US3579331A - Electrophotographic materials containing cyanine dye sensitizers - Google Patents

Electrophotographic materials containing cyanine dye sensitizers Download PDF

Info

Publication number
US3579331A
US3579331A US719690A US3579331DA US3579331A US 3579331 A US3579331 A US 3579331A US 719690 A US719690 A US 719690A US 3579331D A US3579331D A US 3579331DA US 3579331 A US3579331 A US 3579331A
Authority
US
United States
Prior art keywords
group
nucleus
dye
organic
dyes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US719690A
Inventor
John D Mee
Donald W Heseltine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Application granted granted Critical
Publication of US3579331A publication Critical patent/US3579331A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • G03G5/067Dyes containing a methine or polymethine group containing only one methine or polymethine group containing hetero rings

Definitions

  • This invention relates to electrophotography, and more particularly to materials and elements useful in the electrophotographic process.
  • Elements useful in the electrophotographic process commonly comprise an electrically conductive support bearing a stratum including a photoconductive insulating layer which has a resistivity substantially greater in the dark than in light actinic thereto.
  • Such elements can be used in electrophotographic processes, for example, by first adapting the element in the dark to obtain a uniformly high resistivity in the photoconductive insulating layer, and electrostatically charging the element in the dark to obtain a relatively high potential which may be either negative or positive in polarity. The elements can then be exposed to a light pattern which lowers the resistivity and thereby the charge density of the illuminated areas imagewise in proportion to the intensity of illumination incident upon each point of the illuminated areas. A latent electrostatic image is obtained.
  • Visible images can be formed from the latent electrostatic image in any convenient manner, such as by dusting with a finely divvided, fusible pigment the particles of which bear an electrostatic charge opposite that remaining on the surface the photoconductive insulating layer. Thereafter, the pigment particles can be fused to the surface to provide a permanent image.
  • Typical inorganic photoconductive materials include selenium and zinc oxide.
  • Such inorganic photoconductive materials have inherent disadvantages, such as an inability to be readily adapted to reflex copying systems, or to produce images on transparent supports except by indirect means.
  • Oragnic photoconductors avoid such disadvantages, but, generally have relatively poor sensitivity to visible radiation. It has been proposed to increase the spectral sensitivity of organic photoconductors with certain cyanine or merocyanine dyes, for example, such as listed in Table D hereinafter. The spectral sensitvity imparted by such dyes has been very weak. It there-fore appears highly desirable to provide effective spectral sensitizers for'organic photoconductors.
  • One object of this invention is to provide novel sensitized organic photoconductors.
  • Another object of this invention is to provide novel spectrally sensitized organic photoconductor materials.
  • Still another object of the invention is to provide novel compositions of matter comprising organic photoconductors and certain spectral sensitizers.
  • a further object of this invention is to provide novel compositions of matter comprising organic photoconductor, binder and certain spectral sensitizers for the organic photoconductor.
  • Still another object of this invention is to provide a novel electrophotographic material including a conductive support having coated thereon an insulating layer containing spectrally sensitized organic photoconductor.
  • a further object of this invention is to provide methods for spectrally sensitizing organic photoconductors.
  • compositions of matter comprising organic photoconductors spectrally sensitized with the dye defined more fully below. These compositions can be incorporated in a suitable binder and coated on a conductive support for use in electrophotography.
  • compositions of matter comprising organic photoconductors spectrally sensitized with the dyes described below, dispersed in an insulating binder. These compositions of matter can be coated on a conductive support and used in electrophotographic processes.
  • electrophotographic materials comprising a conductive support having coated thereon a layer comprising an insulating binder, an organic photoconductor and a spectral sensitizing quantity of a dye defined more fully below.
  • a method for spectrally sensitizing organic photoconductors which comprises mixing a dye of the type described below with an organic photoconductor, in a con centration suflicient to elfectively spectrally sensitize the organic photoconductor.
  • the dye and organic photoconductor are mixed in a suitable solvent.
  • the spectral sensitizing dyes which are employed in this invention are certain cyanine dyes containing carbazole nuclei which, when incorporated in a test negative gelatin silver bromoiodide emulsion consisting of 99.35 mole percent bromide and .65 mole percent iodide, at a concentration of 0.2 millimole of dye per mole of silver halide, desensitize the emulsion more than 0.4 log B when the test emulsion is coated on a support, exposed through a step wedge in a sensitometer (to obtain D to light having a wavelength of 365 nm., processed for three minutes at 20 C. in Kodak Developer D19, and is fixed, washed and dried.
  • the test negative silver bromoiodide emulsions are prepared as follows:
  • the cyanine dyes employed in this invention desensitize conventional negative silver halide emulsions. Such emulsions are inherently sensitive to blue radiation. The present dyes reduce that sensitivity. In addition, these dyes fail to provide practical spectral sensitization for such emulsions. Therefore, it was quite unexpected to find that they spectrally sensitized organic photoconductors.
  • the cyanine dyes of this invention increase the speed of organic photoconductors by extending or increasing the response of the photoconductor to visible radiation (i.e., radiation in the range of about 400 nm. to 700 nm.).
  • visible radiation i.e., radiation in the range of about 400 nm. to 700 nm.
  • the dyes herein appear to function as spectral sensitizers when employed with efiicient organic photoconductors.
  • the dyes seem to function as speed increasing compounds as well as spectral sensitizers.
  • the cyanine dyes that are useful in practicing the invention include those comprising first and second to 6- membered nitrogen containing heterocyclic nuclei joined together by a dimethine linkage; said first nucleus being a carbazole nucleus joined at the 3-carbon atom thereof to said linkage; and said second nucleus being of the type used in cyanine dyes, preferably an electron accepting nucleus, joined at a carbon atom thereof to said linkage, to complete said cyanine dyes.
  • the preferred cyanine dyes that are useful herein include those represented by the following general formula: I --z l wherein n represents a positive integer of from 1 to 2, R represents a member selected from the group consisting of an alkyl group, an aryl group, an acyl group, and an organic sulfonyl group, e.g., an alkyl group, including substituted alkyl (preferably a lower alkyl containing from about 1 to 4 carbon atoms) such as methyl, ethyl, propyl, butyl, octyl, sulfoalkyl such as sulfopropyl or sulfobutyl, sulfatoalkyl such as sulfatopropyl or sulfatobutyl, or carboXyalkyl such as carboxyethyl or carboxybutyl, or an aryl group, e.g., phenyl, sulfophenyl, carboxy
  • the nuclei wherein Z in above Formula I represents the atoms necessary to complete an electron-accepting nucleus such as a nitro group sub- X stituted thiazole, oxazole, selenazole, thiazoline, pyridine, 10 quinoline, 3,3 dialkylindolenine or imidazole nucleus; and the like; provide particularly eflicacious spectral sensitizing dyes for the photoconductor compositions and elewherein R1, X and Z are as previously d fi d in a mellis Of this inVeIltiOIlsolvent medium such as acetic anhydride, at elevated tem-
  • election peratures and preferably at refluxing temperatures of the accepting nucleus refers to those nuclei which, when reaction mixtures.
  • the dye separates from the converted to a symmetrical carbocyanine y and added to mixture and is purified by one or more recrystallizations a gelatin siiVei' eiliofobl'omide emulsion containing 40 from a suitable solvent such as an alkanol alone or in mole Pereeilt chloride and mole Percent bromide, at admixture with a phenol, for example from methanol or a concentration 0f from grams y P mole 20 mixtures of methanol and cresol.
  • a suitable solvent such as an alkanol alone or in mole Pereeilt chloride and mole Percent bromide
  • the reactants can be cmof silver, cause y electron pp at least about an ployed with a small excess of one or the other, i.e., greater peleeilt loss in the blue speed of emulsion when Sensito' than the stoichiometrically calculated equivalents, but metrically exposed and developed three minutes in Kodak r ferably in approximately equimolar proportions for developer D-l9 at 20 C-, t mpo i n of which is the best results.
  • the electron-accepting nuclei are 25 sented by Formula II above can be prepared as described those which, when converted to a symmetrical carbocyi Th Ch mistry of Heterocyclic Compounds With anine dye and tested as just described above, essentially I d 1 d c b l s t Chapter 11, W, (3, completely desensitize the test emulsion to blue radiation. Sumpter and F. M. Miller, Interscience Publishers, Inc., Substantially complete desensitization as used herein, re- N Y rk, 1954.
  • the inter diat heterocyclic comsults in at least a precent, and preferably a percent 30 pounds represented by Formula 111 above are all known loss of speed to blue radiation. substances, and methods for preparing these compounds
  • the cyanine dyes of Formula I are prepared convenr 11 kn n to the art, i n ly y heating a mixture of (1) a carbazole-3-carbox- Further details for the preparation of the dyes herein aldehyde of the formula: can be found in Belgian Patent No. 695,367, issued Sep- H 35 tember 11, 1967.
  • 1,3 diallyl 2 B (9-rnethyl-6-sulfo-3-carbazolyl)vinylimidazo [4,5-b] quinoxalinium iodide;
  • 1,3 diphenyl 2 B (6 cyano-9-methyl-3-carbazolyl) vinylamidazo[4,5-b]quinoxalinium iodide; and the like.
  • the dyes named above can be prepared in any of the quaternary salt forms, e.g., the chloride, bromide, iodide, perchlorate, p-toluenesulfonate, methyl sulfate, etc. salt.
  • Dyes such as illustrated above can be used alone, or a combinatiton of several of the above described dyes can be used to impart the desired spectral sensitivity. All of them are spectral sensitizers for organic photoconductors. Suitable organic photoconductors which are effectively spectrally sensitized by such dyes include both monomeric and polymeric organic photoconductors. The invention is particularly useful in increasing the speed of organic photoconductors which are substantially insensitive, or which have low sensitivity (e.g., a speed less than 25 but generally less than 10 when tested as described in Examples 1 to 6 below) to radiation of 400 to 700 nm.
  • organic photoconductors An especially useful class of organic photoconductors is referred to herein as organic amine photoconductors.
  • Such organic photoconductors have as a common structural feature at least one amino group.
  • Useful organic photoconductors which can be spectrally sensitized in accordance with this invention include, therefore, arylamine compounds comprising (1) diarylamines such as diphenylamine, dinaphthylamine, N,N diphenylbenzidine, N- phenyl 1 naphthylamine; N phenyl 2-naphthylamine; N,N-diphenyl-p-phenylenediamine; 2-carboxy-5-chloro-4'- methoxydiphenylamine; p-anilinophenol; N,N'-di-2-naphthyl p phenylene diamine; 4,4-benzylidene-bis(N,N-diethyl-m-toluidine), those described in Fox US.
  • triarylamines including (a) nonpolymeric triarylamines, such as triphenylamine, N,N,N,N'tetraphenyl-m-phenyl enediamine; 4-acetyltriphenylamine, 4-hexanoyltriphenylamine; 4-lauroyltriphenylamine; 4-hexyltriphenylamine, 4-dodecyltriphenylamine, 4,4'-bis (diphenylamino -benzil, 4,4'-bis(diphenylamino)-benzophenone, and the like, and (b) polymeric triarylamines such as poly[N,4"-(N,N, N-triphenylbenzidine)]; polyadipyltriphenylamine, polysebacyltriphenylamine; polydecamethylenetriphenylamine; poly N (4-vinylphenyl)-diphenylamine
  • A represents a mononuclear or polynuclear divalent aromatic radical, either fused or linear, (e.g., phenylene, naphthylene, biphenylene, binaphthylene, etc.), or a substituted divalent aromatic radical of these types wherein said substituent can compirse a member such as an acyl group having from 1 to about 6 carbon atoms (e.g., acetyl, propionyl, butyryl, etc.), an alkyl group having from 1 to about 6 carbon atoms (e.g., methyl, ethyl, propyl, butyl, etc.), an alkoxy group having from 1 to about 6 carbon atoms (e.g., methoxy, ethoxy, propoxy, pentoxy, etc
  • Polyarylalkane photoconductors are particularly useful in producing the present invention. Such photoconductors are described in U.S. Pat. 3,274,000; French Pat. 1,383,- 461 and in a copending application of Seus et a1. Ser. No. 624,233, Photoconductive Elements Containing Organic Photoconductors filed Mar. 20, 1967.
  • photoconductors include leuco bases of diaryl or triaryl methane dye salts, 1,1,1-triarylalkanes wherein the alkane moiety has at least two carbon atoms and tetraarylmethanes, there being substituted an amine group on at least one of the aryl groups attached to the alkane and methane moieties of the latter two classes of photoconductors which are non-leuco base materials.
  • Preferred polyaryl alkane photoconductors can be represented by the formula:
  • each of D, E and G is an aryl group and J is a hydrogen atom, an alkyl group, or an aryl group, at least one of D, E and G containing an amino substituent.
  • the aryl groups attached to the central carbon atom are preferably phenyl groups, although naphthyl groups can also be used. Such aryl groups can contain such substituents as alkyl and alkoxy typically having 1 to 8 carbon atoms, hydroxy, halogen etc. in the ortho, meta or para positions, ortho-substituted phenyl being preferred.
  • the aryl groups can also be joined together or cyclized to form a fluorene moiety, for example.
  • the amino substituent can be represented by the formula wherein each R, can be an alkyl group typically having 1 to 8 carbon atoms, a hydrogen atom, an aryl group, or together the necessary atoms to form a heterocyclic amino group typically having 5 to 6 atoms in the ring such as morpholino, pyridyl, pyrryl, etc. At least one of D, E and G is preferably p-dialkylaminophenyl group.
  • I is an alkyl group
