US3549070A - Floatation of sheet materials - Google Patents
Floatation of sheet materials Download PDFInfo
- Publication number
- US3549070A US3549070A US802923*A US3549070DA US3549070A US 3549070 A US3549070 A US 3549070A US 3549070D A US3549070D A US 3549070DA US 3549070 A US3549070 A US 3549070A
- Authority
- US
- United States
- Prior art keywords
- coanda
- web
- air
- nozzle
- jet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title description 25
- 238000001035 drying Methods 0.000 description 11
- 238000013461 design Methods 0.000 description 10
- 239000007787 solid Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H23/00—Registering, tensioning, smoothing or guiding webs
- B65H23/04—Registering, tensioning, smoothing or guiding webs longitudinally
- B65H23/24—Registering, tensioning, smoothing or guiding webs longitudinally by fluid action, e.g. to retard the running web
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B13/00—Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
- F26B13/10—Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
- F26B13/101—Supporting materials without tension, e.g. on or between foraminous belts
- F26B13/104—Supporting materials without tension, e.g. on or between foraminous belts supported by fluid jets only; Fluid blowing arrangements for flotation dryers, e.g. coanda nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2406/00—Means using fluid
- B65H2406/10—Means using fluid made only for exhausting gaseous medium
- B65H2406/11—Means using fluid made only for exhausting gaseous medium producing fluidised bed
- B65H2406/112—Means using fluid made only for exhausting gaseous medium producing fluidised bed for handling material along preferably rectilinear path, e.g. nozzle bed for web
Definitions
- U.S.Ci. 226/97, ABSTRACT Apparatus for use in floating sheet materials in 302/29 the nature of continuous strips or webs.
- the improved flota- [51 int. Cl. B6511 17/32 tion apparatus is particularly useful in the drying and/or curing Field of Search 226/7, 97; of sheet materials such as printed or coated paper, fabrics or 302/29 (inquired) metal sheets or strips.
- the sheet or web may be subjected to the direct impingement of flame so as to rapidly heat the web and the ink coating materials to the point of sustained evaporation, such heating being followed by an air impingement treatment which provides a means for the removal of the vaporizing ink solvents.
- the drying apparatus might consist of a device for impinging hot air on the web to provide the sole means for heating, vaporizing and ventilating the printed or coated surfaces.
- the air nozzles When it is desired to dry both sides of a web simultaneously utilizing air impingement for ventilation or heating, the air nozzles must be so designed as to prevent and/or avoid contact with the wetted surfaces. Also, every precaution must be taken to avoid or eliminate possible vibration or fluttering of the printed or coated web since such fluttering will frequently force the wetted material into contact with one or more of the air nozzles, and any such contact with the web, even though only momentary, can cause severe smearing and consequent need for rejection of the coated material due to the rapidity of advancement of the web through the drying zone. In addition, such nozzle contact with the printed or coated surface can and sometimes does cause nozzle plugging, thereby necessitating shutdown of equipment for cleaning purposes.
- Another object of this invention is to provide a novel and improved web positioning and floatation apparatus which is extremely flexible in its adaptations, highly efficient in operation, and which pennits the use of optimum impingement velocities without need for utilizing auxiliary devices for aiding in the positioning of the web as it is being treated or worked upon.
- a further object of the invention is to provide an improved web floatation device particularly adaptable for drying purposes which has a unique and improved air nozzle arrangement in which the nozzles are protected from plugging in the event of web-to-nozzle contact.
- Still another object of this invention is to provide an improved web or sheet drying apparatus especially adapted for the effective handling of sheet materials having both sides wetted and wherein the air impingement nozzles are positi'oned with a greater than normal web-tomozzle clearance without any appreciable loss in impingement velocity.
- An additional object of the present invention is to provide an improved floatation and positioning apparatus which is devoid of critical clearance requirements, which will handle all types of sheet materials with a high degree of efficiency, which is extremely effective in the free suspension of the web without flutter or vibration, and which permits maximum air impingement velocity.
- FIG. I is a removed sectional view of a typical floatation and positioning device showing the impingement zone of op posed jets;
- FIG. 2 is a similar removed sectional view of a modification of the FIG. I device also showing the impingement zone of opposed jets;
- FIG. 3 is a removed sectional view of a positioning device according to this invention and showing a balanced Coanda jet flowing into free space;
- FIG. 4 is a removed sectional view of an identical positioning device embodying the invention but showing unbalanced Coandajet flow into free space;
- FIGS. 5, 5A, 58, SC and 5D are removed sectional views of the improved positioning device of FIG. 3 showing air flows when a Coanda jet is caused to impinge on an impervious material at various material-to-Coanda surface distances;
- FIG. 6 is a sectional view of two identical positioning devices embodying the improvements and showing Coanda jet flow while positioning a web between nozzles;
- FIG. 7 is a sectional view of two dissimilar positioning devices, both of which embody the invention, and showing the Coanda jet flow while positioning a web between the devices;
- FIG. 8 is a sectional view of two dissimilar positioning devices both embodying the invention and each having a center zone air supply;
- FIG. 9 is another removed sectional view of two dissimilar positioning devices as in FIG. 8 but each having an inadequate center zone air supply;
- FIG. 10 is still another removed sectional view of two dissimilar positioning devices as in FIG. 8 but each having an excessive center zone air supply;
- FIG. 11 is a cross section of a typical Coanda plate
- FIGS. l2, l3, l4, and 15 are plan views of Coanda plates showing a few of the possible orifice designs which may be used to create a center zone air supply;
- FIG. 16 is a schematic cross section of a typical floatation dryer assembly embodying the present invention and using Coandanozzles;
- FIG. 17 is a removed section view of a suggested variation for the design of a Coanda positioning device.
