US3551183A - Method of coating a steam chamber - Google Patents

Method of coating a steam chamber Download PDF

Info

Publication number
US3551183A
US3551183A US677643A US3551183DA US3551183A US 3551183 A US3551183 A US 3551183A US 677643 A US677643 A US 677643A US 3551183D A US3551183D A US 3551183DA US 3551183 A US3551183 A US 3551183A
Authority
US
United States
Prior art keywords
coating
steam
sodium silicate
hydrated alumina
coatings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US677643A
Inventor
Charles H Vondracek
Anne B Dunlap
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Application granted granted Critical
Publication of US3551183A publication Critical patent/US3551183A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F75/00Hand irons
    • D06F75/08Hand irons internally heated by electricity
    • D06F75/10Hand irons internally heated by electricity with means for supplying steam to the article being ironed
    • D06F75/14Hand irons internally heated by electricity with means for supplying steam to the article being ironed the steam being produced from water in a reservoir carried by the iron
    • D06F75/18Hand irons internally heated by electricity with means for supplying steam to the article being ironed the steam being produced from water in a reservoir carried by the iron the water being fed slowly, e.g. drop by drop, from the reservoir to a steam generator

Definitions

  • This invention relates to steam ironing devices and, more specifically, to coatings for the flash evaporation chambers of such devices.
  • the heated surfaces of the steam generating chamber which receive the water droplets have been coated with materials which will induce the water droplet to spread over the heated surface instead of forming the ball which results in spitting or sputtering.
  • Water droplets which spread over the heated surface are rapidly and uniformly vaporized and the steam is emitted from the ports without spitting or sputtering.
  • the coating must have other properties. It must be resistant to the water and steam in the evaporation chamber. Coatings which are soluble in water deteriorate rapidly and may even clog the steam ports of the device. It must resist the abrading force of innumerable droplets of water falling thereon. The coating must also adhere to the heated surface, must not flake off and should be adaptable to convenient application, free of blisters or other discontinuities.
  • the difliculty of meeting the foregoing requirements is compounded when pressing devices are designed to generate steam in high ironing or pressing temperature ranges. A higher temperature range is desirable because of the advantages of the more rapid vaporization at elevated temperatures and to more etfectively cover the iron temperature requirements for all types of fabrics.
  • Yet another object of this invention is to provide hydrophilic coatings containing sodium silicates, the coatings having a reduced water solubility.
  • the foregoing and other objects of this invention are obtained by applying a composition containing particulated hydrated alumina, preferably a finely divided hydrated alumina, and a sodium silicate to a surface of the vaporization chamber.
  • the coating is heated either as a consequence of being applied to a hot surface or by a separate heating step to form a coating that is more insoluble than the heretofore employed silicates.
  • Heating or curing the coating composition containing the hydrated alumina and sodium silicate provides a coating that is elfective in eliminating spitting and sputtering during steaming at temperatures at least as high as 475 F.
  • a single spray application will provide a satisfactory coating that has a thickness in the order of one to two mils. Such coatings are adherent and will not flake or spall even under steaming conditions.
  • FIG. 1 is an exploded perspective view of a soleplate forming a part of the iron illustrated in FIG. 2;
  • FIG. 2 is a side elevational view, partly broken away, of a steam iron.