  • such an alkyl group more generally has 1 to 7 carbon atoms.
  • Representative useful polyarylalkane photoconductors include the compounds listed below:
  • Table C comprises a partial listing of US. patents describing such organic photoconductors and compositions which can be used in place of those more particularly described herein.
  • the spectrally sensitized organic photoconductor compositions of this invention can, in certain arrangements, be employed in electrophotographic elements in the absence of binder.
  • the photoconductor itself is sometimes capable of film formation, and therefore requires no separate binder.
  • An example, of such filmforming photoconductor is poly(vinylcarbazole).
  • the more common arrangement is to provide a binder for the spectrally sensitized organic photoconductive materials.
  • Any suitable binder material can be utilized for the spectrally sensitized organic photoconductors of the invention.
  • Such binders should possess high dielectric strength, and have good insulating properties (at least in the absence of actinic radiation) as well as good film forming properties.
  • Preferred binder materials are polymers such as polystyrene, poly(methylstyrene), styrenebutadiene polymers, poly(vinyl chloride), poly(vinylidene chloride), poly(vinyl acetate), vinyl acetate-vinyl chloride polymers, poly(vinyl acetals), polyacrylic and methacrylic acid esters, polyesters such as poly(ethylene alkaryloxy-alkylene terephthalates), phenol-formaldehyde resins, polyamides, polycarbonates and the like.
  • the photoconductive compositions of the invention can be coated on any of the electrically conductive supports conventionally used in electrophotographic processes, such as metal plates or foils, metal foils laminated to paper or plastic films, electrically conductive papers and films, papers and films coated with transparent electrically conductive resins and the like.
  • Other useful conducting layers include thin layers of nickel coated by high vacuum deposition and cuprous iodide layers as described in US. Patent 3,245,833.
  • Transparent, translucent or opaque support material can be used. Exposure by reflex requires that the support transmit light while no such requirement is necessary for exposures by projection.
  • transparent supports are desired if the reproduction is to be used for projection purposes; translucent supports are preferred for reflux prints; and opaque supports are adequate if the image is subsequently transferred by any means to another support, the reproduction is satisfactory as obtained, or the reproduction is to be used as a printing plate for preparing multiple copies of the original.
  • the quantity of the above-described dye required to spectrally sensitize an organic photoconductor varies with the results desired, the particular dye used, and the particular organic photoconductor used. Best results are obtained with about .01 to 10 parts by weight dye and about 1 to parts by weight of the organic photoconductor based on the photoconductive composition. Binder can be employed in such compositions, when desired, at preferred ranges of 25 to 99 parts by weight. In addition, the composition can contain other sensitizers, either spectral sensitizers or speed increasing compounds, or both.
  • insulating and electrically conductive have reference to materials the surface resistivities of which are greater than 10 ohms per square unit (e.g., per square foot) and less than 10 ohms per square unit (e.g., per square foot) respectively.
  • Coating thicknesses of the photoconductive compositions of the invention on a support can vary widely. As a general guide, a dry coating in the range from about 1 to 200 microns is useful for the invention. The preferred range of dry coating thickness is in the range from about 3 to 50 microns.
  • the photoconductive layer is preferably dark adapted, and then is charged either negatively or positively by means of, for example, a corona discharge device maintained at a potential of from 6000-7000 volts.
  • the charged element is then exposed to light through a master, or by reflex in contact with a master, to obtain an electrostatic image corresponding to the master.
  • This invisible image may then be rendered visible by being developed by contact with a developer including a carrier and toner.
  • the carrier can be, for example, small glass or plastic balls, or iron powder.
  • the toner can be, for example, a pigmented thermoplastic resin having a grain size of from about 1- 100,11. which may be fused to render the image permanent.
  • the developer may contain a pigment or pigmented resin suspended in an insulating liquid which optionally may contain a resin in solution. If the polarity of the charge on the toner particles is opposite to that of the electrostatic latent image on the photoconductive element, a reproduction corresponding to the original is obtained. If, however, the polarity of the toner charge is the same as that of the electrostatic latent image, a reversal or negative of the original is obtained.
  • EXAMPLE This example illustrates the great increase in speed of organic photoconductors when the dyes employed in this invention are added thereto. This increase in speed is due to the spectral sensitivity imparted to the photoconductor by the dyes described herein.
  • the examples show that the maximum sensitivity (abs. max.) occurs in most cases at wavelengths ranging from about 350 to 625 mm.
  • a number of the dyes also have more than one maximum sensitivity peak as indicated in Table I hereinafter.
  • a series of solutions are prepared consisting Of 5.0 ml. methylene chloride (solvent); 0.15 g. 4,4-bis(diethylamino) 2,2 dimethyltriphenylmethane (organic photoconductor); 0.50 g. polyester composed of terephthalic acid and a glycol mixture comprising a 9:1 weight ratio of 2,2 bis[4-(2 hydroxyethoxy)phenyl]propane and ethylene glycol (binder) and 0.0065 g. of the spectral sensitizing dye indicated by identifying number from above Table A. Each solution is coated on an aluminum surface maintained at 25 C., and dried. All operations are carried out in a darkened room.
  • a sample of each coating is uniformly charged by means of a corona to a potential of about 600 volts and exposed through a transparent member bearing a pattern of varying optical density to a 3000 K. tungsten source.
  • the resultant electrostatic image pattern is then rendered visible by cascading a developer composition comprising finely divided colored thermoplastic electrostatically responsive toner particles carried on glass beads over the surface of the element.
  • the image is then developed by deposition of the toner in an imagewise manner on the element.
  • the exposure causes reduction of the surface potential of the element under each step of the gray scale from its initial potential, V to some lower potential, V, whose exact value depends on the actual amount of exposure in meter-candle-seconds received by the area.
  • V initial potential
  • V some lower potential
  • the results of these measurements are plotted on a graph of surface potential V vs. log exposure for each step.
  • the actual speed of each element is expressed in terms of the reciprocal of the exposure required to reduce the surface potential by volts.
  • the speeds given in Table I are the numerical expression of 10 divided by the exposure in meter-candle-seconds required to reduce the 600 volts charged surface potential by 100 volts. The results are shown in Table I below.
  • Example 1 shows speeds of only 8 and 7 for the positively and negatively charged surfaces, respectively, whereas the corresponding values for those of the invention represented by Example 1 are clearly of a different order of magnitude.
  • the speed shown by Example 1 (Dye No. I) is 800 and 360 for the positively and negatively charged surfaces, respectively, with maximum sensitivity peak at 500 nm., thus indicating a speed increase over that of the control by a factor of about 114 for the positively charged and about 51 for the negatively charged surfaces.
  • the extension of the absolute sensitivity to the region of about 500 nm. or more. Similar results are obtained when the carbazole dye employed is one of those listed in the paragraph following Table A.
  • the dyes of this invention are inoperable as spectral sensitizers for conventional negative type photographic silver halide emulsions because they strongly desensitize such emulsions.
  • a composition of matter comprising an organic photoconductor spectrally sensitized with a cyanine dye selected from those comprising first and second 5- to 6- membered nitrogen containing heterocyclic nuclei joined together by a dimethine linkage; said first nucleus being a carbazole nucleus joined at the 3-carbon atom thereof to said linkage, said carbazole nucleus having attached to the nitrogen atom thereof a member selected from the group consisting of alkyl, aryl, acyl and organic sulfonyl.
  • composition as defined by claim 1 wherein said second nucleus of said dye is an electron-accepting nucleus.
  • composition as defined by claim 1 wherein said second nucleus of said dye is selected from the group consisting of: a nitro group substituted nucleus; and, an imidazo [4,5 -b] quinoxaline nucleus.
  • composition of matter comprising an organic photoconductor spectrally sensitized with a cyanine dye selected from those represented 'by the following formula:
  • n represents a positive integer of from 1 to 2
  • R represents a member selected from the group consisting of an alkyl group, an aryl group, an acyl group, and an organic sulfonyl group
  • R represents a member selected from the group consisting of an alkyl group, an alkenyl group and an aryl group
  • R and R each represents a member selected from the group consisting of hydrogen, an alkyl radical, an aryl radical, a carboxyl group, a sulfo group, a nitro group, a cyano group and a halogen atom
  • X represents an acid anion
  • Z represents the nonmetallic atoms required to complete a 5- to 6-membered heterocyclic nucleus.
  • composition as defined by claim 4 wherein said organic photoconductor has the following formula:
  • each of D, E and G is an aryl group and J is selected from the group consisting of a hydrogen atom, an alkyl group and an aryl group, at least one of D, E and G containing an amino substituent selected from the group consisting of a secondary amino group and a tertiary amino group.
  • organic photoconductor is selected from the group consisting of: triphenylamine; 1,3,S-triphenyl-Z-pyrazoline; 4,4 bis (diethylamino) 2,2 dimethyltriphenylamine; 2,3,S-tetraphenylpyrrole; and 4'4-bis-diethylaminobenzophenone.
  • a composition as defined by claim 4 wherein said photoconductor comprises from 1 to 75 parts by weight of said composition, said photoconductor being spectrally sensitized with from .01 to 10 parts by weight of said composition of said cyanine dye.
  • a composition of matter comprising from 1 to 75 parts by weight of an organic photoconductor selected from the group consisting of: triphenylamine; 1,3,5-triphenyl Z-pyrazoline; 4,4-bis-diethylamino-2,Z'dimethyltriphenylmethane; 2,3,4,5-tetraphenylpyrrole; 4,4-bis-diethylaminobenzophenone; said organic photoconductor being spectrally sensitized with from .01 to 10 parts by weight of 1,3-diethyl-2-B-(9-methyl-3-carbazolyl)vinylimidazo[4,5-b]quinoxalinium salt.
  • an organic photoconductor selected from the group consisting of: triphenylamine; 1,3,5-triphenyl Z-pyrazoline; 4,4-bis-diethylamino-2,Z'dimethyltriphenylmethane; 2,3,4,5-tetraphenylpyrrole; 4,4-bis-diethy
  • An electrophotographic element comprising a conductive support having thereon a layer comprising an organic photoconductor in an insulating binder, said organic photoconductor being. spectrally sensitized with a cyanine dye selected from those comprising first and second 5- to G-membered nitrogen containing heterocyclic nuclei joined together by a dimethine linkage; said first nucleus being a carbazole nucleus joined at the 3-carbon atom thereof to said linkage, said carbazole nucleus having attached to the nitrogen atom thereof a member selected from the group consisting of alkyl, aryl, acyl and organic sulfonyl.
  • An electrophotographic element as defined in claim 12 wherein said organic photoconductor is selected from the group consisting of: a triphenylamine; a 1,3,5-triary1- 2 pyrazoline; a 4,4 bis-(dialkylamino)-2,2'-dialkyltriarylamine; a 2,3,4,5-tetraarylpyrrole; and a 4,4-bis-dialkylarninobenzophenone.
  • An electrophotographic element comprising a conductive support having thereon a layer comprising an 15 organic photoconductor spectrally sensitized with a dye selected from those represented by the following formula:
  • n represents a positive integer of from 1 to 2
  • R represents a member selected from the group consisting of an alkyl group, an aryl group, an acyl group, and an organic sulfonyl group
  • R represents a member selected from the group consisting of an alkyl group, an alkenyl group and an aryl group
  • R and R each represents a member selected from the group consisting of hydrogen, an alkyl radical, an aryl radical, a carboxyl group, a sulfo group, a nitro group, a cyano group and a halogen atom
  • X represents an acid anion
  • Z represents the nonmetallic atoms required to complete a 5- to 6-membered heterocyclic nucleus.
  • Z of said dye represents the non-metallic atoms necessary to complete an electron-accepting nucleus selected from the group consisting of a nitrobenzothiazole nucleus; 21 nitrobenzoxazole nucleus; a nitrobenzoselenazole nucleus; an imidazo[4,5-b]quinoxaline nucleus; and a 3,3-dialkyl-3H-nitroindole nucleus.
  • each of D, E and G is an aryl group and J is selected from the group consisting of a hydrogen atom, an alkyl group and an aryl group, at least one of D, E and G containing an amino substituent selected from the group consisting of a secondary amino group and a tertiary amino group.
  • An electrophotographic element as defined in claim 17 wherein said organic photoconductor is selected from the group consisting of: triphenylamine; 1,3,5-triphenyl- 16 2-pyrazoline; 4,4-bis-(diethylamino) 2,2 dimethyltriphenylamine; 2,3,5,5-tetraphenylpyrrole; and 4,4 bis-diethylaminobenzophenone.
  • An electrophotographic element comprising a conductive support having thereon a layer comprising from 1 to 75 parts by weight of an organic photoconductor selected from the group consisting of: triphenylamine; 1,3,5- triphenyl 2 pyrazoline; 4,4 bis diethylamino-2,2'-dimethyltriphenylmethane; 2,3,4,5-tetraphenylpyrrole; 4,4- bis-diethylaminobenzophenone; said organic photoconductor being spectrally sensitized with from .01 to 10 parts by weight of 1,3-diethyl-2-fl-(9-methyl 3 carbazolyl) vinylimidazo [4,5 -b] quinoxalinium salt.
  • an organic photoconductor selected from the group consisting of: triphenylamine; 1,3,5- triphenyl 2 pyrazoline; 4,4 bis diethylamino-2,2'-dimethyltriphenylmethane; 2,3,4,5-tetraphenylpyrrol