- FIGS. l8, 19, 20, and 21 are removed section views of other suggested variations for the design of a Coanda positioning device.
- Coanda nozzles have a great ability to efliciently entrain air from the surrounding atmosphere, and unlike a conventional noule discharging directly to atmosphere, a Coanda nozzle, with its protective surface on one side, is capable of being projected greater distances without appreciable loss in velocity and momentum.
- the jet from a conventional nozzle discharging directly to atmosphere induces secondary flow partially due to the low pressure area near its vena contracts, but the greatest amount of secondary flow is brought about by the collision of the high speed air molecules with the slower (or stationary) molecules of the surrounding atmosphere.
- a conventional nozzle means can be defined by exacting boundaries as in FIGS. I and 2 wherein there is a definite and finite cutoff point; beyond which the air jet escaping to the surrounding atmosphere is no longer restrained and is not protected from exterior influences.
- a Coanda nozzle means can be defined by exacting boundaries, even though it requires a surface on only one side of a moving air jet, as shown in FIGS. 3 and 4. If the orifices 3 and 4 are large enough, and the energy within the plenum l is great enough, the distance that the Coanda jet stream 5 will travel along the Coanda surface 6 can be many feet in length. In the smaller dimensions of this invention, the air energy level within the plenum I will always be of adequate measure to sustain full Coanda jet flow across the maximum widths of ap paratus, as shown in FIG. 4, whenever conditions so permit.
- the outlet velocity of the medium being moved is a direct function of the square root of the pressure different (AP) between the pressure inside the plenum walls 1 (P,) and the atmospheric pressure (P,,).
- the maximum discharge velocity that can be obtained can be expressed by the equation:
- Velocity (P P C' where C is as above and the quantity (P P A is greater than (P, (P, because P P,,. Since the velocity of part of a Coanda nozzle is higher than any velocity obtainable from a conventional nozzle, the average velocity of a Coanda nozzle is always higher at any given distance from an orifice, than the velocity of the jet stream escaping from a conventional nozzle at this same distance. In addition, the Coanda nozzle will create about itself, on its unbound side, an orderly and efficient air induction field 7 which will permit the nozzle stream to gather in surrounding air stream molecules with a minimum of collisions and total energy loss, far superior to the observed energy losses of conventional nozzle air streams.
- a plenum housing 1 contains air at elevated pressure, forcing it out of the essentially endless and equal sized orifice openings 3 and 4 formed by the mechanical spacing of the Coanda plate 2 with the turned edges of housing 1.
- R For each orifice size, there is a minimum radius R below which the air will not follow the Coanda plate 2, but will be projected in a straight path just as in a conventional nozzle.
- the air from orifice openings 3 and 4 follow the Coanda plate 2 around the radius R until they collide at the centerline forming a centerline main jet 8.
- the subatmospheric pressure formed on the exterior surface 6 of the Coanda plate 2 confines the air stream to the exterior surface 6, and, normal to the Coanda phenomenon, large quantities of surrounding air 7 are entrained into the Coanda air stream 5.
- the main jet 8 contains all of the orifice air, 3 an 4, plus all entrained air 7.
- Flow can be returned to the condition of FIG. 3 by momentarily blocking and opening both orifices 3 and 4 at the same time.
- FIGS. 5, 5A, 5B, and 5C show a properly proportioned Coanda device essentially as described for FIG. 3, and the approximate air streams which exist when an impervious material 9 approaches the Coanda device of FIG. 3.
- the impervious material 9, hereafter called the web is at a distance X from the Coanda nozzle surface 6.
- the air from orifices openings 3 and 4 plus the entrained air 7 combine to form a main jet 8.
- the solid jet stream 8 impinges on the web 9 to form a pressure or force zone approximately X in width. Since the distance X is large, adequate space is available to provide for escape of the spent main jet 8 after it impinges on the web 9. Also because of the great distance X the main jet 8 will have had time to form into a jet stream not unlike that of a conventional nozzle and will have slowed down considerably but because of the large quantities of entrained air 7, the total momentum of the main jet 8 will be great.
- the web at a distance Z will cause the solid jet stream 8 to create a force zone approximately Z in width, Z being larger in width than Y.
- Typical dimensions for this device could, for example, be in the range of: overall width of plenum l, 4 inches; overall width of Coanda nozzle plate 2, 3 /2 inches; radius R, 7% inch; dimension Z, as inch; width of orifice openings 3 and 4, .05 inch; and width of force zone Z, 3
- FIG. 5C the web 9 of FIG. 5B has been inclined at some angle a relative to the horizontal portion of the Coanda surface 6.
- Previous explanations have assumed the web 9 to be parallel to the horizontal portion of the Coanda surface 6.