  • sodium silicate coatings for the flash vaporization chambers of steam pressing devices such as steam irons may be improved by adding hydrated alumina to the sodium silicate solution that is sprayed or otherwise deposited onto the surface of the chamber.
  • the sodium silicates and solutions or suspensions thereof may be decribed by the weight ratio of Na O to SiO
  • the weight ratio of N a O to SiO it is preferred for the weight ratio of N a O to SiO to be at least about 1:3.5 and optimally about 1:3.75.
  • Increasing the proportion of SiO decreases the water solubility of the silicate coating.
  • silicates with high proportions of SiO are not, per se, suitable for use as chamber coatings at the high steaming temperatures that may be employed with the coatings of this invention.
  • Hydrated alumina also known as aluminum hydroxide, the hydrate of aluminum oxide or alumina trihydrate and described by either the formula Al O -3H O or Al(OH) as an approximate composition is added to the heretofore described sodium silicate solution.
  • a reaction occurs between the sodium silicate and hydrated alumina and that the reaction produces less soluble compounds.
  • a less soluble coating may be produced from admixtures of sodium silicate and hydrated alumina.
  • the admixture of coating solution should contain from about to about percent of the hydrated alumina on a solids weight basis for spray application.
  • hydrated alumina may be employed for other application methods such as brushing, spreading with a spatula, etc. Compositions containing less than 10 percent of hydrated alumina have a tendency to flake.
  • the vehicle or solvent for the admixture may be water and the hydrated alumina may, for example, be added to commercially available sodium silicate solutions.
  • hydrated alumina is intended to cover the various soluble forms of alumina.
  • the admixture is sprayed or otherwise deposited onto the chamber surface and then heated to more completely react and dehydrate the coating.
  • Some improvement over the durability of an unmodified silicate coating will be noted even with moderate heating to dry the deposit. Heating or curing at about 375 F. and preferably at 400 F., however, provides a coating that will permit steaming over the entire fabric ironing temperature range including the 400450 F. range and even up to and above 475 F. with no balling of the water dropping thereon. It should be noted that the unmodified silicate coatings were serviceable for steaming temperatures up to 340 F.
  • hydrated alumina also improves the physical strength of the coating. Thicker coatings may be deposited without the flaking problem that is encountered in attempts to deposit the thicker deposits of the unmodified sodium silicate. Satisfactory coatings having thicknesses several orders of magnitude greater than the sodium silicate coatings may be obtained with the compositions of this invention. Coatings up to about 10 mils thick may be deposited by successive applications. Coatings in the thickness order of one to two mils that will not flake may be obtained in a single application, which is a particularly attractive advantage. It is advantageous to use a hydrated alumina having a relatively specific particle size to prevent any tendency of bubbling or blistering during the cure of thick coatings that are deposited in a single operation. A finely divided hydrated alumina powder, having an average particle diameter of about microns, is sufiiciently coarse to prevent bubbling. or blistering. That particle size also appears to facilitate drying during application of the coating.
  • an aluminum soleplate 10 having a cavity 11 defined by the upstanding walls 12, 13 and a. bottom surface 14.
  • the surfaces of the cavity may be prepared by degreasing, washing and/ or etching according to well-known procedures for cleaning metal surfaces.
  • the soleplate is heated in an oven until it reaches a temperature of 400 F.
  • the heated cavity is sprayed with a solution containing sodium silicate and hydrated alumina to provide the hydrophilic coatin on the cavity surfaces illustrated by the stippling 4 in FIG. 1. Because the heated soleplate has a substantial mass and heat content, no additional heating is required to dry and cure the coating.
