
  • Such elements can be used in electrophotographic processes, for example, by first adapting the element in the dark to obtain a uniformly high resistivity in the photoconductive insulating layer, and electrostatically charging the element in the dark to obtain a relatively high potential which may be either negative or positive in polarity. The element can then be exposed to a light pattern which lowers the resistivity and thereby the charge density of the illuminated areas imagewise in proportion to the intensity of illumination incident upon each point of the illuminated areas. A latent electrostatic image is obtained.
  • Visible images can be formed from the latent electrostatic image in any convenient manner, such as by dusting with a finely divided, fusible pigment the particles of which hear an electrostatic charge opposite that remaining on the surface of the photoconductive insulating layer. Thereafter, the pigment particles can be fused to the surface to provide a permanent image.
  • Typical inorganic photoconductive materials include selenium and zinc oxide.
  • Such inorganic photoconductive materials have inherent disadvantages, such as an inability to be readily adapted to reflex copying systems, or to produce images on transparent supports except by indirect means.
  • Organic photoconductors avoid such disadvantages, but, generally have relatively poor sensitivity to visible radiation. It has been proposed to increase the spectral sensitivity of organic photoconductors with certain cyanine or merocyanine dyes, for example, such as listed in Table D hereinafter. The spectral sensitivity imparted by such dyes has been very weak. It therefore appears highly desirable to provide effective spectral sensitizers for organic photoconductors.
  • One object of this invention is to provide novel sensitized organic photoconductors.
  • Another object of this invention is to provide novel spectrally sensitized organic photoconductor materials.
  • Still another object of this invention is to provide novel compositions of matter comprising organic photoconductors and certain spectral sensitizers.
  • a further object of this invention is to provide novel compositions of matter comprising organic photoconductor, binder and certain spectral sensitizers for the organic photoconductor.
  • Still another object of this invention is to provide a novel electrophotographic material including a conductive United States Patent support having coated thereon an insulating layer containing spectrally sensitized organic photoconductor.
  • a further object of this invention is to provide methods for spectrally sensitizing organic photoconductors.
  • compositions of matter comprising organic photoconductors spectrally sensitized with the dyes defined more fully below. These compositions can be incorporated in a suitable binder and coated on a conductive support for use in electrophotography.
  • compositions of matter comprising organic photoconductors spectrally sensitized with the dyes described below, dispersed in an insulating binder. These compositions of matter can be coated on a conductive support and used in electrophotographic processes.
  • electrophotographic materials comprising a conductive support having coated thereon a layer comprising an insulating binder, an organic photoconductor and a spectral sensitizing quantity of a dye defined more fully below.
  • a method for spectrally sensitizing organic photoconductors which comprises mixing a dye of the type described below with an organic photoconductor, in a concentration sufficient to effectively spectrally sensitize the organic photoconductor.
  • the dye and organic photoconductor are mixed in a suitable solvent.
  • the spectral sensitizing dyes which are employed in this invention are certain cyanine dyes containing certain pyrazole nuclei which, when incorporated in a test negative gelatin silver bromoiodide emulsion consisting of 99.35 mole percent bromide and .65 mole percent iodide, at a concentration of 0.2 millimole of dye per mole of silver halide, desensitize the emulsion more than 0.4 log E when the test emulsion is coated on a support, exposed through a step wedge in a sensitometer (to obtain D to light having a wavelength of 365 nm., processed for three minutes at 20 C. in Kodak Developer D-19, and is fixed, washed and dried.
  • the test negative silver bromoiodide emulsions are prepared as follows:
  • Solution A is kept at a temperature of 54 C. during precipitation and ripening, while solution B is put in a separating funnel at a temperature of 54 C.
  • the silver nitrate solution runs from the separating funnel through a calibrated nozzle into the container, the contents of which are kept in constant motion during precipitation and ripening, and later during finishing, by a mechanical stirrer.
  • the precipitation is conducted over a period of 10 minutes.
  • the developer employed in the test referred to above 3 is Kodak developer D-l9 which has the following composition:
  • the cyanine dyes employed in this invention desensitize conventional negative silver halide emulsions. Such emulsions are inherently sensitive to blue radiation. The present dyes reduce that sensitivity. In addition, these dyes fail to provide practical spectral sensitization for such emulsions. Therefore, it was quite unexpected to fined that they spectrally sensitized organic photoconductors.