- the web 9 would have to be absolutely rigid.
- any ripple, vibration, flutter, or even minor tension variations could create a momentary set of conditions similar to those shown in FIG. 5C.
- flow conditions are similar to those described for the Coanda nozzle of FIG. 4, with the main jet stream 8 discharging to the right.
- the force zone will be of width 2', now off-center and to the left as shown.
- the reactions of a Coanda nozzle means involve or result in a dynamic cushion of air being formed between the web 9 and the Coanda surface 6. If the web 9 of FIG. 5C is inclined through an angle a downward to the right, all conditions will be as described above, but to the opposite sides. The direction of flows would be changed instantly with every movement of web 9. Laboratory tests have proven that an angle a of 2 and less will cause instant mass flow changes as described above.
- the web 9 With two opposing Coanda devices positioned as shown in FIG. 6, at some clearance dimension from the web 9 to avoid direct impingement from the Coanda air streams 5, the web 9 will be automatically and rapidly positioned at the point of force balance between the two devices. If the web 9 moves away from the upper Coanda device, the area and total force of the high pressure force zone 10 will decrease. As the web 9 moves toward the bottom Coanda device, the high pressure zone 10 and consequently the total force beneath the web 9 increases. The total force differential existing on each side of the web 9 forces the web toward the weaker force field thereby increasing its value until perfect balance is obtained.
- FIGS. 1 and 2 show typical positioning devices in use today wherein conventional nozzles are used in an attempt to form static air cushions by angling two opposing air jets towards each other.
- this design there are always maximum clearance limitations. If the web a-a is permitted to float or drift to a position where the web to nozzle clearance D is great enough to permit nozzle convergence, a zone of extremely high turbulence is created which can cause severe web flutter. Obviously in practical drying applications such an effect would be detrimental to the end product if such flutter were to cause smearing or nozzle plugging.
- the Coanda air stream 5 is essentially a nozzle means, and the Coanda surface 6 is the most distant part of the nozzle means from the web 9, it can be said that the Coanda surface provides the nozzle means for instant and accurate automatic positioning of a nozzle jet such that the discharge of the jet will always provide either a moving air film 5, or a dynamic pressure zone 10 between the surface being positioned and the Coanda plate, and always one or the other, dependent upon whether or not the web 9 to Coanda surface 6 clearance is maximal or minimal.
- the apparatus of FIG. 6 discloses an improved positioning device, of particular value in positioning heavy somewhat rigid materials such as paper board, sheet steel or heavy films.
- Lighter weight material such as magazine paper stock is extremely flexible and rapidly responsive to variations in tension control while being processed, that is, printed, coated, etc. If, during processing, tension is momentarily minimized and some web stack is permitted, the flexible material may be drawn into the return air passages 20 as shown in FIGv 16.
- Such movement would generally cause smearing of the coating or ink, and very possibly cause the material to fracture or tear necessitating loss of production time to rethread the material through the coating or printing machine and if conventional nozzles were used, additional time loss would be required to clear the nozzle openings in the event they were smeared shut with coating or ink.
- FIG. 7 shows an apparatus design with the ability to cope with great variations in tension.
- the upper and lower devices are essentially as previously described except that the lower device is of smaller width.
- a satisfactory variation would be an overall Coanda plate width of 3.5 inches on the upper and 2.5 inches on the lower, using orifice openings in the range of .050 to .070 inches.
- the positioning reactions and pressure force buildups will occur as described above, but now the total force exerted by the top Coanda device will be greater than the total force exerted by the bottom Coanda device.
- the unit pressure 10, exerted on each side of the web 9 will be the same.
- the unit pressure 10 on the top of the web 9 acts over a larger area, and where this unit pressure 10 is not opposed by a like unit pressure 10, the web 9 will be caused to deflect downward, away from the motivating force as shown by dotted line 11.
- the approximate axis of bending will be at the intersection of the web 9 with a centerline drawn from the midpoint of each opposing pair of offset nozzles 3 and 4.
- any slack which may appear in the web being processed will immediately be absorbed into the sine wave pattern, thereby preventing any slack or loose portions of the web from making contact with any parts of the Coanda positioning devices.
- FIG. 8 is essentially the same device as shown in FIG. 7 except that additional nozzle openings 12 have been added along the centerline of the Coanda plate 2.
- Typical hole patterns suitable for this purpose are shown in FIGS. ll, 12, 13, I4, and 15.
- Orifice openings 12 serve a twofold purpose: firstly, they provide an additional and effective source of high velocity air impingement which essentially reduces the center to center distance between impinging jets and increases the heat and mass transfer coefficients of the apparatus close to optimum.
- the noules 12 provide an air supply to the pressure zone 10 thereby making it possible to maintain the high pressure required to peel the Coanda air stream from the Coanda surface 6 to obtain direct jet impingement on the web 9 at greater web-to-Coanda surface distances. Sizing of the center holes 12 is critical in relation to the size of the nozzle openings 3 and 4, and to the design of the Coanda surfaceto-web clearances desired.
- FIG. 9 shows typical air stream patterns for such a device.
