US3542680A - Oil-soluble carboxylic acid phenol esters and lubricants and fuels containing the same - Google Patents
Oil-soluble carboxylic acid phenol esters and lubricants and fuels containing the same Download PDFInfo
- Publication number
- US3542680A US3542680A US866081A US3542680DA US3542680A US 3542680 A US3542680 A US 3542680A US 866081 A US866081 A US 866081A US 3542680D A US3542680D A US 3542680DA US 3542680 A US3542680 A US 3542680A
- Authority
- US
- United States
- Prior art keywords
- acid
- hydrocarbon
- ester
- esters
- succinic anhydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/02—Acyclic radicals, not substituted by cyclic structures
- C07H15/04—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
- C07H15/08—Polyoxyalkylene derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/14—Esterification
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/1817—Compounds of uncertain formula; reaction products where mixtures of compounds are obtained
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/221—Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/86—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
- C10M129/95—Esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
- C10M133/54—Amines
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/08—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
- C23F11/10—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
- C23F11/173—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2810/00—Chemical modification of a polymer
- C08F2810/20—Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2810/00—Chemical modification of a polymer
- C08F2810/30—Chemical modification of a polymer leading to the formation or introduction of aliphatic or alicyclic unsaturated groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/198—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/02—Well-defined aliphatic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/02—Well-defined aliphatic compounds
- C10M2203/022—Well-defined aliphatic compounds saturated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/02—Well-defined aliphatic compounds
- C10M2203/024—Well-defined aliphatic compounds unsaturated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/04—Well-defined cycloaliphatic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/024—Propene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/021—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/021—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/022—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/024—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/025—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with condensed rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/027—Neutral salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/028—Overbased salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/04—Ethers; Acetals; Ortho-esters; Ortho-carbonates
- C10M2207/046—Hydroxy ethers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/281—Esters of (cyclo)aliphatic monocarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/286—Esters of polymerised unsaturated acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/288—Partial esters containing free carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/34—Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/402—Castor oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/404—Fatty vegetable or animal oils obtained from genetically modified species
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/101—Condensation polymers of aldehydes or ketones and phenols, e.g. Also polyoxyalkylene ether derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/102—Polyesters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/104—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/105—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/106—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/108—Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/109—Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/11—Complex polyesters
- C10M2209/111—Complex polyesters having dicarboxylic acid centres
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/12—Polysaccharides, e.g. cellulose, biopolymers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/02—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
- C10M2211/022—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/04—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen, halogen, and oxygen
- C10M2211/044—Acids; Salts or esters thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/06—Perfluorinated compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/08—Halogenated waxes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2213/00—Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2213/02—Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen and halogen only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2213/00—Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2213/06—Perfluoro polymers
- C10M2213/062—Polytetrafluoroethylene [PTFE]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/062—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups bound to the aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
- C10M2215/065—Phenyl-Naphthyl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/066—Arylene diamines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
- C10M2215/082—Amides containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/12—Partial amides of polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/20—Containing nitrogen-to-oxygen bonds
- C10M2215/202—Containing nitrogen-to-oxygen bonds containing nitro groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/221—Six-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/225—Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/225—Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
- C10M2215/226—Morpholines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/30—Heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/02—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/022—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/02—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/022—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
- C10M2217/023—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group the amino group containing an ester bond
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/046—Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/06—Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/022—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/024—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbasedsulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/088—Neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/089—Overbased salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
- C10M2219/108—Phenothiazine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/041—Triaryl phosphates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/042—Metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/047—Thioderivatives not containing metallic elements
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/065—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/12—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/12—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
- C10M2223/121—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy of alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/042—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/044—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/046—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/06—Instruments or other precision apparatus, e.g. damping fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
- C10N2040/253—Small diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/26—Two-strokes or two-cycle engines
Definitions
- esters are the mono esters, diesters, and mixtures thereof prepared from polyisobutenyl-substituted succinic acid or anhydride and monohydroxy or polyhydroxy phenols.
- the esters are especially useful as additives in fuels and lubricants.
- This invention relates to novel compositions of matter and processes for preparing the same.
- this invention relates to compositions useful as plasticizers, detergents, anti-rust agents, emulsifiers, and additives in lubricating compositions, fuels, hydrocarbon oils, and power transmitting fluids.
- esters of substantially saturated monoor polycarboxylic acids and a hydroxy aromatic compound said ester being characterized by the presence Within its structure of (A) a carboxylic acid moiety which is an acyl radical of a monoor polycarboxylic acid having at least about fifty aliphatic carbon atoms and (B) an oxy aromatic radical which is an oxy radical of a hydroxy aromatic compound.
- the lubricant and fuel compositions of the invention are achieved by incorporating at least one of these esters into a lubricant or fuel as explained more fully hereafter.
- esters of carboxylic acids and hydroxy aromatic compounds can be represented generically by the formula where R is the residue of the acid group and R is the residue of the hydroxy aromatic compound.
- acyl radical refers to the group 0 ll Bil-C- and oxy aromatic radical refers to O-R
- R is the residue of the acid group
- oxy aromatic radical refers to O-R
- the acyl radical can be O alkenyl-OH-QI- alkcnyl-CH-lIi-OH CHz-fi-OH C1124"?- O
- the oxy aromatic radical is derived from a polyhydric phenol of the formula the oxy radical can be --0 (oH)1 z 0 2% 0H
- the acyl radical of the esters of this invention is derived from a monoor polycarboxylic acid.
- One particularly important characteristic of the acyl radical is its size. The radical should contain at least about fifty aliphatic carbon atoms.
- acyl radical preferably should be substantially saturated, i.e., at least about 95% of the total number of the carbon-to-carbon covalent linkages therein preferably should be saturated linkages. In an especially preferred aspect of the invention, at least about 98% of these covalent linkages are saturated. Obviously, all of the covalent linkages may be saturated. A greater degree of unsaturation renders the esters more susceptible to oxidation, degradation, and polymerization and this lessens the effectiveness of the final products as lubricant and fuel additives.
- the acyl radical of the esters should be substantially free from oil-solubilizing pendant groups, that is, groups having more than about six aliphatic carbon atoms. Although, some such oil-solubilizing pendant groups may be present, they preferably will not exceed one such group for every twenty-five aliphatic carbon atoms in the principal hydrocarbon chain of the acyl radical.
- the acyl radical may contain polar substitutents provided that the polar substitutents are not present in proporitons sufficiently large to alter significantly the hydrocarbon character of the radical.
- Typical suitable polar substituents are halo, such as chloro and bromo, oxo, oxy, formyl, sulfonyl, sulfinyl, thio, nitro, etc. such polar substituents, if present, preferably Will not exceed by weight of the total weight of the hydrocarbon portion of the carboxylic acid radical exclusive of the carboxyl group.
- the process involves the reaction of (1) an ethylenically unsaturated carboxylic acid, acid halide, or anhydride with (2) an ethylenically unsaturated hydrocarbon containing at least about fifty aliphatic carbon atoms or a chlorinated hydrocarbon containing at least about fifty aliphatic carbon atoms at a temperature within the range of about l00300 C.
- the chlorinated hydrocarbon or ethylenically unsaturated hydrocarbon reactant can, of course, contain polar substitutents, oil-solubilizing pendant groups, and be unsaturated within the general limitations explained hereinabove. It is these hydrocarbon reactants which provides most of the aliphatic carbon atoms present in the acyl moiety of the final products.
- the carboxylic acid reactant When preparing the carboxylic acid acylating agent according to one of these two processes, the carboxylic acid reactant usually corresponds to the formula R (COOH) where R is characterized by the presence of at least one ethylenically unsaturated carbon-tocarbon covalent bond and n is an integer from one to six and preferably one or two.
- the acidic reactant can also be the corresponding carboxylic acid halide, anhydride, ester, or other equivalent acylating agent and mixtures of one or more of these. Ordinarily, the total number of carbon atoms in the acidic reactant will not exceed ten and generally will not exceed six.
- the acidic reactant will have at least one ethylenic linkage in an a,;8-position with respect to at least one carboxyl function.
- exemplary acidic reactants are acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhyride, mesaconic acid, glutaconic acid, chloromaleic acid, aconitic acid, crotonic acid, methylcrotonic acid, sorbic acid, 3-hexenoic acid, lO-decenonic acid, and the like. Due to considerations of economy and availability, these acid reactants usually employed are acrylic acid, methacrylic acid, maleic acid, and maleic anhydride.
- the carboxylic acid acylating agents may contain cyclic and/or aromatic groups.
- the acids are essentially aliphatic in nature and in most instances, the preferred acid acylating agents are aliphatic monoand polycarboxylic acids, anhydrides, and halides.
- the substantially saturated aliphatic hydrocarbonsubstituted succinic acid and anhydrides are especially preferred as acylating agents in the preparation of the esters used as starting materials in the present invention.
- These succinic acid acylating agents are readily prepared by reacting maleic anhydride with a high molecular weight olefin or a chlorinated hydrocarbon such as a chlorinated polyolefin. The reaction involves merely heating the two reactants at a temperature of about 300 C., preferably, 100200 C.
- the product from such a reaction is a substituted succinic anhydride where the substituent is derived from the olefin or chlorinated hydrocarbon as described in the above cited patents.
- the product may be hydrogenated to remove all or a portion of any ethylenically unsaturated covalent linkages by standard hydrogenation procedures, if desired.
- the substituted succinic anhydrides may be hydrolyzed by treatment with water or steam to the corresponding acid and either the anhydride or the acid may be converted to the corresponding acid halide or ester by reacting with phosphorus halide, phenols, or alcohols.
- the ethylenically unsaturated hydrocarbon reactant and the chlorinated hydrocarbon reactant used in the preparation of the acylating agents are principally the high molecular weight, substantially saturated petroleum fractions and substantially saturated olefin polymers and the corresponding chlorinated products.
- the polymers and chlorinated polymers derived from mono-olefins having from two to about thirty carbon atoms are preferred.
- the especially useful polymers are the polymers of 1- mono-olcfins such as ethylene, propene, l-butene, isobutene, l-hexene, l-octene, Z-methyl-l-heptene, 3-cyclohexyl 1 butene, and Z-methyl-S-propyhl-hexene.
- Polymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position likewise are useful. These are exemplified by 2-butene, 3-pentene, and 4- octcne.
- interpolymers of l-mono-olefins such as illustrated above with each other and with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins, are also useful sources of the ethylenically unsaturated reactant.
- Such interpolymers include for example, those prepared by polymerizing isobutene with styrene, isobutene with butadiene, propane with isoprene, propene with isobutene, ethylene with piperylene, isobutene with chloroprene, isobutene with p-methyl-styrene, l-hexene with 1,3-hexadiene, l-octene with l-hexene, lheptene with l-pentene, 3-methyl-1-butene with l-octene, 3,3-dimethyl-l-pentene with l-hexene, isobutene with styrene and piperylene, etc.
- the interpolymers contemplated for use in preparing the acylating agents of this invention should be substantially aliphatic and substantially saturated, that is, they should contain at least about 80% and preferably about 95 on a weight basis, of units derived from aliphatic mono-olefins. Preferably, they will contain no more than about 5% olefinic linkages based on the total number of the carbon-to-carbon covalent linkages present.
- the chlorinated hydrocarbons and ethylenically unsaturated hydrocarbons used in the preparation of the acylating agents can have molecular weights of from about 700 up to about 100,000 or even higher.
- the preferred reactants are the above described polyolefins and chlorinated polyolefins having an average molecular weight of about 700 to about 5,000.
- the acylating agent has a molecular weight in excess of about 10,000, the esters also possess viscosity index improving qualities.
- hydrocarbons containing activating polar substituents which are capable of activating the hydrocarbon molecule in respect to reaction with an ethylenically unsaturated acid reactant may be used in the above-illustrated reactions for preparing the acylating agents.
- polar substituents include sulfide and disulfide linkages, and nitro, mercapto, carbonyl, and formyl radicals.
- Examples of these polar-substituted hydrocarbons include polypropene sulfide, di-polyisobutene disulfide, nitrated mineral oil, di-polyethylene sulfide, brominated polyethylene, etc.
- the acylating agents may also be prepared by halogenating a high molecular weight hydrocarbon such as the above described olefin polymers to produce a polyhalogenated product, converting the poly-halogenated product to a poly-nitrile, and then hydrolyzing the polynitrile. They may be prepared by oxidation of a high molecular weight polyhydric alcohol with potassium permanganate, nitric acid, or a similar oxidizing agent.
- Another method for preparing such poly-carboxylic acids involves the reaction of an olefin or a polar-substituted hydrocarbon such as a chloropolyisobutene with an unsaturated poly-carboxylic acid such as 2-pentene-1,3,5- tricarboxylic acid prepared by dehydration of citric acid.
- Mono-carboxylic acid acylating agents may be obtained by oxidizing a mono-alcohol with potassium permanganate or by reacting a halogenated high molecular weight olefin polymer with a ketene.
- Another convenient method for preparing mono-carboxylic acid involves the reaction of metallic sodium with an acetoacetic ester or a malonic ester of an alkanol to form a sodium derivative of the ester and the subsequent reatcion of the sodium derivative with a halogenated high molecular weight hydrocarbon such as brominated wax or brominated polyisobutene.
- Mono-carboxylic and poly-carboxylic acid acylating agents can also be obtained by reacting chlorinated monoand poly-carboxylic acids, anhydrides, acyl halides, and the like with ethylenically unsaturated hydrocarbons or ethylenically unsaturated substituted hydrocarbons such as the polyolefins and substituted polyolefins described hereinbefore in the manner described in 3,340,281.
- the mono-carboxylic and poly-carboxylic acid anhydrides are obtained by dehydrating the corresponding acids. Dehydration is readily accomplished by heating the acid to a temperature above about C., preferably in the presence of a dehydration agent, e.g. acetic anhydride.
- a dehydration agent e.g. acetic anhydride.
- Cyclic anhydrides are usually obtained from polycarboxylic acids having acid radicals separated by no more than three carbon atoms such as substituted succinic or glutaric acid, whereas linear anhydrides are obtained from poly-carboxylic acids having the acid radicals separated by four or more carbon atoms.
- the acid halides of the mono-carboxylic and polycarboxylic acids can be prepared by the reaction of the acids or their anhydrides with a halogenating agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride.
- a halogenating agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride.
- the esters of this invention are those prepared from acylating agents of the type described above with monohydroxy and polyhydroxy aromatic compounds.
- the aromatic nucleus of the aromatic compound should be a benzene ring or an aromatic condensed hydrocarbon ring such as naphthalene.
- Monohydroxy and polyhydroxy phenols and naphthols are preferred hydroxy aromatic compounds.
- These hydroxy-substituted aromatic compounds may contain other substituents in addition to the hydroxy substitutents such as halo, alkyl, alkenyl, alkoxy, nitro, and the like.
- the hydroxy aromatic compound will contain one to four hydroxy groups.