  • substantially nonphotoconductive means that no image is formed when a solution of 0.002 g. of the dye and 0.5 g. of polyester binder (described in Examples 1 to 6 below) are dissolved in 5.0 ml. of methylene chloride, and is coated and tested (in the absence of any photoconductor) as described in Examples 1 to 6 below.
  • the cyanine dyes of this invention increase the speed of organic photoconductors by extending or increasing the response of the photoconductor to visible radiation (i.e., radiation in the range of about 400 nm. to 700 nm.).
  • visible radiation i.e., radiation in the range of about 400 nm. to 700 nm.
  • the dyes herein appear to function as spectral sensitizers when employed with efficient organic photoconductors.
  • the dyes seem to function as speed increasing compounds as well as spectral sensitizers.
  • the cyanine dyes that are useful in practicing the invention include those comprising first and second to 6- membered nitrogen containing heterocyclic nuclei joined together :by a methine linkage; said first nucleus being a pyrazole nucleus joined at the 4-carbon atom thereof to said linkage; and said second nucleus being of the type used in cyanine dyes, preferably an electron accepting nucleus, joined at a carbon atom thereof to said linkage, to complete said cyanine dyes.
  • cyanine dyes that are useful herein include those represented by the following general formula:
  • R represents an alkyl group, including substituted alkyl (preferably a lower alkyl containing from 1 to 4 carbon atoms), e.g., methyl, ethyl, propyl, isopropyl, butyl, hexyl, cyclohexyl, decyl, dodecyl etc., a hydroxyalkyl group, e.g., ,B-hydroxyethyl, w-hydroxybutyl, etc., an alkoxyalkyl group, e.g., fl-methoxyethyl, w-butoxybutyl, etc., a carboxyalkyl group, e.g., S-carboxyethyl, w-carboxybutyl, etc.,
  • X represents an acid anion, e.g., chloride, bromide, iodide, thiocyanate, sulfarnate, perchlorate, p-toluenesulfonate, methyl sulfate, ethyl sulfate, etc.
  • R represents an alkyl group (preferably a lower alkyl containing from 1 to 4 carbon atoms), e.g., methyl, ethyl, propyl, isopropyl, butyl, hexyl, cyclohexyl, decyl, dodecyl, etc., or an aryl group, e.g., phenyl, tolyl, xylyl, methoxyphenyl, butoxyphenyl, chlorophenyl, fluorophenyl, etc., or the group wherein p represents a positive integer of from 1 to 2, and Z represents the nonmetallic atoms required to complete a
  • the nuclei wherein Z in above Formula I represents the atoms necessary to complete an electron-accepting nucleus such as a nitro substituted thiazole, oxazole, selenazole, thiazoline, pyridine, quinoline, 3,3-dialkylindolenine or imidazole nucleus; or an imidazo[4,5b]quinoxaline, 3,3-dialkyl-3-H-pyrrolo- [2,3-b]pyridine or thiazolo[4,5-b]quinoline nucleus; and the like; provide particularly efiicacious spectral sensitizing dyes for the photoconductor compositions and elements of this invention. Dyes containing such desensitizing nuclei are the preferred dye species herein.
  • electron accepting nucleus refers to those nuclei which, when converted to a symmetrical carbocyanine dye and added to a gelatin silver chlorobromide emulsion containing mole percent chloride and mole percent bromide, at a concentration of from 0.01 to 0.2 gram dye per mole of silver, cause by electron trapping at least about an percent loss in the blue speed of the emulsion when sensitometrically exposed and developed three minutes in Kodak developer D-19 at 20 C., the composition of which is given above.
  • the electron-accepting nuclei are those which, when converted to a symmetrical carbocyanine dye and tested as just described above, essentially completely desensitize the test emulsion to blue radiation. Substantially complete desensitization as used herein, results in at least a percent, and preferably a percent loss of speed to blue radiation.
  • the cyanine dyes of Formula I are prepared conveniently by heating a mixture of (l) a heterocyclic quater- 10 nary salt compound of the formula:
  • n, L, R R and R are as previously defined, in approximately equimolar proportions, in the presence of a condensing agent, if desired, such as anhydrous sodium acetate, a trialkylamine such as triethylamine, etc., piperidene, N-alkylpiperidines, etc., in a medium such as ethanol, acetic anhydride, etc.