- FIG. 10 shows typical air stream patterns if the centerline air supply 12 is too great. A great excess of air essentially duplicates conditions as though the web 9 to Coanda surface 6 distance were very small. Air must escape from the force zone 10 at such a rapid rate, that in so doing, the largest portion of the Coanda nozzle air stream 5 is deflected outward at such an angle as to prevent direct impingement on the web 9.
- FIG. 8 shows the air streams of a balanced flow Coanda positioning and drying device.
- the centerline supply orifices 12 provide the correct amount of air to provide adequate dynamic pressurization of the force zone 10 such that portions of the Coanda air streams 5 are peeled from the Coanda surface 6 and caused to impinge directly on the surface of web 9.
- With the device of FIG. 8 it is possible to duplicate all of the conditions of the device of FIG. D, but at much greater clearance distances between the web 9 and the Coanda surface 5.
- FIGS. 17, l8, 19, 20, 21, and 22 show a few of the alternate methods possible to design a Coanda positioning device using the information of this disclosure.
- Materials of construction can obviously be of any substance suitable to the atmosphere, that is, temperature, humidity, corrosion, etc. that the device must operate in. Other modifications will become apparent to those skilled in the art.
- Apparatus for floating sheet material in the nature of a continuous web comprising, means forming a linear Coanda nozzle extending in a direction transversely of web travel adjacent a surface of the web, said nozzle being oriented with respect to the web so that the flow of gas induced by said nozzle originates adjacent the surface of the web facing said nozzle and is directed over the Coanda surface longitudinally of the direction of travel of the web.
- Apparatus according to claim I wherein a pair of linear Coanda nozzles are provided, said nozzles being parallel to one another and being spaced longitudinally of the direction of web travel.
- Apparatus according to claim 2 wherein the nozzles are so oriented with respect to the web that the flow of gas induced by each nozzle originates adjacent the surface of the web facing the respective nozzle and is directed over the Coanda surface longitudinally of the direction of travel of the web and toward the other nozzle.
- Apparatus according to claim 4 wherein the additional nozzle means comprises a series of spaced orifices in the plate and extending in a path transversely of web travel.
- Apparatus according to claim 3 wherein a plurality of pairs of longitudinally spaced Coanda nozzles are provided.
- Apparatus according to claim 1 wherein a pair of Coanda nozzles are provided above the web and a pair of Coanda nozzles are provided below the web, all of said nozzles being parallel to one another, and the nozzles of each pair are spaced longitudinally in the direction of web travel.
- Apparatus according to claim 8 wherein a plurality of pairs of longitudinally spaced Coanda nozzles are provided both above and below the web.
- Apparatus according to claim 8 wherein the nozzles are so oriented with respect to the web that the flow of gas induced by each nozzle originates adjacent the surface of the web facing the respective nozzle and is directed over the Coanda surface longitudinally of the direction of travel of the web and toward the adjacent nozzle.
- Apparatus according to claim 8 wherein a Coanda plate spans the space between each pair of Coanda nozzles, and additional nozzle means are formed in each plate intermediate the respective pairs of Coanda nozzles.
- said apparatus includes a plenum Coanda supporting air pressure, and said linear Coanda nozzle is located adjacent one side of said plenum.
- Coanda 15 The apparatus as set forth in claim 14 further charac terized in that said plenum includes a coanda plate extending along the direction of web travel, and the air from said nonle travels along said coanda plate.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Advancing Webs (AREA)
- Treatment Of Fiber Materials (AREA)
- Machines For Manufacturing Corrugated Board In Mechanical Paper-Making Processes (AREA)
- Nonwoven Fabrics (AREA)
- Nozzles (AREA)
- Supply, Installation And Extraction Of Printed Sheets Or Plates (AREA)
- Drying Of Solid Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80292369A | 1969-02-27 | 1969-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3549070A true US3549070A (en) | 1970-12-22 |