- aromatic hydroxy compounds from which the esters of this invention may be derived are illustrated by the following specific examples: phenol, p-chlorophenol, pnitrophenol, beta-naphthol, alpha-naphthol, cresols, resorcinol, catechol, carvacrol, thymol, eugenol, p,p'-dihydroxybiphenyl, hydroquinone, pyrogallol, phloroglucinol, hexylresorcinol, orcin, guaiacol, 2-chlorophenol, 2,4-dibutylphenol, propene tetramer-substituted phenol, didodecylphenol, 4,4 methylene bis phenol, alpha decylbeta naphthol, polyisobutene (molecular weight of 1000)-substituted phenol, the condensation product of heptylphenol with 0.5 mole of formaldehy
- Phenol and aliphatic hydrocarbon substituted phenols e.g., alkylated phenols, having up to three aliphatic hydrocarbon substituents are especially preferred.
- Each of the aliphatic hydrocarbon substituents may contain or more carbon atoms but usually will have from one to twenty carbon atoms.
- Alkyl and alkenyl groups are the preferred aliphatic hydrocarbon substituents.
- the esters of the invention can be prepared from monoor polycarboxylic acid acylating agents
- the esters may be monoesters, polyesters, or acidic esters.
- an acidic or monoester can be produced or both carboxyl groups may each react with a hydroxy group to produce a diester.
- a polyhydric aromatic compound when used in the preparation of the ester, it may be completely esterified or only partially esterified; i.e., it may retain nonesterified free hydroxyl radicals. Mixtures of these various esters are contemplated as being within the scope of this invention.
- the esters may be prepared by any of several conventional methods. See, for example, R. D. Olfenhauer, The Direct Esterification of Phenols, Journal of Chemical Education, vol. 41, No. 1, p. 39 (1964), and the references cited therein.
- a convenient method involves the reaction of a hydroxy aromatic compound with a carboxylic acid or anhydride.
- the esterification is usually carried out at a temperature above about 100 C., preferably between 150 C. and 300 C.
- a substantially inert liquid diluent may be used in the esterification to facilitate mixing, temperature control, the removal of water, etc. Any substantially inert organic liquid can be used as a diluent.
- Suitable diluents include the aliphatic, cycloaliphatic, and aromatic hydrocarbons and their chlorinated analogs exemplified by pentane, hexane, heptane, cyclohexane, benzene, toluene, xylene, chlorobenzene, diphenyl ether, chlorohexane, and the like. Mineral oils, naphthas, ligroin, and the like may also be used as a diluent.
- the following illustrates the reaction of a dicarboxylic acid acylating agent (substituted succinic anhydride) and a polyhydric aromatic compound.
- a modification of the above illustrative process involves the replacement of the substituted succinic anhydride with the corresponding succinic acid.
- succinic acids readily undergo dehydration at temperatures above about 100 C. and are thus converted to their anhydrides which are then esterified by the reaction with the hydroxy aromatic reactant.
- succinic acids appear to be the substantial equivalent of their anhydrides in the process.
- the esters may be obtained by the reaction of a lower molecular weight acrylating agent, e.g. acrylic acid, methacrylic acid, maleic acid or anhydride, fumaric acid, itaconic acid or anhydride, etc., with a hydroxy aromatic compound to form the corresponding esters and then reacting these esters with an olefin or a chlorinated hydrocarbon as illustrated above.
- a lower molecular weight acrylating agent e.g. acrylic acid, methacrylic acid, maleic acid or anhydride, fumaric acid, itaconic acid or anhydride, etc.
- a hydroxy aromatic compound e.g. acrylic acid, methacrylic acid, maleic acid or anhydride, fumaric acid, itaconic acid or anhydride, etc.
- a hydroxy aromatic compound e.g. acrylic acid, methacrylic acid, maleic acid or anhydride, fumaric acid, itaconic acid or anhydride, etc.
- the relative proportions of the acylating agent and the hydroxy aromatic compound depend in part, upon the type of the product desired and the number of carboxylic acid groups in the acylating agent and hydroxyl groups present in the hydroxy aromatic compound. For instance, the formation of a half ester of a succinic acid, i.e., one in which only one of the two acid radicals is esterified, involves the use of one mole'of phenol for each mole of the substituted succinic acid reactant, whereas the formation of a diester of a succinic acid involves the use of two moles of phenol for each mole of the acid.
- one mole of a hydroquinone may combine with two moles of a succinic acid to form an ester in which both hydroxyl radicals of hydroquinone are esterified with one of the two acid radicals of the succinic acid.
- the maximum amount of acylating agent to be used with a polyhydric aromatic compound is determined by the number of hydroxyl groups present in the molecule of the hydroxy reactant. For the purposes of this invention, it has been found that esters obtained by the reaction of about equi-molar amounts of the acylating agent and hydroxy aromatic compound have superior properties and are therefore preferred.
- esters prepared from the reaction of at least stoichiometrically equivalent amounts of acylating agent and hydroxy aromatic compound i.e., about one hydroxy group for each carboxylic acylating group present in the reaction mixture, are especially preferred. It is sometimes desirable to employ an excess of the hydroxy aromatic compound in preparing the esters, e.g., about a 5%l00% by weight stoichiometric excess based on the stoichiometric amount required to produce a given desired ester.
- esterification in the presence of a catalyst such as sulfuric acid, pyridine hydrochloride, hydrochloric acid, polyphosphoric acid, benzene sulfonic acid, p-toluene sulfonic acid, phosphoric acid, or any other known esterification catalyst.
- a catalyst such as sulfuric acid, pyridine hydrochloride, hydrochloric acid, polyphosphoric acid, benzene sulfonic acid, p-toluene sulfonic acid, phosphoric acid, or any other known esterification catalyst.
- the amount of the catalyst in the reaction may be as little as 0.01% (by weight of the reaction mixture), more often from about 0.1% to about 5%.
- unreacted hydroxy aromatic compound can be removed, if desired, by conventional techniques. Usually removal is accomplished by distillation at reduced pressure. However, if the hydroxy aromatic compound is oil-soluble, it can be left in the reaction mixture without interfering with the dispersant capabilities of the esters. Moreover, if it is desired that the reaction mixture be substantially free from unreacted carboxyl groups for a particular application, this can be readily accomplished by post-treating the reaction mixture with an epoxide according to applicants copending application Ser. No. 712,606, filed Mar. 13, 1968, now abandoned for continuation Ser. No. 866,081 filed Oct. 3, 1969.
- This epoxide post-treatment may also result in the reaction of unreacted hydroxy groups with epoxides to form hydroxyalkoxy substituents on the aromatic nucleus. If sufficient epoxide is employed, the aromatic nucleus having the unesterified hydroxy group will react with more than one epoxide. For example, three moles of propylene oxide, ethylene oxide, or a mixture thereof can react to produce a substituent of the formula where R is H or ---CH;.;.
- the epoxide post-treatment improves the performance of the esters as sludge dispersants.
- esters of the type contemplated by the present invention illustrate the preparation of esters of the type contemplated by the present invention. Unless otherwise indicated, the terms parts and percent refer to parts by weight and percent by weight, respectively, when used in these examples and elsewhere in the specification and claims.
- EXAMPLE 1 The following acylating agents are prepared according to conventional processes as illustrated.
- a polyisobutenyl-substituted succinic anhydride is prepared by the reaction of a chlorinated polyisobutylene with maleic anhydride at 200 C.
- the polyisobutenyl radical has an average molecular weight of about 850 and the resulting alkenyl succinic anhydride is found to have an acid number of 113 (corresponding to an equivalent weight of about 500).
- a polyisobutenyl-substituted succinic anhydride having an acid number of 105 and an equivalent weight of 540 is prepared by the reaction of a chlorinated polyisobutylene (having an average molecular weight of 1050 and a chlorine content of 4.3%) and maleic anhydride.
- EXAMPLE 2 A mixture comprising 1028 parts of a polyisobutenylsubstituted succinic anhydride (average molecular Weightl028; prepared as in 1(A), 282 parts of phenol, 19 parts of toluene-sulfonic acid mono hydrate, and 514 parts of xylene is heated to reflux (153 C.) and maintained at this temperature for five hours. Thereafter, the mixture is cooled and 19 additional parts of toluenesulfonic acid esterification catalyst is added. Heating at reflux (153 154 C.) is continued for twenty-eight hours. The reaction mixture is then cooled to C. and 7.5 parts of sodium hydroxide dissolved in 24 parts of water is added.
- a polyisobutenylsubstituted succinic anhydride average molecular Weightl028; prepared as in 1(A)
- 282 parts of phenol 19 parts of toluene-sulfonic acid mono hydrate, and 514 parts of xylene is
- the resulting reaction mixture is then stripped at 68 C. at 21 mm. (Hg) and then at 223 C. at 21 mm. (Hg).
- the stripped product is then dissolved in 756 parts of mineral oil to produce an oil solution of the desired ester product. If desired, this oil solution can be filtered.
- a polypropenyl-substituted succinic anhydride is prepared by the reaction of a chlorinated polypropylene (having a molecular weight of about 900 and a chlorine content of about 4%) and maleic anhydride at 200 C.
- the product has an acid number of 75.
- a substituted succinic anhydride is prepared by treating maleic anhydride with a chlorinated copolymer of isobutylene and styrene.
- the copolymer consists of 94 parts of isobutylene units and 6 parts of styrene units and has an average molecular Weight of 1200 and a chlorine content of 2.8% by weight.
- the resulting succinic anhydride has an acid number of 40.
- a polypropylene-sirbstituated succinic anhydride having an acid number of 84 is prepared by the reaction of a chlorinated polypropylene having a chlorine content of 3% and a molecular weight of 1200 Wih maleic anhydride.
- a substituted succinic anhydride having an acid number of about 54 is prepared by reacting maleic anhydride with a chlorinated (1.95% by weight chlorine) copolymer of isobutylene and isoprene.
- the copolymer consists of 99 parts by weight of isobutylene units and one part of isoprene units and has an average molecular weight of about 28,000.
- a high molecular weight polyisobutenyl-substituted carboxylic acid is prepared by heating an equimolar mixture of a chlorinated polyisobutene having a molecular Weight of 1 000 and a chlorine content of 4.7% and methacrylic acid at 150 C.
- the organic epoxides used in the post-treatment of the esters can have up to about forty carbon atoms and may be represented by the formula n RD lH-CH 0 where each R is independently hydrogen or an aliphatic, cycloaliphatic, or aromatic radical. Normally R will be hydrogen or an alkyl, haloalkyl, cycloalkyl, halocycloalkyl, aryl, or haloaryl radical having no more than one halogen radical for every three carbon atoms.
- the lower alkylene and haloalkylene epoxides, including the cycloalkylene epoxides, containing from two to eight carbon atoms are especially preferred for post-treating the esters.
- arylene and haloarylene epoxides contemplated are those containing from one to two resonant ring structures such as phenyl, naphthyl, or substituted phenyl and naphthyl such as alkyl phenyl or halophenyl (e.g., tolyl, cresyl, cylyl, methyl naphthyl, chlorophenyl, etc.). Phenyl and halophenyl radicals are the preferred R groups among the aryl epoxides.
- the epoxides in which at least one of the carbon atoms attached to the oxygen in the oxirane ring is also attached to two hydrogen atoms are especially preferred. Those epoxides are designated as terminal epoxides.
- organic epoxides useful in the process of this invention are ethylene oxide, propylene oxide, 1,2-epoxybutane, 1,2-epoxy-3butane, 1,2-epoxypentane, 1,2-epoxyheptane, 1,2-epoxydodecane, 2,3-epoxybutane, 1,2-epoxy-5-hexane,
- fatty acid radical has up 1 to about thirty aliphatic carbon atoms and the alcohol radical is derived from an aliphatic alcohol having u to about eight carbon atoms.
- Ethylene oxide, propylene oxide and epichlorohydrin are particularly preferred for posttreating the esters.
- the post-treatment process involves contacting the ester or mixture of esters with an epoxide or mixture of epoxides, usually in the presence of an inert diluent, while maintaining a temperature of about 25 C. up to the decomposition temperature of the ester or epoxide involved and usually at a temperature within a range of about 50250 C. Good results are achieved when the posttreatment is conducted at a temperature of about 70- 200 C.
- the esters and epoxides are easily brought into contact simply by mixing them in any convenient manner. It is usually desirable to employ some type of mechanical agitation to facilitate thorough contact of the esters and epoxides.
- Suitable diluents include the aliphatic, cycloaliphatic, and aromatic hydrocarbons and their chlorinated analogs exemplified by pentane, hexane, heptane, cyclohexane, benzene, toluene, xylene, chlorobenzene, chlorohexanes, and the like. Mineral oils, naphthas, ligroin, and the like may also be used as a diluent. In many instances, the esters are prepared as oil-solutions and these oilsolutions can be used in the post-treating process, the oil functioning as a diluent.
- esters to be post-treated will be substantially free from unreacted carboxyl groups, for example, the diesters of the succinic acids as opposed to the acidic esters. This usually can be achieved by using esterification catalyst and a stoichiometric excess of hydroxy aromatic compound in preparing the esters.
- An ester is considered substantially free from free carboxyl groups for purposes of this invention when not more than about of the number of carboxyl functions present are free carboxyl groups, i.e., COOH.
- the number of free carboxyl groups will be less than about 5% of the total number in the ester composition being treated in this preferred aspect of the invention.
- the amount of epoxide employed may be increased to provide up to about one equivalent of epoxide for each equivalent of free carboxyl group in addition to that used for posttreating the ester.
- the esters and epoxides should be contacted in an amount such that the ratio of equivalents of hydroxy aromatic compound present in the ester to the equivalents of epoxide will be about 11005 to about 1:5 and preferably 1:0.l to about 1:2.
- the equivalent weight of a hydroxy aromatic compound is deemed to be its molecular weight divided by the number of hydroxyl groups present whether or not they are esterified.
- the equivalent weight of an epoxide is deemed to be the molecular weight of the epoxide divided by the number of oxirane rings present in the epoxy molecule.
- the ester to be treated contains one mole of resorcinol in the oxy moiety
- the ester is deemed to contain two equivalents of hydroxy aromatic compound.
- such an ester would be contacted with 0.1 to 10, preferably 0.2 to 4 equivalents of epoxide.
- This equivalent ratio is offered merely as a guideline to define the elfective ratios of ester and epoxide and is in no way intended to imply that all the epoxide used will react with the ester.
- EXAMPLE 11 An oil solution of an ester prepared according to Example 2 is contacted with propylene oxide in an amount such that the equivalent ratio of hydroxy aromatic compound in the ester reaction product to epoxide (as explained above) is about 1:1. The mixture is heated for seventeen hours at -90 C. and then stripped at reduced pressure to remove any unreacted propylene oxide. The resulting mixture is then filtered producing an oil solution of the desired post-treated ester.
- EXAMPLE 12 The ester product of Example 10 is post-treated with an equimolar mixture of ethylene oxide and propylene oxide in an amount such that the equivalent ratio of hydroxy aromatic compound to alkylene oxide is 1:3. The temperature of the reaction mass is maintained at C. for four hours, stripped at reduced pressure, and filtered. The filtrate is an oil-solution of the desired posttreated ester.
- esters By following the general procedures of Examples 11 and 12 and utilizing different esters, different epoxides, or different esters and epoxides, other post-treated esters of the type contemplated by the present invention are readily prepared.
- esters and post-treated esters of this invention are useful for a wide variety of purposesas pesticides, plasticizers, rust-inhibiting agents, corrosion-inhibiting agents, extreme pressure agents, detergents, hydrocarbon fuel additives, etc.