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

ORGANIC PHOTOCONDUCTORS ARE SPECTRALLY SENSITIZED WITH A CYANINE DYE CONTAINING A CARBAZOLE NUCLEUS.

Description

United States Patent Olfice 3,579,331 Patented May 18, 1971 3,579,331 ELECTROPHOTOGRAPHIC MATERIALS CON- TAINING CYANINE DYE SENSITIZERS John D. Mee and Donald W. Heseltine, Rochester, N.Y., assignors to Eastman Kodak Company, Rochester, N.Y. No Drawing. Filed Apr. 8, 1968, Ser. No. 719,690 Int. Cl. G03g 5/02, 5/06 US. Cl. 961.6 26 Claims ABSTRACT OF THE DISCLOSURE Organic photoconductors are spectrally sensitized with a cyanine dye containing a carbazole nucleus.
This invention relates to electrophotography, and more particularly to materials and elements useful in the electrophotographic process.
Elements useful in the electrophotographic process commonly comprise an electrically conductive support bearing a stratum including a photoconductive insulating layer which has a resistivity substantially greater in the dark than in light actinic thereto. Such elements can be used in electrophotographic processes, for example, by first adapting the element in the dark to obtain a uniformly high resistivity in the photoconductive insulating layer, and electrostatically charging the element in the dark to obtain a relatively high potential which may be either negative or positive in polarity. The elements can then be exposed to a light pattern which lowers the resistivity and thereby the charge density of the illuminated areas imagewise in proportion to the intensity of illumination incident upon each point of the illuminated areas. A latent electrostatic image is obtained. Visible images can be formed from the latent electrostatic image in any convenient manner, such as by dusting with a finely divvided, fusible pigment the particles of which bear an electrostatic charge opposite that remaining on the surface the photoconductive insulating layer. Thereafter, the pigment particles can be fused to the surface to provide a permanent image.
Various photoconductive substances have been employed in photographic elements and processes of the type described above. Typical inorganic photoconductive materials include selenium and zinc oxide. Such inorganic photoconductive materials have inherent disadvantages, such as an inability to be readily adapted to reflex copying systems, or to produce images on transparent supports except by indirect means. Oragnic photoconductors avoid such disadvantages, but, generally have relatively poor sensitivity to visible radiation. It has been proposed to increase the spectral sensitivity of organic photoconductors with certain cyanine or merocyanine dyes, for example, such as listed in Table D hereinafter. The spectral sensitvity imparted by such dyes has been very weak. It there-fore appears highly desirable to provide effective spectral sensitizers for'organic photoconductors.
One object of this invention is to provide novel sensitized organic photoconductors.
Another object of this invention is to provide novel spectrally sensitized organic photoconductor materials.
Still another object of the invention is to provide novel compositions of matter comprising organic photoconductors and certain spectral sensitizers.
A further object of this invention is to provide novel compositions of matter comprising organic photoconductor, binder and certain spectral sensitizers for the organic photoconductor.
Still another object of this invention is to provide a novel electrophotographic material including a conductive support having coated thereon an insulating layer containing spectrally sensitized organic photoconductor.
A further object of this invention is to provide methods for spectrally sensitizing organic photoconductors.
Still other objects of this invention will be apparent from the following disclosure and the appended claims.
In accordance with one embodiment of this invention, novel compositions of matter are provided comprising organic photoconductors spectrally sensitized with the dye defined more fully below. These compositions can be incorporated in a suitable binder and coated on a conductive support for use in electrophotography.
In another embodiment of this invention, compositions of matter are provided comprising organic photoconductors spectrally sensitized with the dyes described below, dispersed in an insulating binder. These compositions of matter can be coated on a conductive support and used in electrophotographic processes.
In still another embodiment of this invention, electrophotographic materials are provided comprising a conductive support having coated thereon a layer comprising an insulating binder, an organic photoconductor and a spectral sensitizing quantity of a dye defined more fully below.
In another embodiment of this invention, a method is provided for spectrally sensitizing organic photoconductors which comprises mixing a dye of the type described below with an organic photoconductor, in a con centration suflicient to elfectively spectrally sensitize the organic photoconductor. Preferably, the dye and organic photoconductor are mixed in a suitable solvent.
The spectral sensitizing dyes which are employed in this invention are certain cyanine dyes containing carbazole nuclei which, when incorporated in a test negative gelatin silver bromoiodide emulsion consisting of 99.35 mole percent bromide and .65 mole percent iodide, at a concentration of 0.2 millimole of dye per mole of silver halide, desensitize the emulsion more than 0.4 log B when the test emulsion is coated on a support, exposed through a step wedge in a sensitometer (to obtain D to light having a wavelength of 365 nm., processed for three minutes at 20 C. in Kodak Developer D19, and is fixed, washed and dried. As used herein and in the appended claims, the test negative silver bromoiodide emulsions are prepared as follows:
In a container with temperature control is put a solution with the following composition:
(A) Potassium bromide Potassium iodide 5 Gelatin 65 Water1700 cc.
And in another container is put a filtered solution consisting of:
(B) Silver nitrate g. 200 Water cc. 2000 is Kodak developer D-l9 which has the following composition: N-methyl-p-aminophenol sulfate 2.0 Sodium sulfite, desiccated 90.0 Hydroquinone 8.0 Sodium carbonate, monohydrated 52.5 Potassium bromide 5.0
Water to make 1.0 liter.
As indicated above, the cyanine dyes employed in this invention desensitize conventional negative silver halide emulsions. Such emulsions are inherently sensitive to blue radiation. The present dyes reduce that sensitivity. In addition, these dyes fail to provide practical spectral sensitization for such emulsions. Therefore, it was quite unexpected to find that they spectrally sensitized organic photoconductors.
The cyanine dyes of this invention increase the speed of organic photoconductors by extending or increasing the response of the photoconductor to visible radiation (i.e., radiation in the range of about 400 nm. to 700 nm.). In the concentrations used, the dyes herein appear to function as spectral sensitizers when employed with efiicient organic photoconductors. When the organic photoconductor used is poor or inefiicient, the dyes seem to function as speed increasing compounds as well as spectral sensitizers.
The cyanine dyes that are useful in practicing the invention include those comprising first and second to 6- membered nitrogen containing heterocyclic nuclei joined together by a dimethine linkage; said first nucleus being a carbazole nucleus joined at the 3-carbon atom thereof to said linkage; and said second nucleus being of the type used in cyanine dyes, preferably an electron accepting nucleus, joined at a carbon atom thereof to said linkage, to complete said cyanine dyes.
The preferred cyanine dyes that are useful herein include those represented by the following general formula: I --z l wherein n represents a positive integer of from 1 to 2, R represents a member selected from the group consisting of an alkyl group, an aryl group, an acyl group, and an organic sulfonyl group, e.g., an alkyl group, including substituted alkyl (preferably a lower alkyl containing from about 1 to 4 carbon atoms) such as methyl, ethyl, propyl, butyl, octyl, sulfoalkyl such as sulfopropyl or sulfobutyl, sulfatoalkyl such as sulfatopropyl or sulfatobutyl, or carboXyalkyl such as carboxyethyl or carboxybutyl, or an aryl group, e.g., phenyl, sulfophenyl, carboxyphenyl, tolyl, etc., or an acyl group containing from about 1 to 10 carbon atoms, e.g., acetyl, propionyl, butyryl, benzoyl, etc., or an organic sulfonyl group from about 1 to 10 carbon atoms, e.g., an alkanesulfonyl group such as methanesulfonyl, ethanesulfonyl, butanesulfonyl, etc., or an aryl sulfonyl group such as benzenesulfonyl, etc.; R represents an alkyl group, including substituted alkyl (preferably a lower alkyl containing from 1 to 4 carbon atoms), e.g., methyl, ethyl, propyl, isopropyl, butyl, hexyl, cyclohexyl, decyl, dodecyl, etc., a hydroxyalkyl group, e.g., fl-hydroxyethyl, w-hydroxybutyl, etc., an alkoxyalkyl group, e.g., B-methoxyethyl, w-butoxybutyl, etc., a carboxyalkyl group, e.g., ,B-carboxyethyl, w-carboxybutyl, etc., a sulfoalkyl group, e.g., S-sulfoethyl, w-sulfobutyl, etc., a sulfatoalkyl group, e.g., B-sulfatoethyl, w-sulfatobutyl, etc., an acyloxyalkyl group, e.g., fl-acetoxyethyl, 'y-acetoxypropyl, w-butyryloxybutyl, etc., an alkoxycarbonylalkyl group, e.g., fl-methoxycarbonylethyl, w-ethoxycarbonylbutyl, benzyl, phenethyl, etc., and the like, or an alkenyl group, e.g., allyl, l-propenyl, 2-butenyl, etc., or an aryl group, e.g., phenyl, tolyl, xylyl, methoxyphenyl, chlorophenyl, naphthyl, etc.; R and R each represents a hydrogen 4 atom or an alkyl group (preferably a lower alkyl containing from 1 to 4 carbon