Family
ID=25185098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US802923*A Expired - Lifetime US3549070A (en) | 1969-02-27 | 1969-02-27 | Floatation of sheet materials |
Country Status (6)
Country | Link |
---|---|
US (1) | US3549070A (enrdf_load_stackoverflow) |
JP (1) | JPS5438525B1 (enrdf_load_stackoverflow) |
DE (1) | DE2008804B2 (enrdf_load_stackoverflow) |
ES (1) | ES450240A3 (enrdf_load_stackoverflow) |
FR (1) | FR2033059A5 (enrdf_load_stackoverflow) |
GB (2) | GB1302091A (enrdf_load_stackoverflow) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3629952A (en) * | 1970-11-16 | 1971-12-28 | Overly Inc | Airfoil web dryer |
US3807056A (en) * | 1970-12-04 | 1974-04-30 | Polytype Ag | Device for the contact-free support of a web of material |
US3873013A (en) * | 1973-10-04 | 1975-03-25 | Tec Systems | High velocity web floating air bar having center exhaust means |
US3957187A (en) * | 1975-02-11 | 1976-05-18 | James Puigrodon | Methods and apparatus for transporting and conditioning webs |
US3976237A (en) * | 1973-03-09 | 1976-08-24 | Masson Scott Thrissell Engineering Limited | Web guide systems |
US3982327A (en) * | 1975-05-01 | 1976-09-28 | Midland-Ross Corporation | Air-dispensing web-floating apparatus |
US4058244A (en) * | 1976-03-27 | 1977-11-15 | Vits-Maschinenbau Gmbh | Air cushion nozzle |
US4069595A (en) * | 1975-01-24 | 1978-01-24 | Aktiebolaget Svenska Flaktfabriken | Arrangement for conveying web material through a treating plant |
US4085522A (en) * | 1972-10-30 | 1978-04-25 | Hoechst Aktiengesellschaft | Method and apparatus for freely suspending moving webs of material |
US4201323A (en) * | 1978-10-12 | 1980-05-06 | W. R. Grace & Co. | High velocity web floating air bar having a recessed Coanda plate |
US4265384A (en) * | 1980-01-21 | 1981-05-05 | W. R. Grace & Co. | Air bar having asymmetrical inlet |
US4271602A (en) * | 1978-08-17 | 1981-06-09 | Jagenberg Werke Aktiengesellschaft | Air nozzle for a jet dryer |
DE3111744A1 (de) * | 1980-03-28 | 1982-01-07 | Valmet Oy, 001300 Helsinki | Ueberdruckduese zur behandlung von bahnfoermigem material |
US4414757A (en) * | 1981-10-07 | 1983-11-15 | Overly, Incorporated | Web dryer nozzle assembly |
US4472888A (en) * | 1982-06-04 | 1984-09-25 | Cary Metal Products, Inc. | Coanda effect nozzle for handling continuous webs |
EP0196107A3 (en) * | 1985-03-28 | 1987-05-06 | Thermo Electron-Web Systems, Inc. | Web dryer with control of air infiltration |
WO1987003223A1 (en) * | 1985-11-29 | 1987-06-04 | Whipple Rodger E | Gas nozzle assembly |
EP0236819A3 (en) * | 1986-02-28 | 1988-08-24 | Thermo Electron-Web Systems, Inc. | Non-contact web turning and drying apparatus |
US4915788A (en) * | 1987-01-20 | 1990-04-10 | V.I.B. Apparatebau Gmbh | Method of contacting running webs with steam |
DE3910163A1 (de) * | 1989-03-29 | 1990-10-04 | Hans Kaesbauer | Vorrichtung und verfahren zum trocknen der lackierung bedruckter oberflaechen blattartiger druckwerke |
US5056431A (en) * | 1989-04-19 | 1991-10-15 | Quad/Tech, Inc. | Bernoulli-effect web stabilizer |
USD322260S (en) | 1988-08-05 | 1991-12-10 | W. R. Grace & Co.-Conn. | Air bar |
US5242095A (en) * | 1990-12-20 | 1993-09-07 | Advance Systems, Inc. | Contactless air turn guide with baffles for running webs |
US5320329A (en) * | 1993-02-16 | 1994-06-14 | Surface Combustion, Inc. | Pressure pad for stably floating thin strip |
US5347726A (en) * | 1989-04-19 | 1994-09-20 | Quad/Tech Inc. | Method for reducing chill roll condensation |
US5480086A (en) * | 1988-09-19 | 1996-01-02 | Fuji Photo Film Co., Ltd. | Non-contact web conveying apparatus |
US5590480A (en) * | 1994-12-06 | 1997-01-07 | W. R. Grace & Co.-Conn. | combination air bar and hole bar flotation dryer |
US5678484A (en) * | 1993-03-25 | 1997-10-21 | Baldwin Web Controls | Anti-wrap device for a web press |
WO1999002773A1 (en) * | 1997-07-07 | 1999-01-21 | Valmet Corporation | Method and apparatus for drying a coated paper web or the like |
US6298782B1 (en) | 1993-03-25 | 2001-10-09 | Baldwin Web Controls | Anti-wrap device for a web press |
EP1245732A1 (en) * | 2001-03-26 | 2002-10-02 | Voith Paper Patent GmbH | Apparatus for coating moving webs, in particular paper webs and carton webs |
US20030075293A1 (en) * | 2001-10-24 | 2003-04-24 | Stefan Moeller | Air clamp stabilizer for continuous web materials |