  • the cured coating has a thickness in the order of 1 to 2 mils.
  • a specific example of an aqueous spray solution or suspension for coatings in accordance with this invention and in the process described hereinabove is made by mixing together 92.6 percent of a sodium silicate solution and 7.4 percent of hydrated alumina having an average particle diameter of about 35 microns.
  • the sodium silicate solution contains 32.1 percent solids of which 6.8 percent is Na O and 25.3 percent is SiO This corresponds to a Na O:SiO ratio of 113.75.
  • the sodium silicate constitutes percent of the total solids and the hydrated alumina constitutes 20 percent of the total solids and the hydrated alumina constitutes 20 percent of the total solids in the spray solution.
  • the ratio of sodium silicate to hydrated alumina is 4:1.
  • the spray solution may contain minor amounts of other ingredients, although they are not necessary for the obtention of the advantages of this invention.
  • Suspending agents such as silica aerogel, colloidal silica and/or colloidal clays such as bentonite may be included in amounts in the order of 2 percent of the weight of the described solids in the spray solution.
  • Small amounts of dispersing agents or surfactants such as those based on alkaryl polyether alcohols, sulfonates and sulfates, may be added to improve dispersing action. It should also be understood that the foregoing percentages and ratios are based on weight.
  • reference character 20 designates a steam iron comprising the soleplate structure 10 described hereinabove.
  • the steam chamber 21 is defined by the cavity 11 and a cover 22 that is mounted over the soleplate 10.
  • a plurality of channels 23 permit communication between the chamber 21 and the outlet ports 24.
  • a heating element 25 is embedded in or otherwise attached to the soleplate 10 and controlled by a conventional thermostat 26 to maintain the soleplate at predetermined operating temperatures determined by the setting of a knob 27.
  • the iron further comprises a Water reservoir 28, and an adjustable valve having an orifice 29 adapted to be opened and closed by valve stem 30 connected to a control knob 31.
  • the adjustable valve controls the delivery of water droplets from the reservoir to the stem generating chamber.
  • An outer shell 32 extends down to the soleplate, encloses the reservoir and supports a handle 33.
  • the water droplets fall to a heated surface of the chamber 21 coated with the heretofore described hydrophilic deposit.
  • the water droplet spreads on the coated surface and is rapidly vaporized to steam.
  • the surface may be at temperatures as high as 475 P. so that vaporization may occur rapidly.
  • the iron may be operated at this temperature without sputtering or spitting and the steam will be emitted from the ports without entrained water. It should be understood that the described coating may be employed in the vaporization chambers of other steam pressing devices with the advantages described.
  • a method of producing a 'hydrophilic coating on a surface of a water vaporization chamber for a steam pressing device comprising the steps of depositing a solution containing a sodium silicate and hydrated alumina onto said surface and heating the deposit to produce an insoluble adherent coating.
  • a method of producing a hydrophilic coating on a References Cited surface of a cavity in an aluminum soleplate for a steam UNITED STATES PATENTS ironing device comprising the steps of heating said soleplate to a temperature of at least about 375 F. and spray- 2,321,732 6/1943, Brfmt 117 135-1 ing the heated cavity surface with a solution containing 5 3,184,320 5/1965 Mlchael 117129 sodium silicate, having an Na O:SiO ratio of at least 3,301,702 1/1967 Ames ct 117129 about 1:3.5, and hydrated alumina, the weight ratio of ALFRED L. LEAVITT Primary Examiner sodium silicate to hydrated alumina being about 4: 1.
  • J A BELL Assistant EXaminer 6. The method of claim 5 wherein the solution contains about 32 percent sodium silicate and the hydrated 10 US. Cl. X.R. alumina has a particle diameter of about 35 microns. 117-135.1