- esters are as additives in lubricants, especially lubricating oils.
- the lubricating oils in which the esters of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily, mineral lubricating oils are preferred by reason of their availability, general excellence, and low cost. For certain applications, oils belonging to one of the other three groups may be preferred. For instance, synthetic polyester oils such as didodecyl adipate and di-2-ethylhexyl sebacate are often preferred as jet engine lubricants. Normally, the lubricating oils preferred will be fluid oils ranging in viscosity from about 40 Saybolt Universal seconds at 100 F. to about 200 Saybolt Universal seconds at 210 F.
- the concentration of the esters as additives in lubricants usually ranges from about 0.01% to about 10% by weight.
- the optimum concentration for a particular application depends to a large extent upon the type of service to which the lubricants are to be subjected.
- lubricants for use in gasoline engines may contain from about 0.5 to about 5% of the additive whereas lubricating compositions for use in gears and diesel engines may contain as much as or even more of the additive.
- additives include, for example, supplemental detergents of the ashcontaining type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and supplemental oxidation and corrosion-inhibiting agents.
- the ash-containing detergents are exemplified by oilsoluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
- olefin polymer e.g., polyisobutene having a molecular weight of 1000
- a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide,
- the term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical.
- the commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about 50 C. and filtering the resulting mass.
- a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide
- Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance, alcohols such as methanol, 2- propanol, octyl alcohol, Cellosolve, Carbitol, ethylene glycol, stearyl alcohol, and cycohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl-betanaphthyl-amine, and dodecylamine,
- a particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of Water and carbonating the mixture at an elevated temperature such as 60200 C.
- the esters of this invention are especially adapted for use in combination with extreme pressure and corrosioninhibiting additives such as metal dithiocarbamates, xanthates, the Group II metal phosphorodithioates and their epoxide adducts, hindered phenols, sulfurized cycloalkanes, di-alkyl polysulfides, sulfurized fatty esters, phosphosulfurized fatty esters, alkaline earth metal salts of alkylated phenols, dialkyl phosphites, triaryl phosphites, and esters of phosphorodithioic acids.
- Combinations of the esters of this invention with any of the above mentioned additives are especially desirable for use in lubricants which must have superior extreme pressure and oxidation-inhibiting characteristics.
- the Group II metal phosphorodithioates are the salts of acids having the formula in which R and R are substantially hydrocarbon radicals.
- the metals for forming such salts are exemplified by barium, calcium, strontium, zinc, and cadmium.
- the barium and zinc phosphorodithioates are especially preferred.
- the substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenyl radicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group.
- Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, secbutyl, the various amyl alcohols, n-hexyl methylisobutyl carbinyl, heptyl, 2-ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc.
- Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc.
- Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals.
- Other substantially hydrocarbon radicals likewise are useful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc.
- Many substituted hydrocarbon radicals may also be used, e.g., chloropentyl, dichlorophenyl, and dichlorodecyl.
- Especially useful Group II metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols.
- the use of such mixtures enables the utilization of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids.
- a mixture of isopropyl and hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate.
- mixtures of simple phosphorodithioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.
- Another class of the phosphorothioate additives con templated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphorodithioates described above with an epoxide.
- the metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates.
- the epoxides may be alkylene oxides or arylalkylene oxides.
- the arylalkylene oxides are exemplified by styrene oxide, p-ethylstyrene oxide, alpha-methylstyrene oxide, 3-beta-naphthyl- 1,3-butylene oxide, m-dodecylstyrene oxide and p-chlorostyrene oxide.
- the alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms such as illustrated hereinbefore.
- the adduct may be obtained by simply mixing the phosphorodithioate and the epoxide.
- the reaction is usually exothermic and may be carried out within wide temperature limits from about 0 C. to about 200 C. Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction.
- the reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane.
- the chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the phosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkylene oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.
- the lubricating compositions may contain metal detergent additives in amounts usually within the range of from about 0.1% to about 20% by weight. In some applications such as in lubricating marine diesel engines the lubricating compositions may contain as much as 30% of a metal detergent additive. They may contain extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts within the range from about 0.1% to about 10%.
- EXAMPLE B SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.
- EXAMPLE F SAE 10W-30 mineral lubricating oil containing 2% of the product of Example 7, 0.06% of phosphorus as zinc di-n-octylphosphorodithioate, and 1% of sulfate ash as barium mahogany sulfonate.
- EXAMPLE G SAE 30 mineral lubricating oil containing 5% of the product of Example 11, 0.1% of phosphorus as the zinc salt of a mixture of equi-molar amounts of di-isopropylphosphorodithioic acid and di-n-decylphosphorodithioic acid, and 2.5% of sulfate ash as a basis barium detergent prepared by carbonating at 150 C. a mixture comprising mineral oil, barium di-dodecylbenzene sulfonate and 1.5 moles of barium hydroxide in the presence of a small amount of water and 0.7 mole of octylphenol as the promoter.
- EXAMPLE H SAE 10W-30 mineral lubricating oil containing 6% of the product of Example 12, 0.075% of phosphorus as zinc di-n-octylphosphorodithioate, and 5% of the barium salt of an acidic composition prepared by the reaction of 1000 parts of a polyisobutene having a molecular weight of 60,000 with 100 parts of phosphorus pentasulfide at 200 C. and hydrolyzing the product with steam at 150 C.
- EXAMPLE I SAE 10 mineral lubricating oil containing 3% of the product of Example 6, 0.075% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with an equi-molar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol, 2 moles of barium oxide, and a small amount of water at 150 C.
- Fuel compositions of the type contemplated by the present invention are illustrated by the following examples. Ordinarily the esters are used in amounts such that they will comprise from about 0.001% to about 5%, usually 0.01% to 2%, by weight of the final fuel. It is also contemplated that the fuels may contain other conventional additives such as deicers, smoke suppressants, lead scavengers, demulsifiers, lead appreciators, anti-rust agents, and the like.
- a lubricating composition comprising a major amount of a lubricating oil and an amount, sufficient to impart detergency thereto, of at least one oil-soluble ester of a hydroxy aromatic compound selected from the group consisting of phenols and naphthols and a substantially saturated monoor polycarboxylic acid or anhydride wherein the acyl moiety of said ester corresponds to the acyl radical of an acid or anhydride derived from the reaction of a polyolefin or chloroinated polyolefin containing at least about 50 aliphatic carbon atoms with an alpha, beta-unsaturated monoor dicarboxylic acid or anhydride.
- a lubricating composition according to claim 1 wherein the acyl moiety of said ester is an acyl radical of a polyolefin-substituted succinic acid derived from the reaction of a polyolefin or chlorinated polyolefin with maleic acid or anhydride, the ester being a monoester, diester, or mixture of these.
- a lubricating composition according to claim 2 wherein the hydroxy aromatic compound is a monohydroxy or polyhydroxy phenol selected from the class consisting of phenols, alkylphenols, phenol ethers, and alkylene bis-phenols.
- a lubricating composition according to claim 3 wherein the acyl moiety is an acyl radical of a succinic acid derived from the reaction of a polymerized l-monoolefin or a chlorinated polymerized l-monoolefin having an average molecular meight of about 700 to about 5000 with maleic anhydride or maleic acid.
- a lubricating composition according to claim 2 wherein the aromatic hydroxy compound is an aliphatic hydrocarbon-substituted monohydroxy or polyhydroxy phenol.
- a lubricating composition according to claim 5 wherein the acyl moiety is an acyl radical or a polyisobutenyl-substituted succinic acid.
- a lubricating composition according to claim 1 wherein the acyl moiety is an acyl radical of a monocarboxylic acid having an average molecular weight of about 700 to about 5000 and wherein the hydroxy aromatic compound is a monohydroxy or polyhydroxy phenol.
- a lubricating composition according to claim 1 wherein said at least one oil-soluble ester is an epoxidepost-treated ester prepared by reacting at least one ester with a terminal epoxide of the formula D P nn-(3H wherein one R. is hydrogen and the other R is hydrogen, phenyl, halophenyl, alkyl, or haloalkyl at a temperature of about 25 C.
- a fuel composition comprising a major amount of a normally liquid petroleum distillate fuel and an amount, sufiicient to impart detergency thereto, of an oil-soluble ester of a hydroxy aromatic compound selected from the group consisting of phenols and naphthols and a substantially saturated monoor dicarboxylic acid or an- 17 v hydride wherein the acyl moiety of said ester corresponds to the acyl radical of an acid or anhydride derived from the reaction of a polyolefin or chlorinated polyolefin having at least 50 aliphatic carbon atoms with an alpha, betaunsaturated monoor dicarboxylic acidor anhydride.
- a fuel composition according to claim wherein the acyl moiety of the ester is an acyl radical of a polyisobutenyl-substituted succinic acid or anhydride derived from the reaction of polyisobutene or chlorinated polyisobutene having an average molecular Weight of about 700 to about 5000 with maleic acid or maleic anhydride and wherein the hydroxy aromatic compound is a monohydroxy or polyhydroxy phenol.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Crystallography & Structural Chemistry (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Molecular Biology (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Lubricants (AREA)
- Furan Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Additives for lubricating oils, hydrocarbon oils and power transmitting fluids are oil-soluble esters of hydrocarbon substituted succinic acid, the hydrocarbon being saturated and being a polymer containing at least 50 aliphatic carbon atoms. Examples of the ester are the dimethyl ester of polyisobutene succinic anhydride, the polyisobutene succinic anhydride which has been esterified with polyethylene glycol and further reacted with barium oxide to produce a mixed ester-metal salt and the polyisobutene succinic anhydride which has been esterified with a styrene-allyl alcohol copolymer and then reacted with propylene oxide. Examples are given of the addition of these esters to SAE mineral lubricating oils which may also include the usual additives especially the metal phosphor dithioates and their epoxide adducts.ALSO:The invention comprises an oil-soluble ester of a hydrocarbon-substituted succinic acid, the hydrocarbon being saturated and being a polymer containing at least 50 aliphatic carbon atoms. The ester may be prepared by reacting an alcohol or phenol with a hydrocarbon-substituted succinic anhydride or acid, preferably at 150 DEG to 300 DEG C. and in the presence of an esterification catalyst, by reacting an epoxide or a mixture of an epoxide and water with a hydrocarbon substituted succinic anhydride or acid or acid halide, by reacting maleic acid or anhydride with an alcohol and reacting the obtained mono- or di-ester of maleic acid with the polyolefin, and, finally by esterifying itaconic anhydride or acid and then reacting with the polyolefin. The preferred method is by reacting a polyhydric alcohol having 2-10 OH radicals with 0.5-10 moles of hydrocarbon-substituted succinic anhydride, the hydrocarbon being a polymer of a C2- 6 mono-olefin having a M.Wt. of 700-5000. The examples relate to the treatment of polyisobutene succinic anhydride and of the succinic anhydride of the copolymer of 90 isobutene and 10 piperylene. The esters may be used as lubricant addititives.
Description
United States Patent 3,542,680 OIL-SOLUBLE CARBOXYLIC ACID PHENOL ESTERS AND LUBRICANTS AND FUELS CONTAINING THE SAME William M. Le Suer, Cleveland, Ohio, assignor to The Lubrizol Corporation, Wickliffe, Ohio, a corporation of Ohio No Drawing. Continuation of application Ser. No.
722,152, Apr. 18, 1968, which is a'continuation-inpart of application Ser. No. 567,320, July 22, 1966, which in turn is a continuation of application Ser. N 0. 274,905, Apr. 23, 1963. This application Oct. 3, 1969, Ser. No. 866,081 The portion of the term of the patent subsequent to July 22, 1983, has been disclaimed Int. Cl. Cm 1/26 U.S. Cl. 25257 12 Claims ABSTRACT OF THE DISCLOSURE Esters of high molecular Weight carboxylic acids with hydroxy aromatic compounds such as phenols and naphthols. An exemplary group of esters are the mono esters, diesters, and mixtures thereof prepared from polyisobutenyl-substituted succinic acid or anhydride and monohydroxy or polyhydroxy phenols. The esters are especially useful as additives in fuels and lubricants.
This is a continuation of Ser. No. 722,152 filed Apr. 18, 1968 which is a continuation-in-part application of copending application Ser. No. 567,320 filed July 22, 1966, now U.S. Pat. 3,381,022, which, in turn, is a continuation of abandoned application Ser. No. 274,905, filed Apr. 23, 1963. g
This invention relates to novel compositions of matter and processes for preparing the same. In a more particular sense this invention relates to compositions useful as plasticizers, detergents, anti-rust agents, emulsifiers, and additives in lubricating compositions, fuels, hydrocarbon oils, and power transmitting fluids.
Deterioration of lubricating oils, especially mineral oils, has been a great concern in the formulation of lubricating compositions for use in internal combustion engines, transmissions, gears, etc. Deterioration of the oil results in the formation of products which are corrosive to the metal surfaces with which the oil comes into contact. It also results in the formation of products which agglomerate to form sludgeand varnish-like deposits. The deposits cause sticking of the moving metal parts and obstruct their free movement. They are a principal cause of malfunctioning and premature breakdown of the equipment which the oil lubricates.
It is known that water is a common contaminant in the crankcase lubricant of an engine. It may result from the decomposition of the lubricating oil or come from the combustion chamber as a blow-by product of the burning of the fuel. The presence of water in the lubricant seems to promote the deposition of a mayonnaise-like sludge. This type of sludge is more objectionable because it clings tenaciously to metal surfaces and is not removed by oil filters. If the engine is operated under conditions such that the crankcase lubricant temperature is continuously high the water will be eliminated about as fast as it accumulates and only a very small amount of the mayonnaise-like sludge will be formed. On the other hand, if the crankcase lubricant temperature is intermittently high and low or consistently low the Water will accumulate and a substantial quantity of "ice the mayonnaisedike sludge will be deposited in the engine.
High operating temperatures are characteristic of an engine that is run consistently at a relatively high speed. However, where an automobile is used primarily for trips of short distance such as is characteristic of urban, hometo-Work use, a significant portion of the operation occurs before the engine has reached its optimum high temperature. An ideal environment thus obtains for the accumulation of Water in the lubricant. In this type of operation the problem of mayonnaise-like sludge has been especially troublesome. Its solution has been approached by the use in the lubricant of detergents such as metal phenates and sulfonates which have been known to be effective in reducing deposits in engines operated primarily at high temperatures. Unfortunately, such known detergents have not been particularly effective in solving the problems associated with low temperature operation particularly those problems which are associated with crankcase lubricants in engines operated at low or intermittently high and low temperatures.
It is accordingly a principal object of this invention to provide novel compositions of matter.
It is also an object of this invention to provide compositions which are suitable for use as additives in hydrocarbon oils.
It is also an object of this invention to provide compositions which are effective as additives in lubricating compositions.
It is another object of this invention to provide compositions effective as detergents in lubricating compositions intended for use in engines operated at low or intermittently high and low temperatures.
It is another object of this invention to provide a process of preparing additives useful as additives in hydrocarbon oils and lubricating compositions.
It is another object of this invention to provide lubricating compositions.
It is further an object of this invention to provide fuel compositions.