US6634120B2 (en) | 2001-03-26 | 2003-10-21 | Voith Paper Patent Gmbh | Apparatus for coating moving fiber webs |
US20050217523A1 (en) * | 2004-04-02 | 2005-10-06 | Heidelberger Druckmaschinen Ag | Sheet-fed printing press |
US20090260772A1 (en) * | 2008-04-18 | 2009-10-22 | Tamer Mark Alev | Sheet Stabilization With Dual Opposing Cross Direction Air Clamps |
US20100050468A1 (en) * | 2008-08-27 | 2010-03-04 | Megtec Systems, Inc. | Paired air bar/hole bar arrangement in web dryer |
WO2010141587A1 (en) | 2009-06-05 | 2010-12-09 | Megtec Systems, Inc. | Improved infrared float bar |
US20110233847A1 (en) * | 2008-12-10 | 2011-09-29 | Frank Werner | Method and device for guiding value documents |
US8088255B2 (en) * | 2008-04-18 | 2012-01-03 | Honeywell Asca Inc | Sheet stabilizer with dual inline machine direction air clamps and backsteps |
US20140116275A1 (en) * | 2012-11-01 | 2014-05-01 | Casey E. Walker | Reduction of print head temperature by disrupting air from heated webs of print media |
US9057559B2 (en) | 2010-11-16 | 2015-06-16 | Andritz Technology And Asset Management Gmbh | Cellulose pulp dryer having blow boxes, and a method of drying a web of cellulose pulp |
EP3916150A1 (en) * | 2020-05-26 | 2021-12-01 | Valmet Technologies Oy | Nozzle system of a device for contact-free treatment of a running fiber web |
US20220162719A1 (en) * | 2019-02-28 | 2022-05-26 | Ebner Industrieofenbau Gmbh | Strip flotation furnace |
CN114555334A (zh) * | 2019-10-17 | 2022-05-27 | 东丽株式会社 | 吹出喷嘴 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2452207C3 (de) * | 1974-11-04 | 1986-07-10 | Industria Textila Lugoj, Lugoj | Vorrichtung zum Trocknen von Textilbahnen |
DE2458002A1 (de) * | 1974-12-07 | 1976-06-10 | Artos Meier Windhorst Kg | Duesenanordnung in duesentrocknern |
DE2961177D1 (en) * | 1978-01-27 | 1982-01-14 | Spooner Edmeston Eng | Float treatment apparatus |
US4197971A (en) * | 1978-10-12 | 1980-04-15 | W. R. Grace & Co. | High velocity web floating air bar having an internal passage for transverse air discharge slot means |
GB2126974B (en) * | 1982-09-07 | 1985-09-11 | Grace W R & Co | Device for supporting a web on a bed of air |
US4785986A (en) * | 1987-06-11 | 1988-11-22 | Advance Systems, Inc. | Paper web handling apparatus having improved air bar with dimensional optimization |
US4768695A (en) * | 1987-06-11 | 1988-09-06 | Advance Systems, Inc. | Air bar for paper web handling apparatus and having an air distributing chamber and perforated plate therefor |
US4901449A (en) * | 1988-06-07 | 1990-02-20 | W. R. Grace & Co.-Conn. | Tri-flotation air bar |
GB2259234B (en) * | 1991-09-05 | 1995-08-09 | Ian Duncan Mcfarlane | Food processing |
DE19821542C2 (de) * | 1998-05-14 | 2000-05-11 | Langbein & Engelbracht Gmbh | Blaskasten |
JP3194078U (ja) * | 2014-06-25 | 2014-11-06 | 町田印刷株式会社 | 輪転印刷機用紙面昇温装置 |
-
1969
- 1969-02-27 US US802923*A patent/US3549070A/en not_active Expired - Lifetime
-
1970
- 1970-02-19 GB GB790670A patent/GB1302091A/en not_active Expired
- 1970-02-19 GB GB3506372A patent/GB1302092A/en not_active Expired
- 1970-02-25 DE DE19702008804 patent/DE2008804B2/de not_active Withdrawn
- 1970-02-25 FR FR7006763A patent/FR2033059A5/fr not_active Expired
- 1970-02-27 JP JP1631070A patent/JPS5438525B1/ja active Pending
-
1976
- 1976-07-28 ES ES450240A patent/ES450240A3/es not_active Expired
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3629952A (en) * | 1970-11-16 | 1971-12-28 | Overly Inc | Airfoil web dryer |
US3807056A (en) * | 1970-12-04 | 1974-04-30 | Polytype Ag | Device for the contact-free support of a web of material |
US4085522A (en) * | 1972-10-30 | 1978-04-25 | Hoechst Aktiengesellschaft | Method and apparatus for freely suspending moving webs of material |
US3976237A (en) * | 1973-03-09 | 1976-08-24 | Masson Scott Thrissell Engineering Limited | Web guide systems |
US3873013A (en) * | 1973-10-04 | 1975-03-25 | Tec Systems | High velocity web floating air bar having center exhaust means |
US4069595A (en) * | 1975-01-24 | 1978-01-24 | Aktiebolaget Svenska Flaktfabriken | Arrangement for conveying web material through a treating plant |
US3957187A (en) * | 1975-02-11 | 1976-05-18 | James Puigrodon | Methods and apparatus for transporting and conditioning webs |
US3982327A (en) * | 1975-05-01 | 1976-09-28 | Midland-Ross Corporation | Air-dispensing web-floating apparatus |
US4058244A (en) * | 1976-03-27 | 1977-11-15 | Vits-Maschinenbau Gmbh | Air cushion nozzle |