atoms), e.g., methyl, ethyl, propyl, isopropyl, butyl, hexyl, decyl, dodecyl, etc., or an aryl group, e.g., phenyl, tolyl, xylyl, methoxyphenyl, chlorophenyl, 3,4 dichlorophenyl, nitrophenyl, naphthyl, etc., or a carboxyl group, a sulfo group, a nitro group, a cyano group, or a halogen such as chlorine or bromine, X represents an acid anion, e.g., chloride, bromide iodide, p-toluenesulfonate, thiocyanate, sulfamate, methyl sulfate, ethyl sulfate, perchlorate, etc., and Z represents the nonmetallic atoms required to complete a 5- to 6-membered heterocyclic nucleus, which nucleus may contain a second hetero atom such as oxygen, sulfur, selenium, or nitrogen, such as used in cyanine dyes, and including the following nuclei: a thiazole nucleus, e.g., thiazole, 4-methylthiazole, 4 phenylthiazole, 5 methylthiazole, 5 phenylthiazole, 4,5 dimethylthiazole, 4,5-diphenylthiazole, 4-(2-thienyl) thiazole, benzothiazole, 4 chlorobenzothiazole, 4-ch10ro- 5 nitrobenzothiazole, 5 chlorobenzothiazole, 6 chlorobenzothiazole, 7 chlorobenzothiazole, 4 methylbenzothiazole, 5 methylbenzothiazole, 6 methylbenzothiazole, 4- or 5 nitrobenzothiazole, 6 nitrobenzothiazole, 5- bromobenzothiazole, 6 bromobenzothiazole, 5 chloro- 6 nitrobenzothiazole, 4 phenylbenzothiazole, 4 methoxybenzothiazole, 5 methoxybenzothiazole, 6 methoxybenzothiazole, 5 iodobenzothiazole, 6-iodobenzothiazole, 4 ethoxybenzothiazole, 5 ethoxybenzothiazole, tetrahydrobenzothiazole, 5,6-dimethoxybenzothiazole, 5,6-dioxymethylenebenzothiazole, 5 hydroxybenzothiazole, 6 hydroxybenzothiazole, naphtho [2,1-d] thiazole, naphtho[1,2- d]thiazole, naphtho[2,3-d]thiazole, 5-methoxynaphtho[2- 3-d]thiazole, 5 ethoxynaphtho[1,2-d]thiazo1e, 8 methoxynaphtho[2,l d]thiazole, 7 methoxynaphtho[2,l-d] thiazole, 5 methoxythianaphtheno-[7,6-d]thiazole, nitro substituted naphthothiazoles, etc.; an oxazole nucleus, e.g., 4 methyloxazole, 4 nitrooxazole, 5 methyloxazole, 4 phenyloxazole, 4,5 diphenyloxazole, 4 ethyloxazole, 4,5 dimethyloxazole, 5 phenyloxazole, benzoxazole, 5- methylbenzoxazole, 5 phenylbenzoxazole, 5- or 6-nitrobenzoxazole, 5 chloro 6 nitrobenzoxazole, 6-methylbenzoxazole, 5,6 dimethylbenzoxazole, 4,6 dimethylbenzoxazole, 5 methoxybenzoxazole, 5 ethoxybenzoxazole, 5 chlorobenzoxazole, 6 methoxybenzoxazole, 5- hydroxybenzoxazole, 6 hydroxybenzoxazole, naphtho[2, l d]oxazo1e, naphtho[l,2 d]oxazole, nitro substituted naphthoxazoles, etc.; a selenazole nucleus, e.g., 4-methylselenazole, 4 nitroselenazole, 4 phenylselenazole, benzoselenazole, 5 chlorobenzoselenazole, 5 methoxybenzoselenazole, 5 hydroxybenzoselenazole, 5- or 6 nitrobenzoselenazole, 5 chloro 6 nitrobenzoselenazole, tetrahydrobenzoselenazole, naphtho[2,1-d]selenazole, naphtho[l,2-d]selenazole, nitro substituted naphthoselenazoles, etc.; a thiazoline nucleus, e.g., thiazoline, 4 methylthiazoline, 4 nitrothiazoline, etc.; a pyridine nucleus, e.g., 2- pyridine, 5-methyl-2-pyridine, 4 pyridine, 3 methyl-4- pyridine, nitro substituted pyridines, etc.; a quinoline nucleus, e.g., 2 quinoline, 3 methyl 2 quinoline, 5 ethyl 2 quinoline, 6 chloro 2 quinoline, 6-nitro- 2 quinoline, 8 chloro 2 quinoline, 6 methoxy 2- quinoline, 8 ethoxy 2 quinoline, 8 hydroxy 2-quinoline, 4 quinoline, 6 methoxy 4 quinoline, 6 nitro-4- quinoline, 7 methyl 4 quinoline, 8-chloro-4-quinoline, 1 isoquinoline, 6 nitro 1 isoquinoline, 3,4 dihydro- 1 isoquinoline, 3 isoquinoline, etc.; a 3,3 dialkylindolenine nucleus, preferably having a nitro or cyano substituent, e.g., 3,3 dimethyl 5- or 6 nitroindoleniue, 3, 3 dimethyl-S- or 6 cyanoindolenine, etc.; and, an imidazole nucleus, e.g., imidazole, l alkylimidazole, l-alkyl- 4 phenylirnidazole, l-alkyl 4,5 dimethylimidazole, benzimidazole, l alkylbenzimidazole, '1 aryl 5,6 dichlorobenzimidazole, l-alkyl 1H naphth[1,2-d]imidazole, 1 aryl 3H naphth[l,2-d]imidazole, 1 alkyl 5- methoxy 1H naphth[2,1-d]imidazole, etc.; an imidazo- [4,5-b1quinoxaline nucleus, e.g., a 1,3 dialkylimidazo [4, 5-b]quinoxaline such as 1,3 diethylimidazo[4,5-b] quinoxaline, 6-ch1oro 1,3 diethylimidazolj4,5-b] quinoxaline, etc., a 1,3 dialkenylimidazo[4,5-b]quinoxaline such as 1,3 diallylimidazo[4,5-b]quinoxaline, 6 chlor-1,3-diallylimidazo[4,5-b1quinoxaline, etc., a "1,3 diarylimidazo- [4,5-b1quinoxaline such as 1,3 diphenylimidazo[4,5-b]
wherein R, R and R are as previously defined, with a heterocyclic quaternary salt of the formula:
quinoxaline, 6 chloro 1,3 diphenylimidazo[4,5-b1quinm oxaline, etc.; and the like. The nuclei wherein Z in above Formula I represents the atoms necessary to complete an electron-accepting nucleus such as a nitro group sub- X stituted thiazole, oxazole, selenazole, thiazoline, pyridine, 10 quinoline, 3,3 dialkylindolenine or imidazole nucleus; and the like; provide particularly eflicacious spectral sensitizing dyes for the photoconductor compositions and elewherein R1, X and Z are as previously d fi d in a mellis Of this inVeIltiOIlsolvent medium such as acetic anhydride, at elevated tem- As used herein and in pp claims, election peratures and preferably at refluxing temperatures of the accepting nucleus refers to those nuclei which, when reaction mixtures. On chilling, the dye separates from the converted to a symmetrical carbocyanine y and added to mixture and is purified by one or more recrystallizations a gelatin siiVei' eiliofobl'omide emulsion containing 40 from a suitable solvent such as an alkanol alone or in mole Pereeilt chloride and mole Percent bromide, at admixture with a phenol, for example from methanol or a concentration 0f from grams y P mole 20 mixtures of methanol and cresol. The reactants can be cmof silver, cause y electron pp at least about an ployed with a small excess of one or the other, i.e., greater peleeilt loss in the blue speed of emulsion when Sensito' than the stoichiometrically calculated equivalents, but metrically exposed and developed three minutes in Kodak r ferably in approximately equimolar proportions for developer D-l9 at 20 C-, t mpo i n of which is the best results. Intermediate carbazole-3-aldehydes repregiven above- Preferably, the electron-accepting nuclei are 25 sented by Formula II above can be prepared as described those which, when converted to a symmetrical carbocyi Th Ch mistry of Heterocyclic Compounds With anine dye and tested as just described above, essentially I d 1 d c b l s t Chapter 11, W, (3, completely desensitize the test emulsion to blue radiation. Sumpter and F. M. Miller, Interscience Publishers, Inc., Substantially complete desensitization as used herein, re- N Y rk, 1954. The inter diat heterocyclic comsults in at least a precent, and preferably a percent 30 pounds represented by Formula 111 above are all known loss of speed to blue radiation. substances, and methods for preparing these compounds The cyanine dyes of Formula I are prepared convenr 11 kn n to the art, i n ly y heating a mixture of (1) a carbazole-3-carbox- Further details for the preparation of the dyes herein aldehyde of the formula: can be found in Belgian Patent No. 695,367, issued Sep- H 35 tember 11, 1967.
R Included among the dyes of Formula I above are the 2 following typical dye compounds. The method for prepar- N ing Dye No. I is included in Table A below to illustrate, in general, how the dye compounds herein are prepared.
TABLE A Dye No. Compound I 1,3-diethyl-2-fl-(9-methyl-3-carbazolyl)vinylimidazo fl,5-b1quinoxalinium iodide.
CgHs
9-methylcarbazole-3-carboxaldehyde (1.05 g. 1 mol) and 1,3-diethyl-2-n1ethylimidazo[4,5 b]quinoxalinium iodide (1.85 g. 1 mol) in acetic auhydrlde (10 ml.) are refluxed for 5 minutes, during which time some solid separates. The mixture is transferred to a beaker with the and of a little acetic acid and chilled. The solid is collected and washed with ether. After two recrystallizations from methanol, the yield of purified dye is 0.48. (17%), M.P. 2703 C. dec.
II a-methyl-z-fi-(9-methyl-3-carbazo1yl)vlnyI-G-nitrobeuzothlazolium-p-toluenesullonate.
S -NO2 OH=CH-O \p/ one 080201111 CHa IIL 5-thloro-3-methyl-2-fl-(9-metllyl-3-carbazoly1)vinyl-fi-uitrobenzotl1iazolium p -toluenes lona o.
S N02 CH=CH-O cm 0 s 0:01111 Other dyes coming within Formula I above that likewise are highly useful spectral sensitizers for the photoconductor compositions and elements of this invention include, for example,
3 methyl 2 p-(9-methyl-7-nitro-3-carbazolyl)vinyl-5- chlorobenzothiazolium p-toluenesulfonate;
3 ethyl 2 ,8-(9-ethyl-3-carbazolyl)vinyl-6-nitrobenzothiazolium p-toluenesulfonate;
3 butyl 2 18-(9 butyl 6-ethyl-2-nitro-3-carbazolyl) vinyl-6-chlorobenzothiazolium perchlorate;
3 methyl 2 B (9-phenyl-3-carbazolyl)vinyl-6-nitrobenzoxazolium p-toluenesulfonate;
3 ethyl 2 fl (2-carboxy-9-ethyl-6-phenyl-3-carbazolyl)vinyl-S-chlorobenzoxazolium p toluenesulfonate;
1,3,3 trimethyl 2 3 (9-acetyl-6-chloro-3-carbazolyl) vinyl-5-nitro-3H-indolium perchlorate;
3 ethyl 2 18 (9-methanesulfonyl-3-carbazolyl)vinyl- 6-nitrobenzoselenazo1ium p-toluenesulfonate;
1,3 diallyl 2 B (9-rnethyl-6-sulfo-3-carbazolyl)vinylimidazo [4,5-b] quinoxalinium iodide;
1,3 diphenyl 2 B (6 cyano-9-methyl-3-carbazolyl) vinylamidazo[4,5-b]quinoxalinium iodide; and the like.
It will be apparent that the dyes named above can be prepared in any of the quaternary salt forms, e.g., the chloride, bromide, iodide, perchlorate, p-toluenesulfonate, methyl sulfate, etc. salt.
Dyes such as illustrated above can be used alone, or a combinatiton of several of the above described dyes can be used to impart the desired spectral sensitivity. All of them are spectral sensitizers for organic photoconductors. Suitable organic photoconductors which are effectively spectrally sensitized by such dyes include both monomeric and polymeric organic photoconductors. The invention is particularly useful in increasing the speed of organic photoconductors which are substantially insensitive, or which have low sensitivity (e.g., a speed less than 25 but generally less than 10 when tested as described in Examples 1 to 6 below) to radiation of 400 to 700 nm.