These and other objects of this invention can be achieved by providing oil-soluble esters of substantially saturated monoor polycarboxylic acids and a hydroxy aromatic compound, said ester being characterized by the presence Within its structure of (A) a carboxylic acid moiety which is an acyl radical of a monoor polycarboxylic acid having at least about fifty aliphatic carbon atoms and (B) an oxy aromatic radical which is an oxy radical of a hydroxy aromatic compound. The lubricant and fuel compositions of the invention are achieved by incorporating at least one of these esters into a lubricant or fuel as explained more fully hereafter.
As will be appreciated by those skilled in the art,
'esters of carboxylic acids and hydroxy aromatic compounds can be represented generically by the formula where R is the residue of the acid group and R is the residue of the hydroxy aromatic compound. As used herein, acyl radical refers to the group 0 ll Bil-C- and oxy aromatic radical refers to O-R Of course, the exact nature of R and R depends on the particular acylating agent and hydroxy aromatic compound employed in making the ester. For example, where an alkenyl-substituted succinic acid acylating agent is employed, the acyl radical can be O alkenyl-OH-QI- alkcnyl-CH-lIi-OH CHz-fi-OH C1124"?- O Similarly, where the oxy aromatic radical is derived from a polyhydric phenol of the formula the oxy radical can be --0 (oH)1 z 0 2% 0H The acyl radical of the esters of this invention is derived from a monoor polycarboxylic acid. One particularly important characteristic of the acyl radical is its size. The radical should contain at least about fifty aliphatic carbon atoms. This limitation is based upon both oil-solubility considerations and the effectiveness of the compositions as additives in lubricants and fuels. Another important aspect of the acyl radical is that it preferably should be substantially saturated, i.e., at least about 95% of the total number of the carbon-to-carbon covalent linkages therein preferably should be saturated linkages. In an especially preferred aspect of the invention, at least about 98% of these covalent linkages are saturated. Obviously, all of the covalent linkages may be saturated. A greater degree of unsaturation renders the esters more susceptible to oxidation, degradation, and polymerization and this lessens the effectiveness of the final products as lubricant and fuel additives.
In addition, the acyl radical of the esters should be substantially free from oil-solubilizing pendant groups, that is, groups having more than about six aliphatic carbon atoms. Although, some such oil-solubilizing pendant groups may be present, they preferably will not exceed one such group for every twenty-five aliphatic carbon atoms in the principal hydrocarbon chain of the acyl radical.
The acyl radical may contain polar substitutents provided that the polar substitutents are not present in proporitons sufficiently large to alter significantly the hydrocarbon character of the radical. Typical suitable polar substituents are halo, such as chloro and bromo, oxo, oxy, formyl, sulfonyl, sulfinyl, thio, nitro, etc. such polar substituents, if present, preferably Will not exceed by weight of the total weight of the hydrocarbon portion of the carboxylic acid radical exclusive of the carboxyl group.
(Zarboxylic acid acylating agents suitable for preparing the esters are Well-known in the art and have been described in detail, for example, in U.S. Pats. 3,087,936; 3,163,603; 3,172,892; 3,189,544; 3,219,666; 3,272,746; 3,288,714; 3,306,907; 3,331,776; 3,340,281; 3,341,542; and 3,346,354. In the interest of brevity, these patents are incorporated herein for their disclosure of suitable monoand polycarboxylic acid acylating agents which 4 can be used for the preparation of the esters used as starting materials in the present invention.
As disclosed in the foregoing patents, there are several processes for preparing the acids. Generally, the process involves the reaction of (1) an ethylenically unsaturated carboxylic acid, acid halide, or anhydride with (2) an ethylenically unsaturated hydrocarbon containing at least about fifty aliphatic carbon atoms or a chlorinated hydrocarbon containing at least about fifty aliphatic carbon atoms at a temperature within the range of about l00300 C. The chlorinated hydrocarbon or ethylenically unsaturated hydrocarbon reactant can, of course, contain polar substitutents, oil-solubilizing pendant groups, and be unsaturated within the general limitations explained hereinabove. It is these hydrocarbon reactants which provides most of the aliphatic carbon atoms present in the acyl moiety of the final products.
When preparing the carboxylic acid acylating agent according to one of these two processes, the carboxylic acid reactant usually corresponds to the formula R (COOH) where R is characterized by the presence of at least one ethylenically unsaturated carbon-tocarbon covalent bond and n is an integer from one to six and preferably one or two. The acidic reactant can also be the corresponding carboxylic acid halide, anhydride, ester, or other equivalent acylating agent and mixtures of one or more of these. Ordinarily, the total number of carbon atoms in the acidic reactant will not exceed ten and generally will not exceed six. Preferably the acidic reactant will have at least one ethylenic linkage in an a,;8-position with respect to at least one carboxyl function. Exemplary acidic reactants are acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhyride, mesaconic acid, glutaconic acid, chloromaleic acid, aconitic acid, crotonic acid, methylcrotonic acid, sorbic acid, 3-hexenoic acid, lO-decenonic acid, and the like. Due to considerations of economy and availability, these acid reactants usually employed are acrylic acid, methacrylic acid, maleic acid, and maleic anhydride.
As is apparent from the foregoing discussion, the carboxylic acid acylating agents may contain cyclic and/or aromatic groups. However, the acids are essentially aliphatic in nature and in most instances, the preferred acid acylating agents are aliphatic monoand polycarboxylic acids, anhydrides, and halides.
The substantially saturated aliphatic hydrocarbonsubstituted succinic acid and anhydrides are especially preferred as acylating agents in the preparation of the esters used as starting materials in the present invention. These succinic acid acylating agents are readily prepared by reacting maleic anhydride with a high molecular weight olefin or a chlorinated hydrocarbon such as a chlorinated polyolefin. The reaction involves merely heating the two reactants at a temperature of about 300 C., preferably, 100200 C. The product from such a reaction is a substituted succinic anhydride where the substituent is derived from the olefin or chlorinated hydrocarbon as described in the above cited patents. The product may be hydrogenated to remove all or a portion of any ethylenically unsaturated covalent linkages by standard hydrogenation procedures, if desired. The substituted succinic anhydrides may be hydrolyzed by treatment with water or steam to the corresponding acid and either the anhydride or the acid may be converted to the corresponding acid halide or ester by reacting with phosphorus halide, phenols, or alcohols.
The ethylenically unsaturated hydrocarbon reactant and the chlorinated hydrocarbon reactant used in the preparation of the acylating agents are principally the high molecular weight, substantially saturated petroleum fractions and substantially saturated olefin polymers and the corresponding chlorinated products. The polymers and chlorinated polymers derived from mono-olefins having from two to about thirty carbon atoms are preferred.
The especially useful polymers are the polymers of 1- mono-olcfins such as ethylene, propene, l-butene, isobutene, l-hexene, l-octene, Z-methyl-l-heptene, 3-cyclohexyl 1 butene, and Z-methyl-S-propyhl-hexene. Polymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are useful. These are exemplified by 2-butene, 3-pentene, and 4- octcne.
The interpolymers of l-mono-olefins such as illustrated above with each other and with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins, are also useful sources of the ethylenically unsaturated reactant. Such interpolymers include for example, those prepared by polymerizing isobutene with styrene, isobutene with butadiene, propane with isoprene, propene with isobutene, ethylene with piperylene, isobutene with chloroprene, isobutene with p-methyl-styrene, l-hexene with 1,3-hexadiene, l-octene with l-hexene, lheptene with l-pentene, 3-methyl-1-butene with l-octene, 3,3-dimethyl-l-pentene with l-hexene, isobutene with styrene and piperylene, etc.
For reasons of oil-solubility and stability, the interpolymers contemplated for use in preparing the acylating agents of this invention should be substantially aliphatic and substantially saturated, that is, they should contain at least about 80% and preferably about 95 on a weight basis, of units derived from aliphatic mono-olefins. Preferably, they will contain no more than about 5% olefinic linkages based on the total number of the carbon-to-carbon covalent linkages present.
The chlorinated hydrocarbons and ethylenically unsaturated hydrocarbons used in the preparation of the acylating agents can have molecular weights of from about 700 up to about 100,000 or even higher. The preferred reactants are the above described polyolefins and chlorinated polyolefins having an average molecular weight of about 700 to about 5,000. When the acylating agent has a molecular weight in excess of about 10,000, the esters also possess viscosity index improving qualities.
In lieu of the high molecular weight hydrocarbons and chlorinated hydrocarbons discussed above, hydrocarbons containing activating polar substituents which are capable of activating the hydrocarbon molecule in respect to reaction with an ethylenically unsaturated acid reactant may be used in the above-illustrated reactions for preparing the acylating agents. Such polar substituents include sulfide and disulfide linkages, and nitro, mercapto, carbonyl, and formyl radicals. Examples of these polar-substituted hydrocarbons include polypropene sulfide, di-polyisobutene disulfide, nitrated mineral oil, di-polyethylene sulfide, brominated polyethylene, etc.
The acylating agents may also be prepared by halogenating a high molecular weight hydrocarbon such as the above described olefin polymers to produce a polyhalogenated product, converting the poly-halogenated product to a poly-nitrile, and then hydrolyzing the polynitrile. They may be prepared by oxidation of a high molecular weight polyhydric alcohol with potassium permanganate, nitric acid, or a similar oxidizing agent. Another method for preparing such poly-carboxylic acids involves the reaction of an olefin or a polar-substituted hydrocarbon such as a chloropolyisobutene with an unsaturated poly-carboxylic acid such as 2-pentene-1,3,5- tricarboxylic acid prepared by dehydration of citric acid. Mono-carboxylic acid acylating agents may be obtained by oxidizing a mono-alcohol with potassium permanganate or by reacting a halogenated high molecular weight olefin polymer with a ketene. Another convenient method for preparing mono-carboxylic acid involves the reaction of metallic sodium with an acetoacetic ester or a malonic ester of an alkanol to form a sodium derivative of the ester and the subsequent reatcion of the sodium derivative with a halogenated high molecular weight hydrocarbon such as brominated wax or brominated polyisobutene.
Mono-carboxylic and poly-carboxylic acid acylating agents can also be obtained by reacting chlorinated monoand poly-carboxylic acids, anhydrides, acyl halides, and the like with ethylenically unsaturated hydrocarbons or ethylenically unsaturated substituted hydrocarbons such as the polyolefins and substituted polyolefins described hereinbefore in the manner described in 3,340,281.
The mono-carboxylic and poly-carboxylic acid anhydrides are obtained by dehydrating the corresponding acids. Dehydration is readily accomplished by heating the acid to a temperature above about C., preferably in the presence of a dehydration agent, e.g. acetic anhydride. Cyclic anhydrides are usually obtained from polycarboxylic acids having acid radicals separated by no more than three carbon atoms such as substituted succinic or glutaric acid, whereas linear anhydrides are obtained from poly-carboxylic acids having the acid radicals separated by four or more carbon atoms.
The acid halides of the mono-carboxylic and polycarboxylic acids can be prepared by the reaction of the acids or their anhydrides with a halogenating agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride.
The esters of this invention are those prepared from acylating agents of the type described above with monohydroxy and polyhydroxy aromatic compounds. The aromatic nucleus of the aromatic compound should be a benzene ring or an aromatic condensed hydrocarbon ring such as naphthalene. Monohydroxy and polyhydroxy phenols and naphthols are preferred hydroxy aromatic compounds. These hydroxy-substituted aromatic compounds may contain other substituents in addition to the hydroxy substitutents such as halo, alkyl, alkenyl, alkoxy, nitro, and the like. Usually, the hydroxy aromatic compound will contain one to four hydroxy groups. The aromatic hydroxy compounds from which the esters of this invention may be derived are illustrated by the following specific examples: phenol, p-chlorophenol, pnitrophenol, beta-naphthol, alpha-naphthol, cresols, resorcinol, catechol, carvacrol, thymol, eugenol, p,p'-dihydroxybiphenyl, hydroquinone, pyrogallol, phloroglucinol, hexylresorcinol, orcin, guaiacol, 2-chlorophenol, 2,4-dibutylphenol, propene tetramer-substituted phenol, didodecylphenol, 4,4 methylene bis phenol, alpha decylbeta naphthol, polyisobutene (molecular weight of 1000)-substituted phenol, the condensation product of heptylphenol with 0.5 mole of formaldehyde, the condensation product of octylphenol with acetone, di(hydroxyphenyl)0xide, di(hydroxyphenyl)sulfide, di(hydroxyphenyl)disulfide, and 4-cyclohexylphenol. Phenol and aliphatic hydrocarbon substituted phenols, e.g., alkylated phenols, having up to three aliphatic hydrocarbon substituents are especially preferred. Each of the aliphatic hydrocarbon substituents may contain or more carbon atoms but usually will have from one to twenty carbon atoms. Alkyl and alkenyl groups are the preferred aliphatic hydrocarbon substituents.
As the esters of the invention can be prepared from monoor polycarboxylic acid acylating agents, the esters may be monoesters, polyesters, or acidic esters. For example, when the ester is prepared from a substituted succinic acid acylating agent, an acidic or monoester can be produced or both carboxyl groups may each react with a hydroxy group to produce a diester. Similarly, when a polyhydric aromatic compound is used in the preparation of the ester, it may be completely esterified or only partially esterified; i.e., it may retain nonesterified free hydroxyl radicals. Mixtures of these various esters are contemplated as being within the scope of this invention.
The esters may be prepared by any of several conventional methods. See, for example, R. D. Olfenhauer, The Direct Esterification of Phenols, Journal of Chemical Education, vol. 41, No. 1, p. 39 (1964), and the references cited therein. A convenient method involves the reaction of a hydroxy aromatic compound with a carboxylic acid or anhydride. The esterification is usually carried out at a temperature above about 100 C., preferably between 150 C. and 300 C.
The water formed as a by-product is removed by distillation as the esterification proceeds. A substantially inert liquid diluent may be used in the esterification to facilitate mixing, temperature control, the removal of water, etc. Any substantially inert organic liquid can be used as a diluent. Suitable diluents include the aliphatic, cycloaliphatic, and aromatic hydrocarbons and their chlorinated analogs exemplified by pentane, hexane, heptane, cyclohexane, benzene, toluene, xylene, chlorobenzene, diphenyl ether, chlorohexane, and the like. Mineral oils, naphthas, ligroin, and the like may also be used as a diluent.
The following illustrates the reaction of a dicarboxylic acid acylating agent (substituted succinic anhydride) and a polyhydric aromatic compound.
It will be readily appreciated that the above equations are only illustrative. Other products not represented by Formulas I, II, and III may be formed. Polymeric esters formed by the condensation of two or more molecules of each of the succinic acid reactant and the polyhydric alcohol reactant likewise may be formed. In most cases involving either a polycarboxylic acid acylating agent or a polyhydric aromatic compound, the product is a mixture of esters, the precise chemical composition and the relative proportions of which are difiicult to determine. Consequently, the products of these reactions are conveniently described in terms of the process by which they are formed.
A modification of the above illustrative process involves the replacement of the substituted succinic anhydride with the corresponding succinic acid. However, succinic acids readily undergo dehydration at temperatures above about 100 C. and are thus converted to their anhydrides which are then esterified by the reaction with the hydroxy aromatic reactant. In this regard, succinic acids appear to be the substantial equivalent of their anhydrides in the process.