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Irons (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Paints Or Removers (AREA)

Description

Dec. 29, 1970 c, VONDRACEK ET AL 3,551,183
METHOD OF COATING A STEAM CHAMBER Filed Oct. 24, 1967 FIG. 2.
WITNESSES INVENTORS Charles H. Vondrucek 8 Anne 8. Dunlap.
United States Patent 3,551,183 METHOD OF COATING A STEAM CHAMBER Charles H. Vondracek and Anne E. Dunlap, Pittsburgh, Pa., assignors to Westinghouse Electric Corporation, Pittsburgh, Pa., a corporation of Pennsylvania Filed Oct. 24, 1967, Ser. No. 677,643 Int. Cl. B44d 1/40 US. Cl. 117-49 6 Claims ABSTRACT OF THE DISCLOSURE A coating composition containing sodium silicate and hydrated alumina is deposited on a surface ofthe flash evaporation chamber in a steam ironing device. The coating is heated, most conveniently by application to an already heated surface and preferably heated to at least about 375 F., to convert it to a more insoluble form.
BACKGROUND OF THE INVENTION Field of the invention This invention relates to steam ironing devices and, more specifically, to coatings for the flash evaporation chambers of such devices.
Description of the prior art Steam irons and other steam pressing or ironing devices have steam generating chambers wherein water droplets are released onto a hot surface and vaporized to form steam. The steam is emitted through ports in an ironing surface and onto the fabric material being pressed or ironed. When the water droplet strikes the hot surface, there is a pronounced tendency for the droplet to ball and bounce around the chamber. Portions of the droplet may be entrained by the steam, be directed through the ports and be deposited onto the fabric material. This undesirable consequence is described as spitting or sputtering. To overcome this problem, the heated surfaces of the steam generating chamber which receive the water droplets have been coated with materials which will induce the water droplet to spread over the heated surface instead of forming the ball which results in spitting or sputtering. Water droplets which spread over the heated surface are rapidly and uniformly vaporized and the steam is emitted from the ports without spitting or sputtering.
To be acceptable, the coating must have other properties. It must be resistant to the water and steam in the evaporation chamber. Coatings which are soluble in water deteriorate rapidly and may even clog the steam ports of the device. It must resist the abrading force of innumerable droplets of water falling thereon. The coating must also adhere to the heated surface, must not flake off and should be adaptable to convenient application, free of blisters or other discontinuities. The difliculty of meeting the foregoing requirements is compounded when pressing devices are designed to generate steam in high ironing or pressing temperature ranges. A higher temperature range is desirable because of the advantages of the more rapid vaporization at elevated temperatures and to more etfectively cover the iron temperature requirements for all types of fabrics.
3,551,183 Patented Dec. 29, 1970 Numerous coatings for the vaporizing chamber have been proposed by the prior art, including coatings of alkali metal silicates, silica particles, mica flakes and certain metal oxides. One suitable coating that has been extensively employed is described in US. 2,683,320, assigned to the assignee of this invention. The sodium silicate coating described in the aforesaid patent has been suitable in the heretofore employed temperature range, i.e. up to about 340 F. At elevated temperatures, particularly above about 400 R, such coatings appear to either lose the ability to spread the water droplets or are too rapidly washed away in repeated vaporizing cycles to be satisfactory.
SUMMARY OF THE INVENTION It is the general object of this invention to provide a coating for the vaporization chamber of a steam pressing device that will permit the employment of a wider, higher steam temperature range without spitting or sputtering.
It is another object of this invention to provide a chamber coating that has a low solubility, superior adherence and may be conveniently deposited in a single application.
Yet another object of this invention is to provide hydrophilic coatings containing sodium silicates, the coatings having a reduced water solubility.
Briefly, the foregoing and other objects of this invention are obtained by applying a composition containing particulated hydrated alumina, preferably a finely divided hydrated alumina, and a sodium silicate to a surface of the vaporization chamber. The coating is heated either as a consequence of being applied to a hot surface or by a separate heating step to form a coating that is more insoluble than the heretofore employed silicates. Heating or curing the coating composition containing the hydrated alumina and sodium silicate provides a coating that is elfective in eliminating spitting and sputtering during steaming at temperatures at least as high as 475 F. A single spray application will provide a satisfactory coating that has a thickness in the order of one to two mils. Such coatings are adherent and will not flake or spall even under steaming conditions.