  • a condensing agent such as anhydrous sodium acetate, a trialkylamine such as triethylamine, etc., piperidene, N-alkylpiperidines, etc.
  • a medium such as ethanol, acetic anhydride, etc.
  • the crude dyes are then separated from the reaction mixtures and purified by one or more recrystallizations from appropriate solvents, e.g., ethanol. Further details for the preparation of the dyes herein can be had by reference to Belgian Pat. No. 693,- 356, issued Sept. 11, 1967, wherein such dye
  • the dye 2-[3,5-dimethyl-l phenyl 4 pyrazolyl) vinyl]-3-ethyl-6-nitrobenzoselenazolium salt e.g., the chloride, perchlorate, p-toluenesulfonate, etc. salts
  • the like dyes e.g., the chloride, perchlorate, p-toluenesulfonate, etc. salts
  • Dyes such as illustrated above can be used alone, or a combination of one or more of the above described dyes can be used to impart the desired spectral sensitivity. All of them are spectral sensitizers for organic photoconductors. Suitable organic photoconductors which are effectively spectrally sensitized by such dyes include both monomeric and polymeric organic photoconductors. The invention is particularly useful in increasing the speed of organic photoconductors which are substantially insensitive, or which have low sensitivity (e.g., a speed less than 25 but generally less than 10 when tested as described in Examples 1 to 6 below) to radiation of 400 to 700 nm.
  • organic photoconductors An especially useful class of organic photoconductors is referred to herein as organic amine photoconductors.
  • Such organic photoconductors have as a common structural feature at least one amino group.
  • Useful organic photoconductors which can be spectrally sensitized in accordance with this invention include, therefore, arylamine compounds comprising (1) diarylamines such as diphenylamine, dinaphthylamine, N,N-diphenylbenzidine, N phenyl l-naphthylamine; N-phenyl-Z-naphthylamine; N,N' diphenyl-p-phenylenediamine; 2-carboxy-5-chlor0- 4' methoxydiphenylamine; p anilinophenyl; N,N-di-2- naphthyl-p-phenylene diamine; 4,4-benzylidene-bis(N,N- diethyl-m-toluidine), those described in
  • A represents a mononuclear or polynuclear divalent aromatic radical, either fused or linear (e.g., phenylene, naphthylene, biphenylene, binaphthylene, etc.), or a substituted divalent aromatic radical of these types wherein said substituent can comprise a member such as an acyl group having from 1 to about 6 carbon atoms (e.g., acetyl, propionyl, butyryl, etc.), an alkyl group having from 1 to about 6 carbon atoms (e.g., methyl, ethyl, propyl, butyl, etc.), an alkoxy group having from 1 to about 6 carbon atoms (e.g., methoxy, ethoxy, propoxy, pentoxy, etc.), or a nitro group;
  • A represents a mononuclear or polynuclear monovalent aromatic radical, either fused or linear (e.g., phenyl, naphthyl, bi
  • Polyarylalkane photoconductors are particularly useful in producing the present invention. Such photoconductors are described in US. Pat. 3,274,000; French Pat. 1,383,- 461 and in a copending application of Seus et al. Ser. No. 624,233, Photoconductive Elements Containing Organic Photoconductors, filed Mar. 20, 1967, now abandoned.
  • photoconductors include leucobases of diaryl or triaryl methane dye salts, 1,1,1-triarylalkanes wherein the alkane moiety has at least two carbon atoms and tetraarylmethanes, there being substituted an amine group on at least one of the aryl groups attached to the alkane and methane moieties of the latter two classes of photoconductors which are non-leuco base materials.
  • Preferred polyaryl alkane photoconductor represented by the formula:
  • each of D, E and G is an aryl group and J is a hydrogen atom, an alkyl group, or an aryl group, at
  • the aryl groups attached to the central carbon atom are preferably phenyl groups, although naphthyl groups can also be used.
  • the aryl groups can contain substituents 5 such as alkyl and alkoxy, typically having 1 to 8 carbon atoms, hydroxy, halogen, etc., in the ortho, meta or para positions, ortho-substituted phenyl being preferred.
  • the aryl groups can also be joined together or cyclized to form a fluorene moiety, for example.