US4271602A (en) * | 1978-08-17 | 1981-06-09 | Jagenberg Werke Aktiengesellschaft | Air nozzle for a jet dryer |
US4201323A (en) * | 1978-10-12 | 1980-05-06 | W. R. Grace & Co. | High velocity web floating air bar having a recessed Coanda plate |
US4265384A (en) * | 1980-01-21 | 1981-05-05 | W. R. Grace & Co. | Air bar having asymmetrical inlet |
DE3111744A1 (de) * | 1980-03-28 | 1982-01-07 | Valmet Oy, 001300 Helsinki | Ueberdruckduese zur behandlung von bahnfoermigem material |
US4384666A (en) * | 1980-03-28 | 1983-05-24 | Valmet Oy | Nozzle apparatus for handling web material |
US4414757A (en) * | 1981-10-07 | 1983-11-15 | Overly, Incorporated | Web dryer nozzle assembly |
US4472888A (en) * | 1982-06-04 | 1984-09-25 | Cary Metal Products, Inc. | Coanda effect nozzle for handling continuous webs |
EP0196107A3 (en) * | 1985-03-28 | 1987-05-06 | Thermo Electron-Web Systems, Inc. | Web dryer with control of air infiltration |
WO1987003223A1 (en) * | 1985-11-29 | 1987-06-04 | Whipple Rodger E | Gas nozzle assembly |
US4718178A (en) * | 1985-11-29 | 1988-01-12 | Whipple Rodger E | Gas nozzle assembly |
EP0236819A3 (en) * | 1986-02-28 | 1988-08-24 | Thermo Electron-Web Systems, Inc. | Non-contact web turning and drying apparatus |
US4915788A (en) * | 1987-01-20 | 1990-04-10 | V.I.B. Apparatebau Gmbh | Method of contacting running webs with steam |
USD322260S (en) | 1988-08-05 | 1991-12-10 | W. R. Grace & Co.-Conn. | Air bar |
US5480086A (en) * | 1988-09-19 | 1996-01-02 | Fuji Photo Film Co., Ltd. | Non-contact web conveying apparatus |
DE3910163A1 (de) * | 1989-03-29 | 1990-10-04 | Hans Kaesbauer | Vorrichtung und verfahren zum trocknen der lackierung bedruckter oberflaechen blattartiger druckwerke |
US5056431A (en) * | 1989-04-19 | 1991-10-15 | Quad/Tech, Inc. | Bernoulli-effect web stabilizer |
US5347726A (en) * | 1989-04-19 | 1994-09-20 | Quad/Tech Inc. | Method for reducing chill roll condensation |
US5242095A (en) * | 1990-12-20 | 1993-09-07 | Advance Systems, Inc. | Contactless air turn guide with baffles for running webs |
US5320329A (en) * | 1993-02-16 | 1994-06-14 | Surface Combustion, Inc. | Pressure pad for stably floating thin strip |
US5678484A (en) * | 1993-03-25 | 1997-10-21 | Baldwin Web Controls | Anti-wrap device for a web press |
US6298782B1 (en) | 1993-03-25 | 2001-10-09 | Baldwin Web Controls | Anti-wrap device for a web press |
US5590480A (en) * | 1994-12-06 | 1997-01-07 | W. R. Grace & Co.-Conn. | combination air bar and hole bar flotation dryer |
US5647144A (en) * | 1994-12-06 | 1997-07-15 | W.R. Grace & Co.-Conn. | Combination air bar and hole bar flotation dryer |
WO1999002773A1 (en) * | 1997-07-07 | 1999-01-21 | Valmet Corporation | Method and apparatus for drying a coated paper web or the like |
US6293031B1 (en) | 1997-07-07 | 2001-09-25 | Metso Paper, Inc. | Method and apparatus for drying a coated paper web or the like |
EP1245732A1 (en) * | 2001-03-26 | 2002-10-02 | Voith Paper Patent GmbH | Apparatus for coating moving webs, in particular paper webs and carton webs |
US6634120B2 (en) | 2001-03-26 | 2003-10-21 | Voith Paper Patent Gmbh | Apparatus for coating moving fiber webs |
US6895690B2 (en) | 2001-03-26 | 2005-05-24 | Voith Paper Patent Gmbh | Apparatus for coating moving fiber webs |
US20030075293A1 (en) * | 2001-10-24 | 2003-04-24 | Stefan Moeller | Air clamp stabilizer for continuous web materials |
US6936137B2 (en) * | 2001-10-24 | 2005-08-30 | Honeywell International Inc. | Air clamp stabilizer for continuous web materials |
US20050217523A1 (en) * | 2004-04-02 | 2005-10-06 | Heidelberger Druckmaschinen Ag | Sheet-fed printing press |
US8083895B2 (en) * | 2008-04-18 | 2011-12-27 | Honeywell Asca Inc. | Sheet stabilization with dual opposing cross direction air clamps |
US20090260772A1 (en) * | 2008-04-18 | 2009-10-22 | Tamer Mark Alev | Sheet Stabilization With Dual Opposing Cross Direction Air Clamps |
US8088255B2 (en) * | 2008-04-18 | 2012-01-03 | Honeywell Asca Inc | Sheet stabilizer with dual inline machine direction air clamps and backsteps |
US8615899B2 (en) * | 2008-08-27 | 2013-12-31 | Megtec Systems, Inc. | Paired air bar/hole bar arrangement in web dryer |
US20100050468A1 (en) * | 2008-08-27 | 2010-03-04 | Megtec Systems, Inc. | Paired air bar/hole bar arrangement in web dryer |
US20110233847A1 (en) * | 2008-12-10 | 2011-09-29 | Frank Werner | Method and device for guiding value documents |