Still other methods of preparing the esters of this invention are available. For instance, the esters may be obtained by the reaction of a lower molecular weight acrylating agent, e.g. acrylic acid, methacrylic acid, maleic acid or anhydride, fumaric acid, itaconic acid or anhydride, etc., with a hydroxy aromatic compound to form the corresponding esters and then reacting these esters with an olefin or a chlorinated hydrocarbon as illustrated above. The conditions, catalyst, etc., discussed above can be used in conducting the esterification reaction and in reacting the esters with the olefins and chlorinated olefins.
The relative proportions of the acylating agent and the hydroxy aromatic compound depend in part, upon the type of the product desired and the number of carboxylic acid groups in the acylating agent and hydroxyl groups present in the hydroxy aromatic compound. For instance, the formation of a half ester of a succinic acid, i.e., one in which only one of the two acid radicals is esterified, involves the use of one mole'of phenol for each mole of the substituted succinic acid reactant, whereas the formation of a diester of a succinic acid involves the use of two moles of phenol for each mole of the acid. On the other hand, one mole of a hydroquinone may combine with two moles of a succinic acid to form an ester in which both hydroxyl radicals of hydroquinone are esterified with one of the two acid radicals of the succinic acid. Thus, the maximum amount of acylating agent to be used with a polyhydric aromatic compound is determined by the number of hydroxyl groups present in the molecule of the hydroxy reactant. For the purposes of this invention, it has been found that esters obtained by the reaction of about equi-molar amounts of the acylating agent and hydroxy aromatic compound have superior properties and are therefore preferred. Those esters prepared from the reaction of at least stoichiometrically equivalent amounts of acylating agent and hydroxy aromatic compound, i.e., about one hydroxy group for each carboxylic acylating group present in the reaction mixture, are especially preferred. It is sometimes desirable to employ an excess of the hydroxy aromatic compound in preparing the esters, e.g., about a 5%l00% by weight stoichiometric excess based on the stoichiometric amount required to produce a given desired ester.
In most instances it is advantageous to carry out the esterification in the presence of a catalyst such as sulfuric acid, pyridine hydrochloride, hydrochloric acid, polyphosphoric acid, benzene sulfonic acid, p-toluene sulfonic acid, phosphoric acid, or any other known esterification catalyst. The amount of the catalyst in the reaction may be as little as 0.01% (by weight of the reaction mixture), more often from about 0.1% to about 5%.
Upon completion of the reaction, unreacted hydroxy aromatic compound can be removed, if desired, by conventional techniques. Usually removal is accomplished by distillation at reduced pressure. However, if the hydroxy aromatic compound is oil-soluble, it can be left in the reaction mixture without interfering with the dispersant capabilities of the esters. Moreover, if it is desired that the reaction mixture be substantially free from unreacted carboxyl groups for a particular application, this can be readily accomplished by post-treating the reaction mixture with an epoxide according to applicants copending application Ser. No. 712,606, filed Mar. 13, 1968, now abandoned for continuation Ser. No. 866,081 filed Oct. 3, 1969. This epoxide post-treatment may also result in the reaction of unreacted hydroxy groups with epoxides to form hydroxyalkoxy substituents on the aromatic nucleus. If sufficient epoxide is employed, the aromatic nucleus having the unesterified hydroxy group will react with more than one epoxide. For example, three moles of propylene oxide, ethylene oxide, or a mixture thereof can react to produce a substituent of the formula where R is H or ---CH;.;. The epoxide post-treatment improves the performance of the esters as sludge dispersants.
The following examples illustrate the preparation of esters of the type contemplated by the present invention. Unless otherwise indicated, the terms parts and percent refer to parts by weight and percent by weight, respectively, when used in these examples and elsewhere in the specification and claims.
EXAMPLE 1 The following acylating agents are prepared according to conventional processes as illustrated.
(A) A polyisobutenyl-substituted succinic anhydride is prepared by the reaction of a chlorinated polyisobutylene with maleic anhydride at 200 C. The polyisobutenyl radical has an average molecular weight of about 850 and the resulting alkenyl succinic anhydride is found to have an acid number of 113 (corresponding to an equivalent weight of about 500).
(B) A polyisobutenyl-substituted succinic anhydride having an acid number of 105 and an equivalent weight of 540 is prepared by the reaction of a chlorinated polyisobutylene (having an average molecular weight of 1050 and a chlorine content of 4.3%) and maleic anhydride.
EXAMPLE 2 A mixture comprising 1028 parts of a polyisobutenylsubstituted succinic anhydride (average molecular Weightl028; prepared as in 1(A), 282 parts of phenol, 19 parts of toluene-sulfonic acid mono hydrate, and 514 parts of xylene is heated to reflux (153 C.) and maintained at this temperature for five hours. Thereafter, the mixture is cooled and 19 additional parts of toluenesulfonic acid esterification catalyst is added. Heating at reflux (153 154 C.) is continued for twenty-eight hours. The reaction mixture is then cooled to C. and 7.5 parts of sodium hydroxide dissolved in 24 parts of water is added. The resulting reaction mixture is then stripped at 68 C. at 21 mm. (Hg) and then at 223 C. at 21 mm. (Hg). The stripped product is then dissolved in 756 parts of mineral oil to produce an oil solution of the desired ester product. If desired, this oil solution can be filtered.
Following the general procedure of Example 2, the following acylating agents and hydroxy aromatic compounds are reacted in the equivalent ratios indicated to produce additional ester products of the present invention.
TABLE Example Equivalent N0. Acylatmg agent (A) Hydroxy aromatic compound (B) ratio (AzB) Anhydn'de of 1(B) Alpha-naphthol 1. 1:1 Anhydride of 1(0) 4,4 -methylenc-bis-phenol 2:1
.. Anhydride of 1(D) di(hyd1oxyphenyl)oxide 1. 5:1
Anhydride of 1(E) Propene tetramer-substituted phen 1:1
7 Anhydride oi 1(F) Resorcinol 1:2 8 Acid of 1(G) 4-butylphen0l 1 1. 1 9 Anhydride of 1(H) Alpha-decyl-beta-naphthol 1:1 10 Acid oi 1(1) Resorcinol 1;2
(C) A polypropenyl-substituted succinic anhydride is prepared by the reaction of a chlorinated polypropylene (having a molecular weight of about 900 and a chlorine content of about 4%) and maleic anhydride at 200 C. The product has an acid number of 75.
(D) A substituted succinic anhydride is prepared by treating maleic anhydride with a chlorinated copolymer of isobutylene and styrene. The copolymer consists of 94 parts of isobutylene units and 6 parts of styrene units and has an average molecular Weight of 1200 and a chlorine content of 2.8% by weight. The resulting succinic anhydride has an acid number of 40.
(E) A polypropylene-sirbstituated succinic anhydride having an acid number of 84 is prepared by the reaction of a chlorinated polypropylene having a chlorine content of 3% and a molecular weight of 1200 Wih maleic anhydride.
(F) A substituted succinic anhydride having an acid number of about 54 is prepared by reacting maleic anhydride with a chlorinated (1.95% by weight chlorine) copolymer of isobutylene and isoprene. The copolymer consists of 99 parts by weight of isobutylene units and one part of isoprene units and has an average molecular weight of about 28,000.
(G) A high molecular weight polyisobutenyl-substituted carboxylic acid is prepared by heating an equimolar mixture of a chlorinated polyisobutene having a molecular Weight of 1 000 and a chlorine content of 4.7% and methacrylic acid at 150 C.
(H) A polyisobutene having a molecular weight of 1000 and maleic anhydride heated at 150220 C. to
As mentioned above, it is sometimes desirable to posttreat the esters of this invention with epoxides. The posttreatment enhances the sludge-dispersing capabilities of the products in many environments, e.g., crankcase lubricants, etc.
The organic epoxides used in the post-treatment of the esters can have up to about forty carbon atoms and may be represented by the formula n RD lH-CH 0 where each R is independently hydrogen or an aliphatic, cycloaliphatic, or aromatic radical. Normally R will be hydrogen or an alkyl, haloalkyl, cycloalkyl, halocycloalkyl, aryl, or haloaryl radical having no more than one halogen radical for every three carbon atoms. The lower alkylene and haloalkylene epoxides, including the cycloalkylene epoxides, containing from two to eight carbon atoms are especially preferred for post-treating the esters. The arylene and haloarylene epoxides contemplated are those containing from one to two resonant ring structures such as phenyl, naphthyl, or substituted phenyl and naphthyl such as alkyl phenyl or halophenyl (e.g., tolyl, cresyl, cylyl, methyl naphthyl, chlorophenyl, etc.). Phenyl and halophenyl radicals are the preferred R groups among the aryl epoxides. The epoxides in which at least one of the carbon atoms attached to the oxygen in the oxirane ring is also attached to two hydrogen atoms are especially preferred. Those epoxides are designated as terminal epoxides.
11 Specific examples of the organic epoxides useful in the process of this invention are ethylene oxide, propylene oxide, 1,2-epoxybutane, 1,2-epoxy-3butane, 1,2-epoxypentane, 1,2-epoxyheptane, 1,2-epoxydodecane, 2,3-epoxybutane, 1,2-epoxy-5-hexane,
methyl ester of 9,10-epoxy-stearic acid, and epoxidized fatty acid esters in which the fatty acid radical has up 1 to about thirty aliphatic carbon atoms and the alcohol radical is derived from an aliphatic alcohol having u to about eight carbon atoms. Ethylene oxide, propylene oxide and epichlorohydrin are particularly preferred for posttreating the esters.
The post-treatment process involves contacting the ester or mixture of esters with an epoxide or mixture of epoxides, usually in the presence of an inert diluent, while maintaining a temperature of about 25 C. up to the decomposition temperature of the ester or epoxide involved and usually at a temperature within a range of about 50250 C. Good results are achieved when the posttreatment is conducted at a temperature of about 70- 200 C. The esters and epoxides are easily brought into contact simply by mixing them in any convenient manner. It is usually desirable to employ some type of mechanical agitation to facilitate thorough contact of the esters and epoxides.
Any substantially inert organic liquid can be used as a diluent. Suitable diluents include the aliphatic, cycloaliphatic, and aromatic hydrocarbons and their chlorinated analogs exemplified by pentane, hexane, heptane, cyclohexane, benzene, toluene, xylene, chlorobenzene, chlorohexanes, and the like. Mineral oils, naphthas, ligroin, and the like may also be used as a diluent. In many instances, the esters are prepared as oil-solutions and these oilsolutions can be used in the post-treating process, the oil functioning as a diluent.
The precise means by which this process improves the dispersancy characteristics of the esters is not known. The epoxides are believed to react with nonesterified hydroxyl groups although they may also react with any free carboxyl groups present. In a preferred aspect of the invention, the esters to be post-treated will be substantially free from unreacted carboxyl groups, for example, the diesters of the succinic acids as opposed to the acidic esters. This usually can be achieved by using esterification catalyst and a stoichiometric excess of hydroxy aromatic compound in preparing the esters. An ester is considered substantially free from free carboxyl groups for purposes of this invention when not more than about of the number of carboxyl functions present are free carboxyl groups, i.e., COOH. Ordinarily the number of free carboxyl groups will be less than about 5% of the total number in the ester composition being treated in this preferred aspect of the invention. When free carboxyl groups are present on esters to be post-treated, the amount of epoxide employed may be increased to provide up to about one equivalent of epoxide for each equivalent of free carboxyl group in addition to that used for posttreating the ester.
The esters and epoxides should be contacted in an amount such that the ratio of equivalents of hydroxy aromatic compound present in the ester to the equivalents of epoxide will be about 11005 to about 1:5 and preferably 1:0.l to about 1:2. For purposes of using this ratio, the equivalent weight of a hydroxy aromatic compound is deemed to be its molecular weight divided by the number of hydroxyl groups present whether or not they are esterified. Similarly, the equivalent weight of an epoxide is deemed to be the molecular weight of the epoxide divided by the number of oxirane rings present in the epoxy molecule. By way of example, if the ester to be treated contains one mole of resorcinol in the oxy moiety, the ester is deemed to contain two equivalents of hydroxy aromatic compound. According to the present process, such an ester would be contacted with 0.1 to 10, preferably 0.2 to 4 equivalents of epoxide. This equivalent ratio is offered merely as a guideline to define the elfective ratios of ester and epoxide and is in no way intended to imply that all the epoxide used will react with the ester. However, within this ratio, it is possible to determine the optimum ratio of ester and epoxide for any given ester or combination of esters and any given epoxide or combination of epoxides through routine evaluation.
The following examples illustrate the epoxide posttreatment of the esters of this invention.
EXAMPLE 11 An oil solution of an ester prepared according to Example 2 is contacted with propylene oxide in an amount such that the equivalent ratio of hydroxy aromatic compound in the ester reaction product to epoxide (as explained above) is about 1:1. The mixture is heated for seventeen hours at -90 C. and then stripped at reduced pressure to remove any unreacted propylene oxide. The resulting mixture is then filtered producing an oil solution of the desired post-treated ester.
EXAMPLE 12 The ester product of Example 10 is post-treated with an equimolar mixture of ethylene oxide and propylene oxide in an amount such that the equivalent ratio of hydroxy aromatic compound to alkylene oxide is 1:3. The temperature of the reaction mass is maintained at C. for four hours, stripped at reduced pressure, and filtered. The filtrate is an oil-solution of the desired posttreated ester.
By following the general procedures of Examples 11 and 12 and utilizing different esters, different epoxides, or different esters and epoxides, other post-treated esters of the type contemplated by the present invention are readily prepared.
The esters and post-treated esters of this invention are useful for a wide variety of purposesas pesticides, plasticizers, rust-inhibiting agents, corrosion-inhibiting agents, extreme pressure agents, detergents, hydrocarbon fuel additives, etc.
A principal utility of the esters is as additives in lubricants, especially lubricating oils. The lubricating oils in which the esters of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily, mineral lubricating oils are preferred by reason of their availability, general excellence, and low cost. For certain applications, oils belonging to one of the other three groups may be preferred. For instance, synthetic polyester oils such as didodecyl adipate and di-2-ethylhexyl sebacate are often preferred as jet engine lubricants. Normally, the lubricating oils preferred will be fluid oils ranging in viscosity from about 40 Saybolt Universal seconds at 100 F. to about 200 Saybolt Universal seconds at 210 F.
The concentration of the esters as additives in lubricants usually ranges from about 0.01% to about 10% by weight. The optimum concentration for a particular application depends to a large extent upon the type of service to which the lubricants are to be subjected. Thus, for example, lubricants for use in gasoline engines may contain from about 0.5 to about 5% of the additive whereas lubricating compositions for use in gears and diesel engines may contain as much as or even more of the additive.
This invention contemplates also the presence of other additives in the lubricating compositions. Such additives include, for example, supplemental detergents of the ashcontaining type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and supplemental oxidation and corrosion-inhibiting agents.
The ash-containing detergents are exemplified by oilsoluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride. The most commonly used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium, strontium, and barium.
The term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical. The commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about 50 C. and filtering the resulting mass. The use of a promoter in the neutralization step to aid the incorporation of a large excess of metal likewise is known. Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance, alcohols such as methanol, 2- propanol, octyl alcohol, Cellosolve, Carbitol, ethylene glycol, stearyl alcohol, and cycohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl-betanaphthyl-amine, and dodecylamine, A particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of Water and carbonating the mixture at an elevated temperature such as 60200 C.