An especially useful class of organic photoconductors is referred to herein as organic amine photoconductors. Such organic photoconductors have as a common structural feature at least one amino group. Useful organic photoconductors which can be spectrally sensitized in accordance with this invention include, therefore, arylamine compounds comprising (1) diarylamines such as diphenylamine, dinaphthylamine, N,N diphenylbenzidine, N- phenyl 1 naphthylamine; N phenyl 2-naphthylamine; N,N-diphenyl-p-phenylenediamine; 2-carboxy-5-chloro-4'- methoxydiphenylamine; p-anilinophenol; N,N'-di-2-naphthyl p phenylene diamine; 4,4-benzylidene-bis(N,N-diethyl-m-toluidine), those described in Fox US. Pat. 3,240,597 issued Mar. 15, 1966, and the like, and (2) triarylamines including (a) nonpolymeric triarylamines, such as triphenylamine, N,N,N,N'tetraphenyl-m-phenyl enediamine; 4-acetyltriphenylamine, 4-hexanoyltriphenylamine; 4-lauroyltriphenylamine; 4-hexyltriphenylamine, 4-dodecyltriphenylamine, 4,4'-bis (diphenylamino -benzil, 4,4'-bis(diphenylamino)-benzophenone, and the like, and (b) polymeric triarylamines such as poly[N,4"-(N,N, N-triphenylbenzidine)]; polyadipyltriphenylamine, polysebacyltriphenylamine; polydecamethylenetriphenylamine; poly N (4-vinylphenyl)-diphenylamine, poly-N- (vinylphenyl)-a,a-dinaphthylamine and the like. Other useful amine-type photoconductors are disclosed in us. Pat. 3,180,730, issued Apr. 27, 1965.
Other very useful photoconductive substances capable of being spectrally sensitized in accordance with this invention are disclosed in Fox US. Pat. 3,265,496 issued Aug. 9, 1966, and include those represented by the following wherein A represents a mononuclear or polynuclear divalent aromatic radical, either fused or linear, (e.g., phenylene, naphthylene, biphenylene, binaphthylene, etc.), or a substituted divalent aromatic radical of these types wherein said substituent can compirse a member such as an acyl group having from 1 to about 6 carbon atoms (e.g., acetyl, propionyl, butyryl, etc.), an alkyl group having from 1 to about 6 carbon atoms (e.g., methyl, ethyl, propyl, butyl, etc.), an alkoxy group having from 1 to about 6 carbon atoms (e.g., methoxy, ethoxy, propoxy, pentoxy, etc.), or a nitro group; A represents a mononuclear or polynuclear monovalent aromatic radical, either fused or linear (e.g., phenyl, naphthyl, biphenyl, etc.); or a substituted monovalent aromatic radical wherein said substituent can comprise a member, such as an acyl group having from 1 to about 6 carbon atoms (e.g., acetyl, propionyl, butyryl, etc.), an alkyl group having from 1 to about 6 carbon atoms (e.g., methyl, ethyl, propyl, butyl, etc.), an alkoxy group having from 1 to about 6 carbon atoms (e.g., methoxy, propoxy, pentoxy, etc.), or a nitro group; Q can represent a hydrogen atom, a halogen atom or an aromatic amino group, such as ANH; b represents an integer from 1 to about 12, and G represents a hydrogen atom, a mononuclear or polynuclear aromatic radical, either fused or linear (e.g., phenyl, naphthyl, biphenyl, etc.), a substituted aromatic radical wherein said substituent comprises an alkyl group, an alkoxy group, an acyl group, or a nitro group, or a poly- (4'-vinylphenyl) group which is bonded to the nitrogen atom by a carbon atom of the phenyl group. Certain nitrogen heterocyclic compounds are also useful photoconductors in the invention such as, for example, l,3,5-triphenyl- 2-pyrazoline, 2,3,4,5-tetraphenylpyrrole, etc.
Polyarylalkane photoconductors are particularly useful in producing the present invention. Such photoconductors are described in U.S. Pat. 3,274,000; French Pat. 1,383,- 461 and in a copending application of Seus et a1. Ser. No. 624,233, Photoconductive Elements Containing Organic Photoconductors filed Mar. 20, 1967. These photoconductors include leuco bases of diaryl or triaryl methane dye salts, 1,1,1-triarylalkanes wherein the alkane moiety has at least two carbon atoms and tetraarylmethanes, there being substituted an amine group on at least one of the aryl groups attached to the alkane and methane moieties of the latter two classes of photoconductors which are non-leuco base materials.
Preferred polyaryl alkane photoconductors can be represented by the formula:
wherein each of D, E and G is an aryl group and J is a hydrogen atom, an alkyl group, or an aryl group, at least one of D, E and G containing an amino substituent. The aryl groups attached to the central carbon atom are preferably phenyl groups, although naphthyl groups can also be used. Such aryl groups can contain such substituents as alkyl and alkoxy typically having 1 to 8 carbon atoms, hydroxy, halogen etc. in the ortho, meta or para positions, ortho-substituted phenyl being preferred. The aryl groups can also be joined together or cyclized to form a fluorene moiety, for example. The amino substituent can be represented by the formula wherein each R, can be an alkyl group typically having 1 to 8 carbon atoms, a hydrogen atom, an aryl group, or together the necessary atoms to form a heterocyclic amino group typically having 5 to 6 atoms in the ring such as morpholino, pyridyl, pyrryl, etc. At least one of D, E and G is preferably p-dialkylaminophenyl group.
9 When I is an alkyl group, such an alkyl group more generally has 1 to 7 carbon atoms.
Representative useful polyarylalkane photoconductors include the compounds listed below:
TABLE B Compound No.:
1 4,4 bis (diethylamino) 2,2 dimethyltriphenylmethane. 2 4',4" diamino 4 dimethylamino -2',2"-
dimethyltriphenylmethane.
3 4,4" bis(diethylamin) 2,6 dichloro-2,
2"-dimethyltriphenylrnethane.
4 4,4" bis(diethylamino) 2',2" dimethyldiphenylnaphthylmethane.
5 2,2" dimethyl 4,4,4" tris(dimethylamino)triphenylmethane.
6 4,4" bis(diethylamino) 4 dimethylamino-2,2"-dimethyltriphenylmethane.
7--.... 4,4" bis(diethylamino) 2 chloro-2,2"
dimethyl 4-dimethylaminotriphenylmethane.
8 4',4" bis(diethylamino) 4 dimethylamino-2,2,2"-trimethyltriphenylmethane.
9-..-.. 4',4" bis(dimethylamino) 2 chloro-2',2"-
dimethyltriphenylmethane.
10 4',4" bis(dimethylamino) 2',2" dimethyl-4-methoxytriphenylmethane.
.11 4,4 bis (benzylethylamino) 2,2 dimethyltriphenylmethane.
12..--.. 4,4 bis(diethylamino) 2,2 diethoxytriphenylmethane.
13---- 4,4 bis(dimethylamino) 1,1,1 triphenylethane.
14 1 (4 N,N dimethylaminophenyl)-1,1-diphenylethane.
15-.." 4-dimethylaminotetraphenylmethane. 16 4-diethylaminotetraphenylmethane.
As described herein a wide variety of photoconductor compounds can be spectrally sensitized with the dyes referred to above. Some organic photoconductors will, of course, be preferred to others; but in general useful results may be obtained from substantially all of the presently known organic photoconductors.
The following Table C comprises a partial listing of US. patents describing such organic photoconductors and compositions which can be used in place of those more particularly described herein.
Table C U.'S. Pat. No. Inventor Issued 3,122,435 Noe et al. Feb. 25, 1964 3,127,266 Sus et al. Mar. 31, 1964 3,130,046 Schlesinger Apr. 21, 1964 3,131,060 Cassiers Apr. 28, 1964 3,139,338 Schlesinger June 30, 1964 3,139,339 Schlesinger June 30, 1964 3,140,946 Cassiers July 14, 1964 3,141,770 Davis et al. July 21, 1964 3,148,982 Ghys Sept. 15, 1964 3,155,503 Cassiers -2. Nov. 3, 1964 3,158,475 Cassiers Nov. 24, 1964 3,161,505 Tomanek Dec. 15, 1964 3,163,530 Schlesinger Dec. 29, 1964 3,163,531 Schlesinger Dec. 29, 1964 3,163,532 Schlesinger Dec. 29, 1964 3,169,060 Hoegl Feb. '9, 1965 3,174,854 Stumpf -2 Mar. 23, 1965 3,180,729 Klupfel et al. Apr. 27, 1965 3,180,730 Klupfel et al Apr. 27, 1965 3,189,447 Neugebauer June 15, 1965 3,206,306 Neugebauer Sept. 14, 1965 3,141,770 Davis et al July 21, 1964 3,037,861 Hoegl et al June 5, 1962 3,041,165 Sus et al. June 26, 1962 10 US. Pat. No. Inventor Issued 3,066,023 Schlesinger Nov. 27, 1962 3,072,479 Bethe Jan. 8, 1963 3,047,095 Klupfel et al July 9, 1963 3,112,197 Neugebauer et al Nov. 26, 1963 3,113,022 Cassiers et al. Dec. 3, 1963 3,114,633 Schlesinger Dec. 17, 1963 3,265,497 Kosche et al. Aug. 9, 1966 3,274,000 Noe et a1 Sept. 20, 1966 The spectrally sensitized organic photoconductor compositions of this invention can, in certain arrangements, be employed in electrophotographic elements in the absence of binder. For example, the photoconductor itself is sometimes capable of film formation, and therefore requires no separate binder. An example, of such filmforming photoconductor is poly(vinylcarbazole). However, the more common arrangement is to provide a binder for the spectrally sensitized organic photoconductive materials. Any suitable binder material can be utilized for the spectrally sensitized organic photoconductors of the invention. Such binders should possess high dielectric strength, and have good insulating properties (at least in the absence of actinic radiation) as well as good film forming properties. Preferred binder materials are polymers such as polystyrene, poly(methylstyrene), styrenebutadiene polymers, poly(vinyl chloride), poly(vinylidene chloride), poly(vinyl acetate), vinyl acetate-vinyl chloride polymers, poly(vinyl acetals), polyacrylic and methacrylic acid esters, polyesters such as poly(ethylene alkaryloxy-alkylene terephthalates), phenol-formaldehyde resins, polyamides, polycarbonates and the like.