  • the amino sub- 10 stituent can be represented by the formula wherein each R can be an alkyl group typically having 1 to 8 carbon atoms, a hydrogen atom, an aryl group, or together the necessary atoms to form a heterocyclic amino group typically having 5 to 6 atoms in the ring such as morpholino, pyridyl, pyrryl, etc. At least one of D, E and G is preferably p-dialkylaminophenyl group. When I is an alkyl group, such an alkyl group more generally has 1 to 7 carbon atoms.
  • Representative useful polyarylalkane photoconductors include the compounds listed below:
  • Table C comprises a partial listing of US. patents describing such organic photoconductors 17 and compositions which can be used in place of those more particularly described herein.
  • the spectrally sensitized organic photoconductor compositions of this invention can, in certain arrangements, be employed in electrophotographic elements in the absence of binder.
  • the photoconductor itself is sometimes capable of film formation, and therefore requires no separate binder.
  • An example of such filmforming photoconductor is poly(vinylcarbazole).
  • the more common arrangement is to provide a binder for the spectrally sensitized organic photoconductive materials.
  • Any suitable binder material can be utilized for the spectrally sensitized organic photoconductors of the invention.
  • Such binders should possess high dielectric strength, and have good insulating properties (at least in the absence of actinic radiation) as well as good film forming properties.
  • Preferred binder materials are polymers such as polystyrene, poly(methylstyrene), styrenebutadiene polymers, poly (vinyl chloride), poly(vinylidene chloride), poly(vinyl acetate), vinyl acetate-vinyl chloride polymers, poly(vinyl acetals), polyacrylic and methacrylic acid esters, polyesters such as poly(ethylene alkaryloxy-alkylene terephthalates), phenol-formaldehyde resins, polyamides, polycarbonates and the like.
  • the photoconductive compositions of the invention can be coated on any of the electrically conductive supports conventionally used in electrophotographic processes, such as metal plates or foils, metal foils laminated to paper or plastic films, electrically conductive papers and films, papers and films coated with transparent electrically conductive resins and the like.
  • Other useful conducting layers include thin layers of nickel coated by high vacuum deposition and cuprous iodide layers as described in US. Pat. 3,245,883.
  • Transparent, translucent or opaque support material can be used. Exposure by reflex requires that the support transmit light while no such requirement is necessary for exposures by projection.
  • transparent supports are desired if the reproduction is to be used for projection purposes; translucent supports are preferred for reflex prints; and opaque supports are adequate if the image is subsequently transferred by any means to another support, the reproduction is satisfactory as obtained, or the reproduction is to be used as a printing plate for preparing multiple copies of the original.
  • the quantity of the above-described dye required to spectrally sensitize an organic photoconductor varies with the results desired, the particular dye used, and the particular organic photoconductor used. Best results are obtained with about .01 to 10 parts by weight dye and about 1 to 75 parts by weight of the organic photoconductor based on the photoconductive composition. Binder can be employed in such compositions, when desired, at preferred ranges of 25 to 99 parts by weight. In addition, the composition can contain other sensitizers, either spectral sensitizers or speed increasing compounds, or both.
  • insulating adn electrically conductive have reference to materials the surface resistivities of which are greater than 10 ohms per square unit (e.g., per square foot) and less than 10 ohms per square unit (e.g., per square foot), respectively.
  • Coating thicknesses of the photoconductive compositions of the invention on a support can vary widely. As a general guide, a dry coating in the range from about 1 to 200 microns is useful for the invention. The preferred range of dry coating thickness is in the range from about 3 to 50 microns.
  • the photoconductive layer is preferably dark adapted, and then is charged either negatively or positively by means of, for example, a corona discharge device maintained at a potential of from 60007000 volts.
  • the charged element is then exposed to light through a master, or by reflex in contact with a master, to obtain an electrostatic image corresponding to the master.
  • This invisible image may then be rendered visible by being developed by contact with a developer including a carrier and toner.
  • the carrier can be, for example, small glass or plastic ballst, or iron powder.
  • the toner can be, for example, a pigmented thermoplastic resin having a grain size of from about 1100,tt which may be fused to render the image permanent.
  • the developer may contain a pigment or pigmented resin suspended in an insulating liquid which optionally may contain a resin in solution. If the polarity of the charge on the toner particles is opposite to that of the electrostatic latent image on the photoconductive element, a reproduction corresponding to the original is obtained. If, however, the polarity of the toner charge is the same as that of the electrostatic latent image, a reversal or negative of the original is obtained.