BRIEF DESCRIPTION OF THE DRAWING For a better understanding of the invention, reference may be made to the accompanying drawing in which:
FIG. 1 is an exploded perspective view of a soleplate forming a part of the iron illustrated in FIG. 2; and
FIG. 2 is a side elevational view, partly broken away, of a steam iron.
DESCRIPTION OF THE PREFERRED EMBODIMENT It has now been discovered that sodium silicate coatings for the flash vaporization chambers of steam pressing devices such as steam irons may be improved by adding hydrated alumina to the sodium silicate solution that is sprayed or otherwise deposited onto the surface of the chamber. The sodium silicates and solutions or suspensions thereof may be decribed by the weight ratio of Na O to SiO For the purposes of this invention, it is preferred for the weight ratio of N a O to SiO to be at least about 1:3.5 and optimally about 1:3.75. Increasing the proportion of SiO decreases the water solubility of the silicate coating. -It should, of course, be understood that silicates with high proportions of SiO are not, per se, suitable for use as chamber coatings at the high steaming temperatures that may be employed with the coatings of this invention.
Hydrated alumina, also known as aluminum hydroxide, the hydrate of aluminum oxide or alumina trihydrate and described by either the formula Al O -3H O or Al(OH) as an approximate composition is added to the heretofore described sodium silicate solution. Although applicants do not wish to be bound by any particular theory, it is believed that a reaction occurs between the sodium silicate and hydrated alumina and that the reaction produces less soluble compounds. Irrespective of the validity of the reaction theory, we have discovered that a less soluble coating may be produced from admixtures of sodium silicate and hydrated alumina. The admixture of coating solution should contain from about to about percent of the hydrated alumina on a solids weight basis for spray application. Larger amounts of hydrated alumina may be employed for other application methods such as brushing, spreading with a spatula, etc. Compositions containing less than 10 percent of hydrated alumina have a tendency to flake. The vehicle or solvent for the admixture may be water and the hydrated alumina may, for example, be added to commercially available sodium silicate solutions.
It should be understood that the term hydrated alumina is intended to cover the various soluble forms of alumina.
The admixture is sprayed or otherwise deposited onto the chamber surface and then heated to more completely react and dehydrate the coating. Some improvement over the durability of an unmodified silicate coating will be noted even with moderate heating to dry the deposit. Heating or curing at about 375 F. and preferably at 400 F., however, provides a coating that will permit steaming over the entire fabric ironing temperature range including the 400450 F. range and even up to and above 475 F. with no balling of the water dropping thereon. It should be noted that the unmodified silicate coatings were serviceable for steaming temperatures up to 340 F.
The addition of hydrated alumina also improves the physical strength of the coating. Thicker coatings may be deposited without the flaking problem that is encountered in attempts to deposit the thicker deposits of the unmodified sodium silicate. Satisfactory coatings having thicknesses several orders of magnitude greater than the sodium silicate coatings may be obtained with the compositions of this invention. Coatings up to about 10 mils thick may be deposited by successive applications. Coatings in the thickness order of one to two mils that will not flake may be obtained in a single application, which is a particularly attractive advantage. It is advantageous to use a hydrated alumina having a relatively specific particle size to prevent any tendency of bubbling or blistering during the cure of thick coatings that are deposited in a single operation. A finely divided hydrated alumina powder, having an average particle diameter of about microns, is sufiiciently coarse to prevent bubbling. or blistering. That particle size also appears to facilitate drying during application of the coating.
Referring now to FIG. 1, we have illustrated an aluminum soleplate 10, having a cavity 11 defined by the upstanding walls 12, 13 and a. bottom surface 14. The surfaces of the cavity may be prepared by degreasing, washing and/ or etching according to well-known procedures for cleaning metal surfaces. The soleplate is heated in an oven until it reaches a temperature of 400 F. At a station equipped with appropriate spray equipment, the heated cavity is sprayed with a solution containing sodium silicate and hydrated alumina to provide the hydrophilic coatin on the cavity surfaces illustrated by the stippling 4 in FIG. 1. Because the heated soleplate has a substantial mass and heat content, no additional heating is required to dry and cure the coating. The cured coating has a thickness in the order of 1 to 2 mils.