The photoconductive compositions of the invention can be coated on any of the electrically conductive supports conventionally used in electrophotographic processes, such as metal plates or foils, metal foils laminated to paper or plastic films, electrically conductive papers and films, papers and films coated with transparent electrically conductive resins and the like. Other useful conducting layers include thin layers of nickel coated by high vacuum deposition and cuprous iodide layers as described in US. Patent 3,245,833. Transparent, translucent or opaque support material can be used. Exposure by reflex requires that the support transmit light while no such requirement is necessary for exposures by projection. Similarly transparent supports are desired if the reproduction is to be used for projection purposes; translucent supports are preferred for reflux prints; and opaque supports are adequate if the image is subsequently transferred by any means to another support, the reproduction is satisfactory as obtained, or the reproduction is to be used as a printing plate for preparing multiple copies of the original.
The quantity of the above-described dye required to spectrally sensitize an organic photoconductor varies with the results desired, the particular dye used, and the particular organic photoconductor used. Best results are obtained with about .01 to 10 parts by weight dye and about 1 to parts by weight of the organic photoconductor based on the photoconductive composition. Binder can be employed in such compositions, when desired, at preferred ranges of 25 to 99 parts by weight. In addition, the composition can contain other sensitizers, either spectral sensitizers or speed increasing compounds, or both.
As used herein and in the appended claims, the terms insulating and electrically conductive have reference to materials the surface resistivities of which are greater than 10 ohms per square unit (e.g., per square foot) and less than 10 ohms per square unit (e.g., per square foot) respectively.
Coating thicknesses of the photoconductive compositions of the invention on a support can vary widely. As a general guide, a dry coating in the range from about 1 to 200 microns is useful for the invention. The preferred range of dry coating thickness is in the range from about 3 to 50 microns.
To produce a reproduction of an image utilizing the electrophotographic elements of our invention, the photoconductive layer is preferably dark adapted, and then is charged either negatively or positively by means of, for example, a corona discharge device maintained at a potential of from 6000-7000 volts. The charged element is then exposed to light through a master, or by reflex in contact with a master, to obtain an electrostatic image corresponding to the master. This invisible image may then be rendered visible by being developed by contact with a developer including a carrier and toner. The carrier can be, for example, small glass or plastic balls, or iron powder. The toner can be, for example, a pigmented thermoplastic resin having a grain size of from about 1- 100,11. which may be fused to render the image permanent. Alternatively, the developer may contain a pigment or pigmented resin suspended in an insulating liquid which optionally may contain a resin in solution. If the polarity of the charge on the toner particles is opposite to that of the electrostatic latent image on the photoconductive element, a reproduction corresponding to the original is obtained. If, however, the polarity of the toner charge is the same as that of the electrostatic latent image, a reversal or negative of the original is obtained.
Although the development techniques described hereinabove produce a visible image directly on the electrophotographic element, it is also possible to transfer either the electrostatic latent image, or the developed image to a second support which may then be processed to obtain the final print. All of these development techniques are well known in the art and have been described in a number of U.S. and foreign patents.
This invention is further illustrated by the following representative example.
EXAMPLE This example illustrates the great increase in speed of organic photoconductors when the dyes employed in this invention are added thereto. This increase in speed is due to the spectral sensitivity imparted to the photoconductor by the dyes described herein. The examples show that the maximum sensitivity (abs. max.) occurs in most cases at wavelengths ranging from about 350 to 625 mm. A number of the dyes also have more than one maximum sensitivity peak as indicated in Table I hereinafter.
A series of solutions are prepared consisting Of 5.0 ml. methylene chloride (solvent); 0.15 g. 4,4-bis(diethylamino) 2,2 dimethyltriphenylmethane (organic photoconductor); 0.50 g. polyester composed of terephthalic acid and a glycol mixture comprising a 9:1 weight ratio of 2,2 bis[4-(2 hydroxyethoxy)phenyl]propane and ethylene glycol (binder) and 0.0065 g. of the spectral sensitizing dye indicated by identifying number from above Table A. Each solution is coated on an aluminum surface maintained at 25 C., and dried. All operations are carried out in a darkened room. A sample of each coating is uniformly charged by means of a corona to a potential of about 600 volts and exposed through a transparent member bearing a pattern of varying optical density to a 3000 K. tungsten source. The resultant electrostatic image pattern is then rendered visible by cascading a developer composition comprising finely divided colored thermoplastic electrostatically responsive toner particles carried on glass beads over the surface of the element. The image is then developed by deposition of the toner in an imagewise manner on the element. (Other development techniques such as those described in U.S. 2,786,439; 2,786,440; 2,786,441; 2,811,465; 2,874,063; 2,984,163; 3,040,704; 3,117,884; Re. 25,779; 2,297,691; 2,551,582; and in RCA Review, vol. (1954) pages 469484, can be used with similar results). An image is formed on each sample as indicated in Table I. Another sample of each coating is tested to determine its electrical speed and maximum sensitivity peak. This is accomplished by giving each element a positive or negative charge (as indicated in Table I) with a corona source until the surface potential, as measured by an electrometer probe, reaches 600 volts. It is then exposed to light from a 3000 K. tungsten s urce of 20-foot candle illuminance at the exposure surface. The exposure is made through a stepped density gray scale. The exposure causes reduction of the surface potential of the element under each step of the gray scale from its initial potential, V to some lower potential, V, whose exact value depends on the actual amount of exposure in meter-candle-seconds received by the area. The results of these measurements are plotted on a graph of surface potential V vs. log exposure for each step. The actual speed of each element is expressed in terms of the reciprocal of the exposure required to reduce the surface potential by volts. Hence, the speeds given in Table I are the numerical expression of 10 divided by the exposure in meter-candle-seconds required to reduce the 600 volts charged surface potential by 100 volts. The results are shown in Table I below.
Referring to the above Table I, it will be seen that the control example containing the same photoconductor but no dye shows speeds of only 8 and 7 for the positively and negatively charged surfaces, respectively, whereas the corresponding values for those of the invention represented by Example 1 are clearly of a different order of magnitude. For example, the speed shown by Example 1 (Dye No. I) is 800 and 360 for the positively and negatively charged surfaces, respectively, with maximum sensitivity peak at 500 nm., thus indicating a speed increase over that of the control by a factor of about 114 for the positively charged and about 51 for the negatively charged surfaces. Also of great significance is the extension of the absolute sensitivity to the region of about 500 nm. or more. Similar results are obtained when the carbazole dye employed is one of those listed in the paragraph following Table A.
Similar results to those shown in above Table I are obtained, when, for example, the organic photoconductor 4,4 bis(diethylamino) 2,2 dimethyltriphenylmethane is replaced with 0.15 g. of triphenylamine (using the ptoluenesulfonate salt of each dye), or 1,3,5-triphenyl-2- pyrazoline, or 2,3,4,S-tetraphenylpyrrole, or 4,4'-bis-diethylaminobenzophenone or when other dyes of the invention embraced by Formula I above are used. These results show that the dyes of this invention effectively spectrally sensitize a wide variety of organic photoconductors. The above mentioned photoconductors when used alone have very low photoconductive speed to visible light. However, as shown by the tests, the combination of the dyes of the invention with the photoconductors of the invention provide compositions and elements of outstanding speed and excellent quality of image.
This invention is highly unexpected because dyes previously suggested for spectral sensitizers impart weak spectral sensitization to organic photoconductors. Typical dyes proposed by the prior art as spectral sensitizers, which produce weak spectral sensitization in these systems, are shown in Table D following:
13 TABLE D Dye identification: Name A Pinacyanol.
B Kryptocyanine.
C Anhydro 3 ethyl-9-methyl-3'-(3-sulfobutyl)thiacarbocyanine hydroxide.
D 3,3 diethyl 9 methylthiacarbocyanine bromide.
E 3 carboxymethyl [(3-methyl-2- thiazolidinylidene) 1 methylethylidene] rho danine.
F Anhydro 5,5 dichloro 3,9 diethyl- 3' (3 sulfobutyl)thiacarbocyanine hydroxide.
G l'-ethyl-3-methylthia- -cyanine chloride.
H 1,1-diethyl-2,2-cyanine chloride.
In contrast, as indicated previously, the dyes of this invention are inoperable as spectral sensitizers for conventional negative type photographic silver halide emulsions because they strongly desensitize such emulsions.