  • a series of solutions are prepared consisting of 5.0 ml. methylene chloride (solvent); 0.15 g. 4,4'-bis(diethylamino)-2,2 dimethyltriphenylmethane (organic photoconductor); 0.50 g. polyester composed of terephthalic acid and a glycol mixture comprising a 9:1 weight ratio of 2,2 bis[4 (2 hydroxyethoxy) phenyl]propane and ethylene glycol (binder) and 0.0065 g. of the spectral sensitizing dye indicated by identifying number from above Table A. Each solution is coated on an aluminum surface maintained at 25 C., and dried. All operations 19 are carried out in a darkened room.
  • a sample of each coating is uniformly charged by means of a corona to a potential of about 600 volts and exposed through a transparent member bearing a pattern of varying optical density to a 3000 K. tungsten source.
  • the resultant electrostatic image pattern is then rendered visible by cascading a developer composition comprising finely divided colored thermoplastic electrostatically responsive toner particles carried on glass beads over the surface of the element.
  • the image is then developed by deposition of the toner in an imagewise manner on the element.
  • the exposure causes reduction of the surface potential of the element under each step of the gray scale from its initial potential, V to some lower potential, V, whose exact value depends on the actual amount of exposure in meter-candle-seconds received by the area.
  • V initial potential
  • V some lower potential
  • the results of these measurements are plotted on a graph of surface potential V vs. log exposure for each step.
  • the actual speed of each element is expressed in terms of the reciprocal of the exposure required to reduce the surface potential by 100 volts.
  • the speeds given in Table I are the numerical expression of 10 divided by the exposure in meter-candle-seconds required to reduce the 600 volts charged surface potential by 100 volts.
  • Table I The results are shown in Table I below.
  • Control N0ne. Yes 8 7 XV 200 200 Referring to the above Table I, it will be seen that the control example containing the same photoconductor but no dye shows speeds of only 8 and 7 for the positively and negatively charged surfaces, respectively, whereas the corresponding values for those of the invention represented by Examples 1 to 6 are clearly of a different order of magnitude. For example, the highest speed is shown by Example 2 (Dye No. XIX) of 1200 and 600 for the positively and negatively charged surfaces, respectively, with maximum sensitivity peaks at 390; 450; and 615 nm., thus indicating a speed increase over that of the control by a factor of about 150 for the positively charged and about 75 for the negatively charged.
  • the above mentioned photoconductors when used alone have very low photoconductive speed to visible light.
  • the combination of the dyes of the invention with the photoconductors of the invention provide compositions and elements of outstanding speed and excellent quality of image.
  • dyes of this invention act as desensitizers for conventional negative type photographic silver halide emulsions.
  • a composition of matter comprising an organic photoconductor spectrally sensitized with a cyanine dye comprising first and second 5- to G-membered nitrogen containing heterocyclic nuclei joined together by a dimethine or a tetramethene linkage; said first nucleus being a pyrazole nucleus joined at the 4-carbon atom thereof to said linkage.
  • composition as defined by claim 1 wherein said linkage in said dye is a dimethine linkage and said second nucleus of said dye is an electron accepting nucleus.
  • a composition as defined by claim 1 wherein said second nucleus of said dye is selected from the group consisting of: an imidazo[4,5-b]quinoxaline nucleus; a 3,3-dialkyl-3H-pyrrolo[2,3-b]pyridine nucleus; a thiazolo[4,5-b]quinoline nucleus; a nitrobenzothiazole nucleus; a nitrobenzoxazole nucleus and a nitrobenzoselenazole nucleus.
  • a composition as defined by claim 1 wherein said organic photoconductor is selected from the group consisting of: a triarylamine; a 1,3,S-triaryl-Z-pyrazoline; a 4,4-bis-(dialkylamino)-2,2'-dialkyltriarylamine; a 2,3,4,5- tetraarylpyrrole; and a 4,4 bis dialkylaminobenzophenone.
  • a composition as defined by claim 1 wherein said organic photoconductor comprises from 1 to 75 parts by weight of said composition, said photoconductor being spectrally sensitized with from .01 to 10 parts by weight of said composition of said cyanine dye.