CN102317184B (zh) * | 2008-12-10 | 2015-04-01 | 德国捷德有限公司 | 用于导引有价票券的方法和装置 |
US8317194B2 (en) * | 2008-12-10 | 2012-11-27 | Giesecke & Devrient Gmbh | Method and device for guiding value documents |
AU2009324402B2 (en) * | 2008-12-10 | 2014-05-22 | Giesecke & Devrient Gmbh | Method and device for guiding value documents |
EP2857199A1 (en) | 2009-06-05 | 2015-04-08 | Megtec Systems, Inc. | Method for infrared float bar |
US9746235B2 (en) | 2009-06-05 | 2017-08-29 | Megtec Systems, Inc. | Infrared float bar |
EP2631069A1 (en) | 2009-06-05 | 2013-08-28 | Megtec Systems, Inc. | A channel assembly adapted to be inserted into an air bar and a method of setting the air flow in the channel assembly. |
US10371443B2 (en) | 2009-06-05 | 2019-08-06 | Durr Megtec, Llc | Infrared float bar |
WO2010141587A1 (en) | 2009-06-05 | 2010-12-09 | Megtec Systems, Inc. | Improved infrared float bar |
US20110131829A1 (en) * | 2009-06-05 | 2011-06-09 | Megtec Systems, Inc. | Infrared Float Bar |
US10139159B2 (en) | 2009-06-05 | 2018-11-27 | Babcock & Wilcox Megtec, Llc | Infrared float bar |
EP2942196A1 (en) | 2009-06-05 | 2015-11-11 | Megtec Systems, Inc. | Improved infrared float bar |
US9228779B2 (en) | 2009-06-05 | 2016-01-05 | Megtec Systems, Inc. | Infrared float bar |
US9057559B2 (en) | 2010-11-16 | 2015-06-16 | Andritz Technology And Asset Management Gmbh | Cellulose pulp dryer having blow boxes, and a method of drying a web of cellulose pulp |
US20140116275A1 (en) * | 2012-11-01 | 2014-05-01 | Casey E. Walker | Reduction of print head temperature by disrupting air from heated webs of print media |
US8899150B2 (en) * | 2012-11-01 | 2014-12-02 | Ricoh Company, Ltd. | Reduction of print head temperature by disrupting air from heated webs of print media |
US20220162719A1 (en) * | 2019-02-28 | 2022-05-26 | Ebner Industrieofenbau Gmbh | Strip flotation furnace |
US11708621B2 (en) * | 2019-02-28 | 2023-07-25 | Ebner Industrieofenbau Gmbh | Strip flotation furnace |
CN114555334A (zh) * | 2019-10-17 | 2022-05-27 | 东丽株式会社 | 吹出喷嘴 |
US12390817B2 (en) | 2019-10-17 | 2025-08-19 | Toray Industries, Inc. | Blowoff nozzle |
EP3916150A1 (en) * | 2020-05-26 | 2021-12-01 | Valmet Technologies Oy | Nozzle system of a device for contact-free treatment of a running fiber web |
Also Published As
Publication number | Publication date |
---|---|
ES450240A3 (es) | 1977-09-16 |
FR2033059A5 (enrdf_load_stackoverflow) | 1970-11-27 |
DE2008804B2 (de) | 1976-08-05 |
JPS5438525B1 (enrdf_load_stackoverflow) | 1979-11-21 |
GB1302091A (enrdf_load_stackoverflow) | 1973-01-04 |
DE2008804A1 (enrdf_load_stackoverflow) | 1970-12-17 |
GB1302092A (enrdf_load_stackoverflow) | 1973-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3549070A (en) | Floatation of sheet materials | |
EP0012731B1 (en) | A device for drying web shaped material | |
US4074841A (en) | Method and apparatus for floatation conveyance of strip materials | |
US3559301A (en) | Air flotation system for conveying web materials | |
US4201323A (en) | High velocity web floating air bar having a recessed Coanda plate | |
US3272415A (en) | Apparatus for stabilized transport of web-or sheet-like materials | |
US3231165A (en) | Method and apparatus for stabilizing an air-borne web | |
US5803448A (en) | Device for the suspended guidance of sheets or webs | |
US4472888A (en) | Coanda effect nozzle for handling continuous webs | |
EP0236819A2 (en) | Non-contact web turning and drying apparatus | |
EP0328227B1 (en) | Positive pressure web floater dryer with parallel flow | |
US3448907A (en) | Web positioner bar | |
JPS594629B2 (ja) | リヨウメンヒフクウエブザイシヨリソウチ | |
JPS6346199B2 (enrdf_load_stackoverflow) | ||
FI77708C (fi) | Arrangemang av oevertrycksmunstycken avsett foer behandling av banor. | |
GB2058318A (en) | Apparatus for heat treatment of sheet material | |
CA1121153A (en) | Nozzle apparatus for airborne paper web dryers | |
US3807056A (en) | Device for the contact-free support of a web of material | |
US3452447A (en) | Web positioning means and method | |
US3837551A (en) | Web conveying and treating method and apparatus | |
EP1337798B1 (en) | Non-contact floating device for turning a floating web-private | |
KR920010079A (ko) | 골판지를 만드는 기계의 이중페이서(facer)로 사용되도록 설계된 겹쳐지고 접착된 층으로 구성된 웨브(web)같은 작업편을 조립하는 장치 | |
US4790468A (en) | Floating type web guiding device | |
EP0690017B1 (en) | Low inertia apparatus for accumulating and applying tension to webs | |
EP1735575B1 (en) | Step air foil |