A specific example of an aqueous spray solution or suspension for coatings in accordance with this invention and in the process described hereinabove is made by mixing together 92.6 percent of a sodium silicate solution and 7.4 percent of hydrated alumina having an average particle diameter of about 35 microns. The sodium silicate solution contains 32.1 percent solids of which 6.8 percent is Na O and 25.3 percent is SiO This corresponds to a Na O:SiO ratio of 113.75. The sodium silicate constitutes percent of the total solids and the hydrated alumina constitutes 20 percent of the total solids and the hydrated alumina constitutes 20 percent of the total solids in the spray solution. The ratio of sodium silicate to hydrated alumina is 4:1.
It should be understood that the spray solution may contain minor amounts of other ingredients, although they are not necessary for the obtention of the advantages of this invention. Suspending agents such as silica aerogel, colloidal silica and/or colloidal clays such as bentonite may be included in amounts in the order of 2 percent of the weight of the described solids in the spray solution. Small amounts of dispersing agents or surfactants, such as those based on alkaryl polyether alcohols, sulfonates and sulfates, may be added to improve dispersing action. It should also be understood that the foregoing percentages and ratios are based on weight.
Referring now to FIG. 2, reference character 20 designates a steam iron comprising the soleplate structure 10 described hereinabove. The steam chamber 21 is defined by the cavity 11 and a cover 22 that is mounted over the soleplate 10. A plurality of channels 23 permit communication between the chamber 21 and the outlet ports 24. A heating element 25 is embedded in or otherwise attached to the soleplate 10 and controlled by a conventional thermostat 26 to maintain the soleplate at predetermined operating temperatures determined by the setting of a knob 27. The iron further comprises a Water reservoir 28, and an adjustable valve having an orifice 29 adapted to be opened and closed by valve stem 30 connected to a control knob 31. The adjustable valve controls the delivery of water droplets from the reservoir to the stem generating chamber. An outer shell 32 extends down to the soleplate, encloses the reservoir and supports a handle 33.
In the described steam iron, the water droplets fall to a heated surface of the chamber 21 coated with the heretofore described hydrophilic deposit. The water droplet spreads on the coated surface and is rapidly vaporized to steam. The surface may be at temperatures as high as 475 P. so that vaporization may occur rapidly. The iron may be operated at this temperature without sputtering or spitting and the steam will be emitted from the ports without entrained water. It should be understood that the described coating may be employed in the vaporization chambers of other steam pressing devices with the advantages described.
We claim:
1. A method of producing a 'hydrophilic coating on a surface of a water vaporization chamber for a steam pressing device comprising the steps of depositing a solution containing a sodium silicate and hydrated alumina onto said surface and heating the deposit to produce an insoluble adherent coating.
2. The method of claim 1 wherein the sodium silicate has an Na O:SiO ratio of at least about 123.5.
3. The method of claim 1 wherein the Na O:SiO ratio of the sodium silicate is about 1:3.75, the weight ratio of sodium silicate to hydrated alumina is about 4:1 and the deposit is heated to at least about 400 F.
4. The method of claim 3 wherein the solution is deposited onto a surface heated to at least about 400 1.
6 5. A method of producing a hydrophilic coating on a References Cited surface of a cavity in an aluminum soleplate for a steam UNITED STATES PATENTS ironing device comprising the steps of heating said soleplate to a temperature of at least about 375 F. and spray- 2,321,732 6/1943, Brfmt 117 135-1 ing the heated cavity surface with a solution containing 5 3,184,320 5/1965 Mlchael 117129 sodium silicate, having an Na O:SiO ratio of at least 3,301,702 1/1967 Ames ct 117129 about 1:3.5, and hydrated alumina, the weight ratio of ALFRED L. LEAVITT Primary Examiner sodium silicate to hydrated alumina being about 4: 1. J A BELL Assistant EXaminer 6. The method of claim 5 wherein the solution contains about 32 percent sodium silicate and the hydrated 10 US. Cl. X.R. alumina has a particle diameter of about 35 microns. 117-135.1
US677643A 1967-10-24 1967-10-24 Method of coating a steam chamber Expired - Lifetime US3551183A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US67764367A 1967-10-24 1967-10-24