  • composition of matter comprising an organic photoconductor spectrally sensitized with a cyanine dye selected from those represented by the following formula:
  • a composition as defined by claim 7 wherein said second nucleus of said dye is selected from the group consisting of an imidazo[4,5-b1quinoxaline nucleus; a 3,3- dialkyl-3H-pyrrolo[2,3-b] pyridine nucleus; a thiazolo[4,5 b]quinoline nucleus; a nitrobenzothiazole nucleus; a nitrobenzoxazole nucleus and a nitrobenzoselenazole nucleus.
  • composition as defined by claim 7 wherein said organic photoconductor has the following formula:
  • each of D, E and G is an aryl group and J is selected from the group consisting of a hydrogen atom, an alkyl group and an aryl group, at least one of D, E and G containing an amino substituent selected from the group consisting of a secondary amino group and a tertiary amino group.
  • a composition as defined by claim 7 wherein said organic photoconductor is selected from the group consisting of: triphenylamine; 1,3,5-triphenyl-2-pyrazoline; 4,4-bis(diethylamino) 2,2 dimethyltriphenylamine; 2,3,4,5 tetraphenylpyrrole; and, 4,4-bis-diethylaminobenzophenone.
  • a composition as defined by claim 7 wherein said photoconductor comprises from 1 to 75 parts by weight of said composition, said photoconductor being spectrally sensitized with from .01 to parts by weight of said composition of said cyanine dye.
  • a composition of matter comprising from 1 to parts by Weight of an organic photoconductor selected from the group consisting of: triphenylamine; 1,3,5-triphenyl-2- pyrazoline; 4,4-bis diethylamino-2,2-dimethyltriphenyl methane; 2,3,4,5 tetraphenylpyrrole; 4,4'-bis-diethyl aminobenzophenone; said organic photoconductor being spectrally sensitized with from .01 to 10 parts by weight of a dye selected from the group consisting of 1,3-diallyl- 2- ⁇ [1-(2-benzothiazolyl) 3,5 dimethyl- 4 -pyrazolyl]- vinyl ⁇ -imidazo [4,5-b] quinoxalinium salt; 2- (3,5-dimethyl-1-phenyl-4-pyrazolyl) vinyl] 1,3,3-trimethyl-3H- pyrrolo[2,3-b]-pyridinium salt; 2-[(3,5-dimethyl-1-pheny1-4-pyrazo
  • An electrophotographic element comprising a conductive support having thereon a layer comprising an organic photoconductor in an insulating binder, said organic photoconductor being spectrally sensitized with a cyanine dye comprising first and second 5- to 6-membered nitrogen containing heterocyclic nuclei joined together by a dimethine or a tetramethine linkage; said first nucleus being a pyrazole nucleus joined at the 4-carbon atom thereof to said linkage.
  • An electrophotographic element as defined in claim 18 wherein said organic photoconductor is selected from the group consisting of: a triarylamine; a 1,3,5-triaryl-2- pyrazoline; a 4,4-bis-(dialkylamino)-2,2'-dialkyltriarylamine; a 2,3,4,5-tetraarylpyrrole; and a 4,4-bis-dialkylaminobenzophenone.
  • An electrophotographic element comprising a con-' ductive support having thereon a layer comprising an organic photoconductor spectrally sensitized with a dye selected from those represented by the following formula:
  • Z represents the nonmetallic atoms required to complete a heterocyclic nucleus containing from 5 to 6 atoms in the heterocyclic ring of the type used in cyanine dyes; and, Z represents the nonmetallic atoms required to complete a heterocylic nucleus containing from 5 to 6 atoms in the heterocyclic ring selected from the nuclei consisting of a nucleus
  • An electrophotographic element as defined in claim 24 wherein said organic photoconductor has the following formula:
  • each of D, E and G is an aryl group and J is selected from the group consisting of a hydrogen atom, an alkyl group and an aryl group, at least one of D, E and G containing an amino substituent selected from the group consisting of a secondary amino group and a ter tiary amino group.
  • An electrophotographic element as defined in claim 24 wherein said organic photoconductor is selected from the group consisting of: triphenylamine; 1,3,5-triphenyl- 2-pyrazoline; 4,4-bis-(diethylamino) 2,2 dimethyltriphenylamine; 2,3,4,5-tetraphenylpyrrole; and 4,4'-bis-diethylaminobenzophenone.