The esters of this invention are especially adapted for use in combination with extreme pressure and corrosioninhibiting additives such as metal dithiocarbamates, xanthates, the Group II metal phosphorodithioates and their epoxide adducts, hindered phenols, sulfurized cycloalkanes, di-alkyl polysulfides, sulfurized fatty esters, phosphosulfurized fatty esters, alkaline earth metal salts of alkylated phenols, dialkyl phosphites, triaryl phosphites, and esters of phosphorodithioic acids. Combinations of the esters of this invention with any of the above mentioned additives are especially desirable for use in lubricants which must have superior extreme pressure and oxidation-inhibiting characteristics.
The Group II metal phosphorodithioates are the salts of acids having the formula in which R and R are substantially hydrocarbon radicals. The metals for forming such salts are exemplified by barium, calcium, strontium, zinc, and cadmium. The barium and zinc phosphorodithioates are especially preferred. The substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenyl radicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group. Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, secbutyl, the various amyl alcohols, n-hexyl methylisobutyl carbinyl, heptyl, 2-ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc. Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc. Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals. Other substantially hydrocarbon radicals likewise are useful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc. Many substituted hydrocarbon radicals may also be used, e.g., chloropentyl, dichlorophenyl, and dichlorodecyl.
Especially useful Group II metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols. The use of such mixtures enables the utilization of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids. Thus a mixture of isopropyl and hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate. For the same reason mixtures of simple phosphorodithioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.
Another class of the phosphorothioate additives con templated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphorodithioates described above with an epoxide. The metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates. The epoxides may be alkylene oxides or arylalkylene oxides. The arylalkylene oxides are exemplified by styrene oxide, p-ethylstyrene oxide, alpha-methylstyrene oxide, 3-beta-naphthyl- 1,3-butylene oxide, m-dodecylstyrene oxide and p-chlorostyrene oxide. The alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms such as illustrated hereinbefore.
The adduct may be obtained by simply mixing the phosphorodithioate and the epoxide. The reaction is usually exothermic and may be carried out within wide temperature limits from about 0 C. to about 200 C. Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction. The reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane.
The chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the phosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkylene oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.
The lubricating compositions may contain metal detergent additives in amounts usually within the range of from about 0.1% to about 20% by weight. In some applications such as in lubricating marine diesel engines the lubricating compositions may contain as much as 30% of a metal detergent additive. They may contain extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts within the range from about 0.1% to about 10%.
The following examples are illustrative of the lubricating compositions of this invention: (all percentages are by weight.
EXAMPLE A SAE 20 mineral lubricating oil containing 0.5% of the product of Example 2.
EXAMPLE B SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.
EXAMPLE C SAiE 10W-30 mineral lubricating oil containing 0.4% of the product of Example 3.
EXAMPLE D SAE 20W30 mineral lubricating oil containing of the product of Example 8.
EXAMPLE E SAE W-30 mineral lubricating oil containing 1.5% of the product of Example 4 and 0.05% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of npentyl alcohol.
EXAMPLE F SAE 10W-30 mineral lubricating oil containing 2% of the product of Example 7, 0.06% of phosphorus as zinc di-n-octylphosphorodithioate, and 1% of sulfate ash as barium mahogany sulfonate.
EXAMPLE G SAE 30 mineral lubricating oil containing 5% of the product of Example 11, 0.1% of phosphorus as the zinc salt of a mixture of equi-molar amounts of di-isopropylphosphorodithioic acid and di-n-decylphosphorodithioic acid, and 2.5% of sulfate ash as a basis barium detergent prepared by carbonating at 150 C. a mixture comprising mineral oil, barium di-dodecylbenzene sulfonate and 1.5 moles of barium hydroxide in the presence of a small amount of water and 0.7 mole of octylphenol as the promoter.
EXAMPLE H SAE 10W-30 mineral lubricating oil containing 6% of the product of Example 12, 0.075% of phosphorus as zinc di-n-octylphosphorodithioate, and 5% of the barium salt of an acidic composition prepared by the reaction of 1000 parts of a polyisobutene having a molecular weight of 60,000 with 100 parts of phosphorus pentasulfide at 200 C. and hydrolyzing the product with steam at 150 C.
EXAMPLE I SAE 10 mineral lubricating oil containing 3% of the product of Example 6, 0.075% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with an equi-molar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol, 2 moles of barium oxide, and a small amount of water at 150 C.
The above lubricating compositions are merely illustrative and the scope of the invention includes the use of all of the additives previously illustrated as well as others 'within the broad concept of this invention described herein.
Fuel compositions of the type contemplated by the present invention are illustrated by the following examples. Ordinarily the esters are used in amounts such that they will comprise from about 0.001% to about 5%, usually 0.01% to 2%, by weight of the final fuel. It is also contemplated that the fuels may contain other conventional additives such as deicers, smoke suppressants, lead scavengers, demulsifiers, lead appreciators, anti-rust agents, and the like.
EXAMPLE I Gasoline containing 0.015% of the esters produced according to Example 11.
16 EXAMPLE K Kerosene containing 0.05% of the ester produced according to Example 2.
EXAMPLE L Diesel fuel containing 0.5% of the ester produced according to Example 6.
EXAMPLE M No. 2 fuel oil for oil furnaces comprising 0.1% of the ester produced according to Example 3.
What is claimed is:
1. A lubricating composition comprising a major amount of a lubricating oil and an amount, sufficient to impart detergency thereto, of at least one oil-soluble ester of a hydroxy aromatic compound selected from the group consisting of phenols and naphthols and a substantially saturated monoor polycarboxylic acid or anhydride wherein the acyl moiety of said ester corresponds to the acyl radical of an acid or anhydride derived from the reaction of a polyolefin or chloroinated polyolefin containing at least about 50 aliphatic carbon atoms with an alpha, beta-unsaturated monoor dicarboxylic acid or anhydride.
2. A lubricating composition according to claim 1 wherein the acyl moiety of said ester is an acyl radical of a polyolefin-substituted succinic acid derived from the reaction of a polyolefin or chlorinated polyolefin with maleic acid or anhydride, the ester being a monoester, diester, or mixture of these.
3. A lubricating composition according to claim 2 wherein the hydroxy aromatic compound is a monohydroxy or polyhydroxy phenol selected from the class consisting of phenols, alkylphenols, phenol ethers, and alkylene bis-phenols.
4. A lubricating composition according to claim 3 wherein the acyl moiety is an acyl radical of a succinic acid derived from the reaction of a polymerized l-monoolefin or a chlorinated polymerized l-monoolefin having an average molecular meight of about 700 to about 5000 with maleic anhydride or maleic acid.
5. A lubricating composition according to claim 2 wherein the aromatic hydroxy compound is an aliphatic hydrocarbon-substituted monohydroxy or polyhydroxy phenol.
6. A lubricating composition according to claim 5 wherein the acyl moiety is an acyl radical or a polyisobutenyl-substituted succinic acid.
7. A lubricating composition according to claim 1 wherein the acyl moiety is an acyl radical of a monocarboxylic acid having an average molecular weight of about 700 to about 5000 and wherein the hydroxy aromatic compound is a monohydroxy or polyhydroxy phenol.
8. A lubricating composition according to claim 7 wherein the monohydroxy or polyhydroxy phenol is an aliphatic hydrocarbon-substituted monohydroxy or polyhydroxy phenol.
9. A lubricating composition according to claim 1 wherein said at least one oil-soluble ester is an epoxidepost-treated ester prepared by reacting at least one ester with a terminal epoxide of the formula D P nn-(3H wherein one R. is hydrogen and the other R is hydrogen, phenyl, halophenyl, alkyl, or haloalkyl at a temperature of about 25 C.
10. A fuel composition comprising a major amount of a normally liquid petroleum distillate fuel and an amount, sufiicient to impart detergency thereto, of an oil-soluble ester of a hydroxy aromatic compound selected from the group consisting of phenols and naphthols and a substantially saturated monoor dicarboxylic acid or an- 17 v hydride wherein the acyl moiety of said ester corresponds to the acyl radical of an acid or anhydride derived from the reaction of a polyolefin or chlorinated polyolefin having at least 50 aliphatic carbon atoms with an alpha, betaunsaturated monoor dicarboxylic acidor anhydride.
11. A fuel composition according to claim wherein the acyl moiety of the ester is an acyl radical of a polyisobutenyl-substituted succinic acid or anhydride derived from the reaction of polyisobutene or chlorinated polyisobutene having an average molecular Weight of about 700 to about 5000 with maleic acid or maleic anhydride and wherein the hydroxy aromatic compound is a monohydroxy or polyhydroxy phenol.
12. A fuel composition according to claim 10 wherein at least one oil-soluble ester is an epoxide post-treated ester prepared by reacting said at least one ester with an epoxide of the formula 18 where one R is hydrogen and the other R is hydrogen, phenyl, halophenyl, alkyl, or haloalkyl at a temperature of about C. up to the decomposition temperature of the ester or epoxide in an equivalent ratio of ester to epoxide of 1:05 to 1:5.
References Cited PATRICK P. GARVIN, Primary Examiner W. H. CANNON, Assistant Examiner U8. 0]. X.R. 4462, 25256 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION PATENT NO. 3 542 680 DATE I November 24, 1970 INVENTOR( I William M. LeSuer It is certified that error appears in the aboveidentified patent and that said Letters Patent are hereby corrected as shown bE|0WI At column 2, between lines 56 and 60, the formula Signed and Scaled thi:
A "as t:
RUTH C. MASON C. MARSHALL DANN Arresting Officer (mnmlssiunvr nj'lau'nrs and Trudcmur
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27490563A | 1963-04-23 | 1963-04-23 | |
US56705266A | 1966-07-22 | 1966-07-22 | |
US86608469A | 1969-10-03 | 1969-10-03 | |
US86608169A | 1969-10-03 | 1969-10-03 | |
US1133570A | 1970-02-13 | 1970-02-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3542680A true US3542680A (en) | 1970-11-24 |
Family
ID=27533439
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US567052A Expired - Lifetime US3522179A (en) | 1963-04-23 | 1966-07-22 | Lubricating composition containing esters of hydrocarbon-substituted succinic acid |
US866084A Expired - Lifetime US3579450A (en) | 1963-04-23 | 1969-10-03 | Lubricants and fuels containing epoxide treated esters |
US866081A Expired - Lifetime US3542680A (en) | 1963-04-23 | 1969-10-03 | Oil-soluble carboxylic acid phenol esters and lubricants and fuels containing the same |
US11335A Expired - Lifetime US3632510A (en) | 1963-04-23 | 1970-02-13 | Mixed ester-metal salts and lubricants and fuels containing the same |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US567052A Expired - Lifetime US3522179A (en) | 1963-04-23 | 1966-07-22 | Lubricating composition containing esters of hydrocarbon-substituted succinic acid |
US866084A Expired - Lifetime US3579450A (en) | 1963-04-23 | 1969-10-03 | Lubricants and fuels containing epoxide treated esters |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11335A Expired - Lifetime US3632510A (en) | 1963-04-23 | 1970-02-13 | Mixed ester-metal salts and lubricants and fuels containing the same |
Country Status (3)
Country | Link |
---|---|
US (4) | US3522179A (en) |
DE (1) | DE1271877B (en) |
GB (1) | GB1055337A (en) |
Cited By (153)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3755169A (en) * | 1970-10-13 | 1973-08-28 | Lubrizol Corp | High molecular weight carboxylic acid acylating agents and the process for preparing the same |
US4108783A (en) * | 1974-04-09 | 1978-08-22 | The Lubrizol Corporation | Haloalkyl hydroxy-aromatic condensation products as fuel and lubricant additives |
US4108784A (en) * | 1974-04-09 | 1978-08-22 | The Lubrizol Corporation | Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives |
US4176077A (en) * | 1974-04-09 | 1979-11-27 | The Lubrizol Corporation | Haloalkyl hydroxy-aromatic condensation products as lubricant additives |
US4179449A (en) * | 1974-04-09 | 1979-12-18 | The Lubrizol Corporation | Haloalkyl hydroxy-aromatic condensation products as fuel and lubricant additives |
US4194886A (en) * | 1974-04-09 | 1980-03-25 | The Lubrizol Corporation | Haloalkyl hydroxy-aromatic condensation products as fuel additives |
US4205960A (en) * | 1974-04-09 | 1980-06-03 | The Lubrizol Corporation | Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives |
US4219431A (en) * | 1976-07-28 | 1980-08-26 | Mobil Oil Corporation | Aroyl derivatives of alkenylsuccinic anhydride as lubricant and fuel additives |
US4285824A (en) * | 1979-01-22 | 1981-08-25 | The Lubrizol Corporation | Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives |
US4343740A (en) * | 1980-02-22 | 1982-08-10 | The Lubrizol Corporation | Hydroxylalkyl hydroxy-aromatic condensation products as fuel and lubricant additives |
US4571269A (en) * | 1981-03-31 | 1986-02-18 | Phillips Petroleum Company | Asphalt compositions |
US4617134A (en) * | 1980-11-10 | 1986-10-14 | Exxon Research And Engineering Company | Method and lubricant composition for providing improved friction reduction |
US4723965A (en) * | 1985-01-31 | 1988-02-09 | Nippon Oil Co., Ltd. | Motor gasoline compositions |
EP0558835A1 (en) | 1992-01-30 | 1993-09-08 | Albemarle Corporation | Biodegradable lubricants and functional fluids |