Publications (1)

Publication Number Publication Date
US3551183A true US3551183A (en) 1970-12-29

Family

ID=24719561

Family Applications (1)

Application Number Title Priority Date Filing Date
US677643A Expired - Lifetime US3551183A (en) 1967-10-24 1967-10-24 Method of coating a steam chamber

Country Status (3)

Country Link
US (1) US3551183A (en)
DE (1) DE1785332A1 (en)
FR (1) FR1592147A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694942A (en) * 1967-10-24 1972-10-03 Westinghouse Electric Corp Steam chamber coatings
US5060406A (en) * 1989-10-25 1991-10-29 U.S. Philips Corporation Steam iron having a hydrophilic acid resistant steam changer
US6686057B2 (en) * 2002-01-31 2004-02-03 Hexcel Corporation Chromate-free coating for metal honeycomb
WO2004096539A1 (en) * 2003-04-25 2004-11-11 Koninklijke Philips Electronics N.V. Coating for a steam-generating device
US20100205836A1 (en) * 2007-10-05 2010-08-19 Koninklijke Philips Electronics N.V. Steam generating device provided with a hydrophilic coating
US20100242316A1 (en) * 2007-10-05 2010-09-30 Koninklijke Philips Electronics N.V. Steam generating device provided with a hydrophilic coating
US11255043B2 (en) * 2016-10-14 2022-02-22 Koninklijke Philips N.V. Ironing system with steam promoter coating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19606519A1 (en) * 1996-02-22 1997-08-28 Braun Ag Coating bottom of steam chamber of steam iron

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694942A (en) * 1967-10-24 1972-10-03 Westinghouse Electric Corp Steam chamber coatings
US5060406A (en) * 1989-10-25 1991-10-29 U.S. Philips Corporation Steam iron having a hydrophilic acid resistant steam changer
US6686057B2 (en) * 2002-01-31 2004-02-03 Hexcel Corporation Chromate-free coating for metal honeycomb
WO2004096539A1 (en) * 2003-04-25 2004-11-11 Koninklijke Philips Electronics N.V. Coating for a steam-generating device
US20060210784A1 (en) * 2003-04-25 2006-09-21 Koninklijke Philips Electronics N.V. Coating for a steam-generating device
US7976937B2 (en) * 2003-04-25 2011-07-12 Koninklijke Philips Electronics, N.V. Coating for a steam-generating device
US20100205836A1 (en) * 2007-10-05 2010-08-19 Koninklijke Philips Electronics N.V. Steam generating device provided with a hydrophilic coating
US20100242316A1 (en) * 2007-10-05 2010-09-30 Koninklijke Philips Electronics N.V. Steam generating device provided with a hydrophilic coating
US8453360B2 (en) * 2007-10-05 2013-06-04 Koninklijke Philips Electronics N.V. Steam generating device provided with a hydrophilic coating
US8561328B2 (en) * 2007-10-05 2013-10-22 Koninklijke Philips N.V. Steam generating device provided with a hydrophilic coating
US11255043B2 (en) * 2016-10-14 2022-02-22 Koninklijke Philips N.V. Ironing system with steam promoter coating

Also Published As

Publication number Publication date
FR1592147A (en) 1970-05-11
DE1785332A1 (en) 1972-02-17

Similar Documents

Publication Publication Date Title
US3694942A (en) Steam chamber coatings
EP2310739B1 (en) Steam generating device provided with a hydrophilic coating
US3551183A (en) Method of coating a steam chamber
RU2549066C2 (en) Domestic electric appliance containing antimicrobial agent
US7976937B2 (en) Coating for a steam-generating device
EP2401550B1 (en) Steam generating device provided with a hydrophilic coating
JPS6126933B2 (en)
US2967365A (en) Boiler coating and method for applying
JPH03152000A (en) Steam iron
US3499237A (en) Coating for steam iron flash boiler
GB2077624A (en) Method for coating vaporising chambers of steam-ironing devices
CN106498687B (en) A kind of heat-and corrosion-resistant soleplate easy to clean and preparation method
US3663290A (en) Temperature resistant coating and method
US4247971A (en) Process for sticking chemical to fibrous article
US3101561A (en) Heat-resistant flash chamber coatings and method for applying same
CN109642328B (en) Ironing system with steam promoter coating
JPH02268800A (en) Steam iron
CN106592189B (en) The wear-resisting anti-sticking soleplate of one kind and preparation method
JP2023032630A (en) Production method of photocatalyst coating film, and photocatalyst coating film
JPH02284962A (en) Potassium titanate fiber-containing coating compound and production thereof