  • An electrophotographic element comprising a conductive support having thereon a layer comprising from 1 to parts by weight of an organic photoconductor selected from the group consisting of: triphenylamine; 1,3,5-triphenyl 2 pyrazoline; 4,4'-bis-diethylamino-2,2'- dimethyltriphenylmethane; 2,3,4,5 tetraphenylpyrrole; 4, 4'-bis-diethylaminobenzophenone; said organic photoconductor being spectrally sensitized with from .01 to 10 parts by weight of a dye selected from the group consisting of 1,3 diallyl-2- ⁇ [1-(2-benz0thiazolyl) 3,5 dimethyl-4- pyrazolyl] vinyl ⁇ imidazo[4.,5-b] quinoxalinium salt; 2-[(3,5 dimethyl 1 phenyl-4-pyrazolyl)-vinyl]-l,3,3- trimethyl-3H-pyrrolo [2,3-b]-pyridinium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Plural Heterocyclic Compounds (AREA)
US701828*A 1968-01-31 1968-01-31 Cyanine dyes containing a pyrazole nucleus as spectral sensitizers for organic photoconductors Expired - Lifetime US3560207A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US70182868A 1968-01-31 1968-01-31

Publications (1)

Publication Number Publication Date
US3560207A true US3560207A (en) 1971-02-02

Family

ID=24818841

Family Applications (1)

Application Number Title Priority Date Filing Date
US701828*A Expired - Lifetime US3560207A (en) 1968-01-31 1968-01-31 Cyanine dyes containing a pyrazole nucleus as spectral sensitizers for organic photoconductors

Country Status (5)

Country Link
US (1) US3560207A (xx)
BE (1) BE727703A (xx)
DE (1) DE1904629A1 (xx)
FR (1) FR2001015A1 (xx)
GB (1) GB1249051A (xx)

Also Published As

Publication number Publication date
GB1249051A (en) 1971-10-06
FR2001015A1 (xx) 1969-09-19
DE1904629B2 (xx) 1970-09-17
BE727703A (xx) 1969-07-01
DE1904629A1 (de) 1969-12-04

Similar Documents

Publication Publication Date Title
US3617270A (en) Sensitization of an inorganic photoconductive layer with 1, 3- and 1, 2-squario acid methine dyes
US3830647A (en) Recording process and element employing as photoconductive material fluorene ring system fused 1,2,-dihydro-2,2,4-trialkyl-quinolines
US3879197A (en) Electrophotographic copying process
US3110591A (en) Merocyanine sensitized photoconductive compositions comprising zinc oxide
US3647433A (en) Dinitroarylmethine dyes as sensitizers in electrophotographic layers
US3128179A (en) Cyanine dye-sensitized photoconductive compositions comprising zinc oxide
US3684548A (en) Method of preparing a homogeneous dye-sensitized electrophotographic element
US3567439A (en) Borinium dyes as sensitizers for organic photoconductors
US3765884A (en) 1-substituted-2-indoline hydrazone photoconductors
US3881926A (en) Sensitized electrophotographic layers with a polymethine sentizing dye
US4152152A (en) Additives for contrast control in organic photoconductor compositions and elements
US3796573A (en) Sensitizers for n-type organic photoconductors
US3597196A (en) Sensitization of organic photoconductors with cyanine merocyanine,and azocyanine dyes
US4173473A (en) Radiation sensitive compositions containing pyrylium compounds
US3979394A (en) Duplo quinoline compounds
US3679408A (en) Heterogeneous photoconductor composition formed by two-stage dilution technique
US3660084A (en) Recording process using quinolin-2-one or quinolin-4-one organic photoconductive substances
US3912509A (en) Electrophotographic recording material with a photoconductive carbazole compound
US3560208A (en) Cyanine dye containing a pyrrole nucleus used as a sensitizer for organic photoconductors
US3782933A (en) Sensitized electrophotographic layers
US3579331A (en) Electrophotographic materials containing cyanine dye sensitizers
US3125447A (en) Sensitized photoconductive compositions comprising zinc oxide
US3567438A (en) Organic photoconductors sensitized with pyrylium cyanine dyes
US3982935A (en) Electrophotographic copying process
US3923507A (en) Sensitized electrophotographic layers