US5444135A (en) * | 1992-12-17 | 1995-08-22 | Exxon Chemical Patents Inc. | Direct synthesis by living cationic polymerization of nitrogen-containing polymers |
US5498809A (en) * | 1992-12-17 | 1996-03-12 | Exxon Chemical Patents Inc. | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives |
EP0713908A1 (en) | 1994-11-22 | 1996-05-29 | Ethyl Corporation | Power transmission fluids |
US5554310A (en) * | 1992-12-17 | 1996-09-10 | Exxon Chemical Patents Inc. | Trisubstituted unsaturated polymers |
US5629434A (en) * | 1992-12-17 | 1997-05-13 | Exxon Chemical Patents Inc | Functionalization of polymers based on Koch chemistry and derivatives thereof |
EP0778333A2 (en) | 1995-11-09 | 1997-06-11 | The Lubrizol Corporation | Carboxylic compositions, derivatives, lubricants, fuels and concentrates |
US5643859A (en) * | 1992-12-17 | 1997-07-01 | Exxon Chemical Patents Inc. | Derivatives of polyamines with one primary amine and secondary of tertiary amines |
US5646332A (en) * | 1992-12-17 | 1997-07-08 | Exxon Chemical Patents Inc. | Batch Koch carbonylation process |
US5650536A (en) * | 1992-12-17 | 1997-07-22 | Exxon Chemical Patents Inc. | Continuous process for production of functionalized olefins |
US5767046A (en) * | 1994-06-17 | 1998-06-16 | Exxon Chemical Company | Functionalized additives useful in two-cycle engines |
US5811379A (en) * | 1996-06-17 | 1998-09-22 | Exxon Chemical Patents Inc. | Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267) |
US6066603A (en) * | 1996-06-17 | 2000-05-23 | Exxon Chemical Patents Inc. | Polar monomer containing copolymers derived from olefins useful as lubricant and useful as lubricant and fuel oil additivies process for preparation of such copolymers and additives and use thereof |
US6172015B1 (en) | 1997-07-21 | 2001-01-09 | Exxon Chemical Patents, Inc | Polar monomer containing copolymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such copolymers and additives and use thereof |
EP1568759A2 (en) | 2004-02-27 | 2005-08-31 | Afton Chemical Corporation | Power transmission fluids |
WO2006094011A2 (en) | 2005-03-01 | 2006-09-08 | R.T. Vanderbilt Company, Inc. | Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same |
WO2006128796A2 (en) * | 2005-05-30 | 2006-12-07 | Basf Aktiengesellschaft | Polymer composition comprising polyolefins and amphiphilic block copolymers and optionally other polymers and/or fillers |
WO2006128795A2 (en) * | 2005-05-30 | 2006-12-07 | Basf Aktiengesellschaft | Use of amphiphilic block copolymers for producing polymer blends |
US20070054813A1 (en) * | 2003-09-25 | 2007-03-08 | Chip Hewette | Boron free automotive gear oil |
US20080015124A1 (en) * | 2006-07-14 | 2008-01-17 | Devlin Mark T | Lubricant composition |
WO2010099136A1 (en) | 2009-02-26 | 2010-09-02 | The Lubrizol Corporation | Lubricating compositions containing the reaction product of an aromatic amine and a carboxylic functionalised polymer and dispersant |
EP2230292A1 (en) | 2003-11-10 | 2010-09-22 | Afton Chemical Corporation | Methods of lubricating transmissions |
US7833953B2 (en) | 2006-08-28 | 2010-11-16 | Afton Chemical Corporation | Lubricant composition |
US7879775B2 (en) | 2006-07-14 | 2011-02-01 | Afton Chemical Corporation | Lubricant compositions |
WO2011022245A1 (en) | 2009-08-18 | 2011-02-24 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
WO2011022266A2 (en) | 2009-08-18 | 2011-02-24 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
WO2011022317A1 (en) | 2009-08-18 | 2011-02-24 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
US20110065612A1 (en) * | 2008-06-09 | 2011-03-17 | Stokes Kristoffer K | Low interfacial tension surfactants for petroleum applications |
EP2302023A2 (en) | 2002-10-04 | 2011-03-30 | R.T. Vanderbilt Company, Inc. | Synergistic organoborate compositions and lubricating compositions containing same |
WO2011075401A1 (en) | 2009-12-14 | 2011-06-23 | The Lubrizol Corporation | Lubricating composition containing a nitrile compound |
WO2011075403A1 (en) | 2009-12-14 | 2011-06-23 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
WO2011081835A1 (en) | 2009-12-14 | 2011-07-07 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
WO2011084657A1 (en) | 2009-12-17 | 2011-07-14 | The Lubrizol Corporation | Lubricating composition containing an aromatic compound |
EP2371933A1 (en) | 2006-02-06 | 2011-10-05 | The Lubrizol Corporation | Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof |
WO2011143051A1 (en) | 2010-05-12 | 2011-11-17 | The Lubrizol Corporation | Tartaric acid derivatives in hths fluids |
WO2011146467A1 (en) | 2010-05-20 | 2011-11-24 | The Lubrizol Corporation | Lubricating composition containing a dispersant |
WO2011146692A1 (en) | 2010-05-20 | 2011-11-24 | The Lubrizol Corporation | Lubricating composition containing a dispersant |
WO2012030616A1 (en) | 2010-08-31 | 2012-03-08 | The Lubrizol Corporation | Star polymer and lubricating composition thereof |
WO2012030590A1 (en) | 2010-08-31 | 2012-03-08 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
WO2012047949A1 (en) | 2010-10-06 | 2012-04-12 | The Lubrizol Corporation | Lubricating oil composition with anti-mist additive |
US20120117861A1 (en) * | 2010-11-12 | 2012-05-17 | Baker Hughes Incorporated | Fuel Additives for Enhanced Lubricity and Anti-Corrosion Properties |
WO2012078572A1 (en) | 2010-12-10 | 2012-06-14 | The Lubrizol Corporation | Lubricant composition containing viscosity index improver |
WO2012087773A1 (en) | 2010-12-21 | 2012-06-28 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
WO2012087775A1 (en) | 2010-12-21 | 2012-06-28 | The Lubrizol Corporation | Lubricating composition containing a detergent |
US8227383B2 (en) | 2008-06-09 | 2012-07-24 | Soane Energy, Llc | Low interfacial tension surfactants for petroleum applications |
WO2012106170A1 (en) | 2011-01-31 | 2012-08-09 | The Lubrizol Corporation | Lubricant composition comprising anti-foam agents |
WO2012112648A2 (en) | 2011-02-16 | 2012-08-23 | The Lubrizol Corporation | Method of lubricating a driveline device |
WO2012122202A1 (en) | 2011-03-10 | 2012-09-13 | The Lubrizol Corporation | Lubricating composition containing a thiocarbamate compound |
WO2012141855A1 (en) | 2011-04-15 | 2012-10-18 | R.T. Vanderbilt Company, Inc. | Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same |
WO2012174184A1 (en) | 2011-06-15 | 2012-12-20 | The Lubrizol Corporation | Lubricating composition containing a salt of a carboxylic acid |
WO2012174075A1 (en) | 2011-06-15 | 2012-12-20 | The Lubrizol Corporation | Lubricating composition containing an ester of an aromatic carboxylic acid |
WO2012177537A1 (en) | 2011-06-21 | 2012-12-27 | The Lubrizol Corporation | Lubricating composition containing a dispersant |
WO2012177529A1 (en) | 2011-06-21 | 2012-12-27 | The Lubrizol Corporation | Lubricating compositions containing salts of hydrocarbyl substituted acylating agents |
WO2012177549A1 (en) | 2011-06-21 | 2012-12-27 | The Lubrizol Corporation | Lubricating composition containing a dispersant |
WO2013012987A1 (en) | 2011-07-21 | 2013-01-24 | The Lubrizol Corporation | Overbased friction modifiers and methods of use thereof |
WO2013013026A1 (en) | 2011-07-21 | 2013-01-24 | The Lubrizol Corporation | Carboxylic pyrrolidinones and methods of use thereof |
WO2013062924A2 (en) | 2011-10-27 | 2013-05-02 | The Lubrizol Corporation | Lubricating composition containing an esterified polymer |
WO2013066585A1 (en) | 2011-10-31 | 2013-05-10 | The Lubrizol Corporation | Ashless friction modifiers for lubricating compositions |
WO2013070376A2 (en) | 2011-11-11 | 2013-05-16 | Vanderbilt Chemicals, Llc | Lubricant composition |
EP2610332A1 (en) | 2011-12-30 | 2013-07-03 | The Lubrizol Corporation | Star polymer and lubricating composition thereof |
WO2013101882A1 (en) | 2011-12-29 | 2013-07-04 | The Lubrizol Corporation | Limited slip friction modifiers for differentials |
WO2013122898A2 (en) | 2012-02-16 | 2013-08-22 | The Lubrizol Corporation | Lubricant additive booster system |
US8557752B2 (en) | 2005-03-23 | 2013-10-15 | Afton Chemical Corporation | Lubricating compositions |
WO2014074197A1 (en) | 2012-09-11 | 2014-05-15 | The Lubrizol Corporation | Lubricating composition containing an ashless tbn booster |
US8742165B2 (en) | 2009-12-10 | 2014-06-03 | Soane Energy, Llc | Low interfacial tension surfactants for petroleum applications |
WO2014088814A1 (en) | 2012-12-07 | 2014-06-12 | The Lubrizol Corporation | Pyran dispersants |
WO2014137580A1 (en) | 2013-03-07 | 2014-09-12 | The Lubrizol Corporation | Limited slip friction modifiers for differentials |
WO2014164087A1 (en) | 2013-03-12 | 2014-10-09 | The Lubrizol Corporation | Lubricating composition containing lewis acid reaction product |
WO2014193543A1 (en) | 2013-05-30 | 2014-12-04 | The Lubrizol Corporation | Lubricating composition containing an oxyalkylated hydrocarbyl phenol |
WO2015017172A1 (en) | 2013-07-31 | 2015-02-05 | The Lubrizol Corporation | Method of lubricating a transmission which includes a synchronizer with a non-metallic surface |
WO2015021135A1 (en) | 2013-08-09 | 2015-02-12 | The Lubrizol Corporation | Reduced engine deposits from dispersant treated with copper |
WO2015021129A1 (en) | 2013-08-09 | 2015-02-12 | The Lubrizol Corporation | Reduced engine deposits from dispersant treated with cobalt |
US8969612B2 (en) | 2009-12-10 | 2015-03-03 | Soane Energy, Llc | Low interfacial tension surfactants for petroleum applications |
WO2015106090A1 (en) | 2014-01-10 | 2015-07-16 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
WO2015106083A1 (en) | 2014-01-10 | 2015-07-16 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
WO2015138109A1 (en) | 2014-03-12 | 2015-09-17 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
WO2015138088A1 (en) | 2014-03-11 | 2015-09-17 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
WO2015138108A1 (en) | 2014-03-12 | 2015-09-17 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
WO2015171674A1 (en) | 2014-05-06 | 2015-11-12 | The Lubrizol Corporation | Lubricant composition containing an antiwear agent |
WO2015184254A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | High molecular weight amide/ester containing quaternary ammonium salts |
WO2015184247A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | High molecular weight imide containing quaternary ammonium salts |
WO2015184251A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Branched amine containing quaternary ammonium salts |
WO2015184276A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Epoxide quaternized quaternary ammonium salts |
WO2015184301A2 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Coupled quaternary ammonium salts |
WO2015184280A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Imidazole containing quaternary ammonium salts |
WO2015183916A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Low molecular weight amide/ester containing quaternary ammonium salts |
WO2015183908A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Low molecular weight imide containing quaternary ammonium salts |
WO2015195614A1 (en) | 2014-06-18 | 2015-12-23 | The Lubrizol Corporation | Motorcycle engine lubricant |
WO2016033397A1 (en) | 2014-08-28 | 2016-03-03 | The Lubrizol Corporation | Lubricating composition with seals compatibility |
WO2016044262A1 (en) | 2014-09-15 | 2016-03-24 | The Lubrizol Corporation | Dispersant viscosity modifiers with sulfonate functionality |
WO2016077134A1 (en) | 2014-11-12 | 2016-05-19 | The Lubrizol Corporation | Mixed phosphorus esters for lubricant applications |
WO2016090108A1 (en) | 2014-12-03 | 2016-06-09 | The Lubrizol Corporation | Lubricating composition containing an oxyalkylated aromatic polyol compound |
WO2016090065A1 (en) | 2014-12-03 | 2016-06-09 | The Lubrizol Corporation | Lubricating composition containing an oxyalkylated hydrocarbyl phenol |
WO2016099490A1 (en) | 2014-12-17 | 2016-06-23 | The Lubrizol Corporation | Lubricating composition for lead and copper corrosion inhibition |
WO2016138248A1 (en) | 2015-02-26 | 2016-09-01 | The Lubrizol Corporation | Aromatic tetrahedral borate compounds for lubricating compositions |
WO2016138227A1 (en) | 2015-02-26 | 2016-09-01 | The Lubrizol Corporation | Aromatic detergents and lubricating compositions thereof |
WO2016144880A1 (en) | 2015-03-09 | 2016-09-15 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
WO2016148708A1 (en) | 2015-03-18 | 2016-09-22 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2017031143A1 (en) | 2015-08-20 | 2017-02-23 | The Lubrizol Corporation | Azole derivatives as lubricating additives |
WO2017039855A2 (en) | 2015-07-20 | 2017-03-09 | The Lubrizol Corporation | Zinc-free lubricating composition |
WO2017083243A1 (en) | 2015-11-11 | 2017-05-18 | The Lubrizol Corporation | Lubricating composition comprising thioether-substituted phenolic compound |
WO2017096159A1 (en) | 2015-12-02 | 2017-06-08 | The Lubrizol Corporation | Ultra-low molecular weight amide/ester containing quaternary ammonium salts having short hydrocarbon tails |
WO2017096175A1 (en) | 2015-12-02 | 2017-06-08 | The Lubrizol Corporation | Ultra-low molecular weight imide containing quaternary ammonium salts having short hydrocarbon tails |
WO2017147380A1 (en) | 2016-02-24 | 2017-08-31 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2017176546A1 (en) | 2016-04-07 | 2017-10-12 | The Lubrizol Corporation | Mercaptoazole derivatives as lubricating additives |
EP3255129A1 (en) | 2016-06-06 | 2017-12-13 | The Lubrizol Corporation | Thiol-carboxylic adducts as lubricating additives |
WO2017218654A1 (en) | 2016-06-17 | 2017-12-21 | The Lubrizol Corporation | Lubricating compositions |
WO2017218662A1 (en) | 2016-06-17 | 2017-12-21 | The Lubrizol Corporation | Lubricating compositions |
WO2017218657A2 (en) | 2016-06-17 | 2017-12-21 | The Lubrizol Corporation | Polyisobutylene-substituted phenol, derivatives thereof, and lubricating compositions containing the polyisobutylene-substituted phenol and its derivatives |
WO2017218664A1 (en) | 2016-06-17 | 2017-12-21 | The Lubrizol Corporation | Lubricating compositions |
EP3263678A1 (en) | 2016-06-30 | 2018-01-03 | The Lubrizol Corporation | Hydroxyaromatic succinimide detergents for lubricating compositions |
WO2018017911A1 (en) | 2016-07-22 | 2018-01-25 | The Lubrizol Corporation | Aliphatic tetrahedral borate compounds for lubricating compositions |
WO2018017454A1 (en) | 2016-07-20 | 2018-01-25 | The Lubrizol Corporation | Alkyl phosphate amine salts for use in lubricants |
WO2018017449A1 (en) | 2016-07-20 | 2018-01-25 | The Lubrizol Corporation | Alkyl phosphate amine salts for use in lubricants |
WO2018048781A1 (en) | 2016-09-12 | 2018-03-15 | The Lubrizol Corporation | Total base number boosters for marine diesel engine lubricating compositions |