Although the invention has been described in considerable detail with particular reference to certain preferred embodiments thereof, it will be understood that variations and modifications can be eflected within the spirit and scope of the invention as described hereinabove, and as defined in the appended claims.
We claim:
1. A composition of matter comprising an organic photoconductor spectrally sensitized with a cyanine dye selected from those comprising first and second 5- to 6- membered nitrogen containing heterocyclic nuclei joined together by a dimethine linkage; said first nucleus being a carbazole nucleus joined at the 3-carbon atom thereof to said linkage, said carbazole nucleus having attached to the nitrogen atom thereof a member selected from the group consisting of alkyl, aryl, acyl and organic sulfonyl.
2. A composition as defined by claim 1 wherein said second nucleus of said dye is an electron-accepting nucleus.
3. A composition as defined by claim 1 wherein said second nucleus of said dye is selected from the group consisting of: a nitro group substituted nucleus; and, an imidazo [4,5 -b] quinoxaline nucleus.
4. A composition of matter comprising an organic photoconductor spectrally sensitized with a cyanine dye selected from those represented 'by the following formula:
wherein n represents a positive integer of from 1 to 2, R represents a member selected from the group consisting of an alkyl group, an aryl group, an acyl group, and an organic sulfonyl group; R represents a member selected from the group consisting of an alkyl group, an alkenyl group and an aryl group; R and R each represents a member selected from the group consisting of hydrogen, an alkyl radical, an aryl radical, a carboxyl group, a sulfo group, a nitro group, a cyano group and a halogen atom, X represents an acid anion, and Z represents the nonmetallic atoms required to complete a 5- to 6-membered heterocyclic nucleus.
5. A composition as defined in claim 4 wherein said Z of said dye represents the non-metallic atoms necessary to complete an electron-accepting nucleus.
6. A composition as defined in claim 4 wherein said Z of said dye represents the non-metallic atoms necessary to complete an electron-accepting nucleus selected from the group consisting of a nitrobenzothiazole nucleus; a nitro- 14 benzoxazole nucleus; a nitrobenzoselenazole nucleus; an imidazo[4,5-b] quinoxaline nucleus; and a 3,3-dialkyl-3H- nitroindole nucleus.
7. A composition as defined by claim 4 wherein said organic photoconductor has the following formula:
wherein each of D, E and G is an aryl group and J is selected from the group consisting of a hydrogen atom, an alkyl group and an aryl group, at least one of D, E and G containing an amino substituent selected from the group consisting of a secondary amino group and a tertiary amino group.
8. A composition as defined by claim 4 wherein said organic photoconductor is selected from the group consisting of: triphenylamine; 1,3,S-triphenyl-Z-pyrazoline; 4,4 bis (diethylamino) 2,2 dimethyltriphenylamine; 2,3,S-tetraphenylpyrrole; and 4'4-bis-diethylaminobenzophenone.
9. A composition as defined by claim 4 wherein said photoconductor comprises from 1 to 75 parts by weight of said composition, said photoconductor being spectrally sensitized with from .01 to 10 parts by weight of said composition of said cyanine dye.
10. A composition of matter comprising from 1 to 75 parts by weight of an organic photoconductor selected from the group consisting of: triphenylamine; 1,3,5-triphenyl Z-pyrazoline; 4,4-bis-diethylamino-2,Z'dimethyltriphenylmethane; 2,3,4,5-tetraphenylpyrrole; 4,4-bis-diethylaminobenzophenone; said organic photoconductor being spectrally sensitized with from .01 to 10 parts by weight of 1,3-diethyl-2-B-(9-methyl-3-carbazolyl)vinylimidazo[4,5-b]quinoxalinium salt.
11. A composition of matter as defined in claim 10 wherein said organic photoconductor and said dye are dispersed in from 25 to 99 parts by weight of a polyester of terephthalic acid and a glycol mixture consisting of a 9:1 weight ratio of 2,2-bis-[4-(Z-hydroxyethoxy)-phenyl]- propane and ethylene glycol as insulating binder.
12. An electrophotographic element comprising a conductive support having thereon a layer comprising an organic photoconductor in an insulating binder, said organic photoconductor being. spectrally sensitized with a cyanine dye selected from those comprising first and second 5- to G-membered nitrogen containing heterocyclic nuclei joined together by a dimethine linkage; said first nucleus being a carbazole nucleus joined at the 3-carbon atom thereof to said linkage, said carbazole nucleus having attached to the nitrogen atom thereof a member selected from the group consisting of alkyl, aryl, acyl and organic sulfonyl.
13. An electrophotographic element as defined in claim 12 wherein said second nucleus of said dye is an electronaccepting nucleus.
14. An electrophotographic element as defined in claim 12 wherein said second nucleus of said dye is selected from the group consisting of: a nitro group substituted nucleus, and an imidazo[4,5-b]quinoxaline nucleus.
15. An electrophotographic element as defined in claim 12 wherein said organic photoconductor is selected from the group consisting of: a triphenylamine; a 1,3,5-triary1- 2 pyrazoline; a 4,4 bis-(dialkylamino)-2,2'-dialkyltriarylamine; a 2,3,4,5-tetraarylpyrrole; and a 4,4-bis-dialkylarninobenzophenone.
16. An electrophotographic element as defined in claim 15 wherein said organic photoconductor comprises from 1 to 75 parts by weight of said composition, said photoposition, said photoconductor being spectrally sensitized with from .01 to 10 parts by weight of said composition of said cyanine dye.
17. An electrophotographic element comprising a conductive support having thereon a layer comprising an 15 organic photoconductor spectrally sensitized with a dye selected from those represented by the following formula:
wherein n represents a positive integer of from 1 to 2, R represents a member selected from the group consisting of an alkyl group, an aryl group, an acyl group, and an organic sulfonyl group; R represents a member selected from the group consisting of an alkyl group, an alkenyl group and an aryl group; R and R each represents a member selected from the group consisting of hydrogen, an alkyl radical, an aryl radical, a carboxyl group, a sulfo group, a nitro group, a cyano group and a halogen atom, X represents an acid anion, and Z represents the nonmetallic atoms required to complete a 5- to 6-membered heterocyclic nucleus.
18. An electrophotographic element as defined in claim 17 wherein said Z of said dye represents the non-metallic atoms necessary to complete an electron-accepting nucleus.
19. An electrophotographic element as defined in claim 17 wherein said Z of said dye represents the non-metallic atoms necessary to complete an electron-accepting nucleus selected from the group consisting of a nitrobenzothiazole nucleus; 21 nitrobenzoxazole nucleus; a nitrobenzoselenazole nucleus; an imidazo[4,5-b]quinoxaline nucleus; and a 3,3-dialkyl-3H-nitroindole nucleus.
20. An electrophotographic element as defined in claim 17 wherein said organic photoconductor has the following formula:
wherein each of D, E and G is an aryl group and J is selected from the group consisting of a hydrogen atom, an alkyl group and an aryl group, at least one of D, E and G containing an amino substituent selected from the group consisting of a secondary amino group and a tertiary amino group.
21. An electrophotographic element as defined in claim 17 wherein said organic photoconductor is selected from the group consisting of: triphenylamine; 1,3,5-triphenyl- 16 2-pyrazoline; 4,4-bis-(diethylamino) 2,2 dimethyltriphenylamine; 2,3,5,5-tetraphenylpyrrole; and 4,4 bis-diethylaminobenzophenone.
22. An electrophotographic element as defined in claim 17 wherein said organic photoconductor comprises from 1 to parts by weight of said composition, said photoconductor being spectrally sensitized with from .01 to 10 parts by weight of said composition of said cyanine dye.
23. An electrophotographic element as defined in claim 17 wherein said organic photoconductor and said dye are incorporated in an insulating binder.
24. An electrophotographic element as defined in claim 17 wherein said organic photoconductor and said-dye are dispersed in from 25 to 99 parts by weight of a polyester of terephthalic acid and a glycol mixture consisting of 9:1 weight ratio of 2,2'-bis-[4-(2-hydroxyethoxy)-phenyl]- propane and ethylene glycol as insulating binder.
25. An electrophotographic element comprising a conductive support having thereon a layer comprising from 1 to 75 parts by weight of an organic photoconductor selected from the group consisting of: triphenylamine; 1,3,5- triphenyl 2 pyrazoline; 4,4 bis diethylamino-2,2'-dimethyltriphenylmethane; 2,3,4,5-tetraphenylpyrrole; 4,4- bis-diethylaminobenzophenone; said organic photoconductor being spectrally sensitized with from .01 to 10 parts by weight of 1,3-diethyl-2-fl-(9-methyl 3 carbazolyl) vinylimidazo [4,5 -b] quinoxalinium salt.
26. An electrophotographic element as defined in claim 25 wherein said organic photoconductor and said dye are dispersed in from 25 to 99 parts by weight of a polyester of terephthalic acid and a glycol mixture consisting of a 9:1 weight ratio of 2,2-bis-[4-(2-hydroxyethoxy)-phenyl]- propane and ethylene glycol as insulating binder.
References Cited UNITED STATES PATENTS 2,695,289 11/1954 Muller et al. 260-240 3,174,854 3/1965 Stumpf et al 96-1.5
FOREIGN PATENTS 964,873 7/1964 Great Britain '961.6
GEORGE F. LESMES, Primary Examiner R. E. MARTIN, Assistant Examiner US. Cl. X.R.
US719690A 1968-04-08 1968-04-08 Electrophotographic materials containing cyanine dye sensitizers Expired - Lifetime US3579331A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US71969068A 1968-04-08 1968-04-08

Publications (1)

Publication Number Publication Date
US3579331A true US3579331A (en) 1971-05-18

Family

ID=24890993

Family Applications (1)

Application Number Title Priority Date Filing Date
US719690A Expired - Lifetime US3579331A (en) 1968-04-08 1968-04-08 Electrophotographic materials containing cyanine dye sensitizers

Country Status (5)

Country Link
US (1) US3579331A (en)
BE (1) BE731210A (en)
DE (1) DE1912587A1 (en)
FR (1) FR2005771A1 (en)
GB (1) GB1254196A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871880A (en) * 1972-12-01 1975-03-18 Pitney Bowes Inc Organic photoconductor for electrophotography
US3923508A (en) * 1974-01-10 1975-12-02 Desoto Inc Dyed polyvinyl carbazole photoconductive layer
US5141831A (en) * 1989-08-15 1992-08-25 Mitsubishi Paper Mills Limited Electrophotographic photoreceptor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2239683A (en) * 1982-12-16 1984-06-21 Vickers Plc Photoconductive compositions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871880A (en) * 1972-12-01 1975-03-18 Pitney Bowes Inc Organic photoconductor for electrophotography
US3923508A (en) * 1974-01-10 1975-12-02 Desoto Inc Dyed polyvinyl carbazole photoconductive layer
US5141831A (en) * 1989-08-15 1992-08-25 Mitsubishi Paper Mills Limited Electrophotographic photoreceptor

Also Published As

Publication number Publication date
DE1912587A1 (en) 1969-10-30
FR2005771A1 (en) 1969-12-19
DE1912587B2 (en) 1970-11-12
GB1254196A (en) 1971-11-17
BE731210A (en) 1969-09-15

Similar Documents

Publication Publication Date Title
US3873311A (en) Aggregate photoconductive compositions and elements containing a styryl amino group containing photoconductor
US3617270A (en) Sensitization of an inorganic photoconductive layer with 1, 3- and 1, 2-squario acid methine dyes
US3677752A (en) Bis(dialkylaminoaryl)ethylene photoconductors
US3110591A (en) Merocyanine sensitized photoconductive compositions comprising zinc oxide
US3647433A (en) Dinitroarylmethine dyes as sensitizers in electrophotographic layers
GB2199152A (en) Photoconductive composition
US3684548A (en) Method of preparing a homogeneous dye-sensitized electrophotographic element
US3567439A (en) Borinium dyes as sensitizers for organic photoconductors
US3765884A (en) 1-substituted-2-indoline hydrazone photoconductors
JPS60186847A (en) Electrophotographic sensitive body
US3615396A (en) Method for the preparation of multiphase heterogeneous photoconductive compositions containing at least one pyrylium dye and an electrically insulating polymer
US4152152A (en) Additives for contrast control in organic photoconductor compositions and elements
US3796573A (en) Sensitizers for n-type organic photoconductors
US4173473A (en) Radiation sensitive compositions containing pyrylium compounds
US3597196A (en) Sensitization of organic photoconductors with cyanine merocyanine,and azocyanine dyes
US3734739A (en) Silver halide emulsions sensitized with cyanine dyes containing a quaternary group
US3679408A (en) Heterogeneous photoconductor composition formed by two-stage dilution technique
US3579331A (en) Electrophotographic materials containing cyanine dye sensitizers
US3533787A (en) Photoconductive elements containing polymeric binders of nuclear substituted vinyl haloarylates
US4028353A (en) Novel chemical compounds
CA1039943A (en) Aggregate photoconductive composition containing combination of pyrylium type dye salts
US3560208A (en) Cyanine dye containing a pyrrole nucleus used as a sensitizer for organic photoconductors
US3567438A (en) Organic photoconductors sensitized with pyrylium cyanine dyes
US3782933A (en) Sensitized electrophotographic layers
US3125447A (en) Sensitized photoconductive compositions comprising zinc oxide