WO2018053098A1 (en) | 2016-09-14 | 2018-03-22 | The Lubrizol Corporation | Lubricating composition comprising sulfonate detergent and ashless hydrocarbyl phenolic compound |
WO2018052692A1 (en) | 2016-09-14 | 2018-03-22 | The Lubrizol Corporation | Lubricating composition and method of lubricating an internal combustion engine |
WO2018125567A1 (en) | 2016-12-27 | 2018-07-05 | The Lubrizol Corporation | Lubricating composition with alkylated naphthylamine |
WO2018125569A1 (en) | 2016-12-27 | 2018-07-05 | The Lubrizol Corporation | Lubricating composition including n-alkylated dianiline |
WO2018136541A1 (en) | 2017-01-17 | 2018-07-26 | The Lubrizol Corporation | Engine lubricant containing polyether compounds |
WO2019005738A1 (en) | 2017-06-27 | 2019-01-03 | The Lubrizol Corporation | Lubricating composition for and method of lubricating an internal combustion engine |
WO2019023219A1 (en) | 2017-07-24 | 2019-01-31 | Chemtool Incorporated | Extreme pressure metal sulfonate grease |
WO2019108588A1 (en) | 2017-11-28 | 2019-06-06 | The Lubrizol Corporation | Lubricant compositions for high efficiency engines |
WO2019112720A1 (en) | 2017-12-04 | 2019-06-13 | The Lubrizol Corporation | Alkylphenol detergents |
WO2019118117A1 (en) | 2017-12-15 | 2019-06-20 | The Lubrizol Corporation | Alkylphenol detergents |
WO2019246192A1 (en) | 2018-06-22 | 2019-12-26 | The Lubrizol Corporation | Lubricating compositions for heavy duty diesel engines |
US10577556B2 (en) | 2015-06-12 | 2020-03-03 | The Lubrizol Corporation | Michael adduct amino esters as total base number boosters for marine diesel engine lubricating compositions |
WO2020102672A1 (en) | 2018-11-16 | 2020-05-22 | The Lubrizol Corporation | Alkylbenzene sulfonate detergents |
US10669505B2 (en) | 2015-03-18 | 2020-06-02 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2020263964A1 (en) | 2019-06-24 | 2020-12-30 | The Lubrizol Corporation | Continuous acoustic mixing for performance additives and compositions including the same |
US10975323B2 (en) | 2015-12-15 | 2021-04-13 | The Lubrizol Corporation | Sulfurized catecholate detergents for lubricating compositions |
WO2021127183A1 (en) | 2019-12-18 | 2021-06-24 | The Lubrizol Corporation | Polymeric surfactant compound |
EP3842508A1 (en) | 2013-09-19 | 2021-06-30 | The Lubrizol Corporation | Use of lubricant compositions for direct injection engines |
EP3878933A1 (en) | 2013-09-19 | 2021-09-15 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2022212844A1 (en) | 2021-04-01 | 2022-10-06 | The Lubrizol Corporation | Zinc free lubricating compositions and methods of using the same |
US11608478B2 (en) | 2015-03-25 | 2023-03-21 | The Lubrizol Corporation | Lubricant compositions for direct injection engine |
WO2024030592A1 (en) | 2022-08-05 | 2024-02-08 | The Lubrizol Corporation | Processes for producing radically-functionalized pibsa product derivatives and compositions comprising same |
WO2024030591A1 (en) | 2022-08-05 | 2024-02-08 | The Lubrizol Corporation | Processes for producing reaction products including quaternary ammonium salts |
WO2024158648A1 (en) | 2023-01-24 | 2024-08-02 | The Lubrizol Corporation | Lubricating composition with phenolic antioxidant and low active sulfur |
WO2024163826A1 (en) | 2023-02-03 | 2024-08-08 | The Lubrizol Corporation | Processes for producing reaction products including quaternary ammonium salts |
Families Citing this family (187)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3639242A (en) * | 1969-12-29 | 1972-02-01 | Lubrizol Corp | Lubricating oil or fuel containing sludge-dispersing additive |
US3936480A (en) * | 1971-07-08 | 1976-02-03 | Rhone-Progil | Additives for improving the dispersing properties of lubricating oil |
BE786032A (en) * | 1971-07-08 | 1973-01-08 | Rhone Progil | NEW ADDITIVES FOR LUBRICATING OILS |
US3755173A (en) * | 1971-08-05 | 1973-08-28 | Chevron Res | Alkenyl halolactone esters and acids and lubricants containing them |
US3879308A (en) * | 1973-05-14 | 1975-04-22 | Lubrizol Corp | Lubricants and fuels containing ester-containing compositions |
US3910845A (en) * | 1973-06-22 | 1975-10-07 | Chevron Res | Reaction products of formals, acetals and ketals with succinic acid or anhydride as lubricating oil and fuel additives |
GB1483728A (en) * | 1973-09-13 | 1977-08-24 | Shell Int Research | Process for the preparation of an ester of an alkyl-or alkenyl succinic acid and a polyvalent alcohol |
GB1518171A (en) * | 1974-05-30 | 1978-07-19 | Mobil Oil Corp | Amine salts of succinic half-esters as lubricant additive |
US4147641A (en) * | 1976-03-29 | 1979-04-03 | Rohm And Haas Company | Multipurpose hydrocarbon fuel and lubricating oil additive mixture |
MX147153A (en) * | 1975-10-14 | 1982-10-19 | Lubrizol Corp | IMPROVED PROCEDURE FOR OBTAINING AMINOPHENOLS |
DE2702805C2 (en) * | 1976-01-28 | 1994-09-29 | Lubrizol Corp | Additives for liquid lubricants and / or fuels |
US4240916A (en) * | 1976-07-09 | 1980-12-23 | Exxon Research & Engineering Co. | Pour point depressant additive for fuels and lubricants |
US4240970A (en) * | 1976-07-28 | 1980-12-23 | Mobil Oil Corporation | Reaction products of hydroxy aromatic or alkylphenylether compounds and alkenylsuccinic acid, anhydride, or ester |
US4072618A (en) * | 1976-08-27 | 1978-02-07 | Mobil Oil Corporation | Metal working lubricant |
US4105571A (en) * | 1977-08-22 | 1978-08-08 | Exxon Research & Engineering Co. | Lubricant composition |
US4173540A (en) * | 1977-10-03 | 1979-11-06 | Exxon Research & Engineering Co. | Lubricating oil composition containing a dispersing-varnish inhibiting combination of polyol ester compound and a borated acyl nitrogen compound |
EP0004426B1 (en) * | 1978-03-23 | 1982-10-06 | Imperial Chemical Industries Plc | Surfactant compositions comprising a blend of two types of polyester and an emulsion of oil in water prepared therewith |
US4159958A (en) * | 1978-06-30 | 1979-07-03 | Chevron Research Company | Succinate dispersant combination |
US4255160A (en) * | 1979-03-09 | 1981-03-10 | Standard Oil Company (Indiana) | Flow improver for heavy petroleum products comprising alkenyl succinate diester |
US4306070A (en) * | 1979-06-28 | 1981-12-15 | Texaco Inc. | Method for preparing quaternary ammonium salt of ester-lactone |
US4251380A (en) * | 1979-06-28 | 1981-02-17 | Texaco Inc. | Quaternary ammonium diester salt composition and hydrocarbon oil containing same |
US4253980A (en) * | 1979-06-28 | 1981-03-03 | Texaco Inc. | Quaternary ammonium salt of ester-lactone and hydrocarbon oil containing same |
GB2056482A (en) * | 1979-08-13 | 1981-03-18 | Exxon Research Engineering Co | Lubricating oil compositions |
US4237020A (en) * | 1979-08-20 | 1980-12-02 | Edwin Cooper, Inc. | Lubricating and fuel compositions containing succinimide friction reducers |
US4273663A (en) * | 1979-11-13 | 1981-06-16 | Texaco Inc. | Quaternary ammonium diester salt composition and lubricating oil containing same |
US4292186A (en) * | 1979-12-04 | 1981-09-29 | Mobil Oil Corporation | Metal complexes of alkylsuccinic compounds as lubricant and fuel additives |
CA1159436A (en) * | 1980-11-10 | 1983-12-27 | Harold Shaub | Lubricant composition with improved friction reducing properties |
US4505718A (en) * | 1981-01-22 | 1985-03-19 | The Lubrizol Corporation | Organo transition metal salt/ashless detergent-dispersant combinations |
US4440545A (en) * | 1981-11-02 | 1984-04-03 | Ethyl Corporation | Gasohol having corrosion inhibiting properties |
US4491527A (en) * | 1982-04-26 | 1985-01-01 | The Lubrizol Corporation | Ester-heterocycle compositions useful as "lead paint" inhibitors in lubricants |
US4481125A (en) * | 1982-05-03 | 1984-11-06 | E.F. Houghton & Co. | Water-based hydraulic fluid |
US4564460A (en) * | 1982-08-09 | 1986-01-14 | The Lubrizol Corporation | Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4596663A (en) * | 1982-08-09 | 1986-06-24 | The Lubrizol Corporation | Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same |
US4575526A (en) * | 1982-08-09 | 1986-03-11 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same |
US4623684A (en) | 1982-08-09 | 1986-11-18 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4486573A (en) * | 1982-08-09 | 1984-12-04 | The Lubrizol Corporation | Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same |
US4613342A (en) * | 1982-08-09 | 1986-09-23 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4489194A (en) * | 1982-08-09 | 1984-12-18 | The Lubrizol Corporation | Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same |
US4471091A (en) * | 1982-08-09 | 1984-09-11 | The Lubrizol Corporation | Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same |
US4444565A (en) * | 1982-12-20 | 1984-04-24 | Union Oil Company Of California | Method and fuel composition for control of octane requirement increase |
US4612129A (en) | 1985-01-31 | 1986-09-16 | The Lubrizol Corporation | Sulfur-containing compositions, and additive concentrates and lubricating oils containing same |
IN172191B (en) | 1985-03-14 | 1993-05-01 | Lubrizol Corp | |
GB8515974D0 (en) * | 1985-06-24 | 1985-07-24 | Shell Int Research | Gasoline composition |
US4760170A (en) * | 1985-07-01 | 1988-07-26 | Exxon Research & Engineering Co. | Solution process for preparing metal salt esters of hydrocarbyl substituted succinic acid or anhydride and alkanols |
US4863624A (en) * | 1987-09-09 | 1989-09-05 | Exxon Chemical Patents Inc. | Dispersant additives mixtures for oleaginous compositions |
CA1262721A (en) | 1985-07-11 | 1989-11-07 | Jacob Emert | Oil soluble dispersant additives useful in oleaginous compositions |
US5118432A (en) * | 1985-07-11 | 1992-06-02 | Exxon Chemical Patents Inc. | Dispersant additive mixtures for oleaginous compositions |
GB8521393D0 (en) * | 1985-08-28 | 1985-10-02 | Exxon Chemical Patents Inc | Middle distillate compositions |
US4661274A (en) * | 1986-01-13 | 1987-04-28 | Mobil Oil Corporation | Additive for lubricants and hydrocarbon fuels comprising reaction products of olefins, sulfur, hydrogen sulfide and nitrogen containing polymeric compounds |
GB8611772D0 (en) * | 1986-05-14 | 1986-06-25 | Ici Plc | Corrosion inhibitor compositions |
US5032320A (en) * | 1986-10-07 | 1991-07-16 | Exxon Chemical Patents Inc. | Lactone modified mono- or dicarboxylic acid based adduct dispersant compositions |
US4866135A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Heterocyclic amine terminated, lactone modified, aminated viscosity modifiers of improved dispersancy |
US4936866A (en) * | 1986-10-07 | 1990-06-26 | Exxon Chemical Patents Inc. | Lactone modified polymeric amines useful as oil soluble dispersant additives |
US4963275A (en) * | 1986-10-07 | 1990-10-16 | Exxon Chemical Patents Inc. | Dispersant additives derived from lactone modified amido-amine adducts |
US4866139A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified, esterified dispersant additives useful in oleaginous compositions |
US4954277A (en) * | 1986-10-07 | 1990-09-04 | Exxon Chemical Patents Inc. | Lactone modified, esterified or aminated additives useful in oleaginous compositions and compositions containing same |
US4866140A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified adducts or reactants and oleaginous compositions containing same |
US4954276A (en) * | 1986-10-07 | 1990-09-04 | Exxon Chemical Patents Inc. | Lactone modified adducts or reactants and oleaginous compositions containing same |
US4866141A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified, esterfied or aminated additives useful in oleaginous compositions and compositions containing same |
US4866142A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified polymeric amines useful as oil soluble dispersant additives |
US4906394A (en) * | 1986-10-07 | 1990-03-06 | Exxon Chemical Patents Inc. | Lactone modified mono-or dicarboxylic acid based adduct dispersant compositions |
CA1333596C (en) * | 1986-10-16 | 1994-12-20 | Robert Dean Lundberg | High functionality low molecular weight oil soluble dispersant additives useful in oleaginous compositions |
US4751011A (en) * | 1986-12-12 | 1988-06-14 | Exxon Chemical Patents Inc. | Hydrocarbon soluble complexes based on metal salts of polyolefinic dicarboxylic acids |
CA1327088C (en) * | 1986-12-12 | 1994-02-15 | Malcolm Waddoups | Oil soluble additives useful in oleaginous compositions |
GB8710955D0 (en) * | 1987-05-08 | 1987-06-10 | Shell Int Research | Gasoline composition |
US4938880A (en) * | 1987-05-26 | 1990-07-03 | Exxon Chemical Patents Inc. | Process for preparing stable oleaginous compositions |
US4820432A (en) * | 1987-07-24 | 1989-04-11 | Exxon Chemical Patents Inc. | Lactone-modified, Mannich base dispersant additives useful in oleaginous compositions |
US4971711A (en) * | 1987-07-24 | 1990-11-20 | Exxon Chemical Patents, Inc. | Lactone-modified, mannich base dispersant additives useful in oleaginous compositions |
US5026495A (en) * | 1987-11-19 | 1991-06-25 | Exxon Chemical Patents Inc. | Oil soluble dispersant additives useful in oleaginous compositions |
US5085788A (en) * | 1987-11-19 | 1992-02-04 | Exxon Chemical Patents Inc. | Oil soluble dispersant additives useful in oleaginous compositions |
US5275748A (en) * | 1988-02-29 | 1994-01-04 | Exxon Chemical Patents Inc. | Polyanhydride modified adducts or reactants and oleaginous compositions containing same |
US5030369A (en) * | 1988-02-29 | 1991-07-09 | Exxon Chemical Patents Inc. | Oil soluble dispersant additives useful in oleaginous compositions |
US5217634A (en) * | 1988-02-29 | 1993-06-08 | Exxon Chemical Patents Inc. | Polyepoxide modified adducts or reactants and oleaginous compositions containing same |
US5053150A (en) * | 1988-02-29 | 1991-10-01 | Exxon Chemical Patents Inc. | Polyepoxide modified adducts or reactants and oleaginous compositions containing same |
US4957645A (en) * | 1988-02-29 | 1990-09-18 | Exxon Chemical Patents Inc. | Oil soluble dispersant additives useful in oleaginous compositions |
US5256325A (en) * | 1988-02-29 | 1993-10-26 | Exxon Chemical Patents Inc. | Polyanhydride modified adducts or reactants and oleaginous compositions containing same |
US5124055A (en) * | 1988-03-31 | 1992-06-23 | Ethyl Petroleum Additives, Inc. | Lubricating oil composition |
US4943382A (en) * | 1988-04-06 | 1990-07-24 | Exxon Chemical Patents Inc. | Lactone modified dispersant additives useful in oleaginous compositions |
US4933098A (en) * | 1988-04-06 | 1990-06-12 | Exxon Chemical Patents Inc. | Lactone modified viscosity modifiers useful in oleaginous compositions |
US5041622A (en) * | 1988-04-22 | 1991-08-20 | The Lubrizol Corporation | Three-step process for making substituted carboxylic acids and derivatives thereof |
US4952328A (en) * | 1988-05-27 | 1990-08-28 | The Lubrizol Corporation | Lubricating oil compositions |
US4904401A (en) * | 1988-06-13 | 1990-02-27 | The Lubrizol Corporation | Lubricating oil compositions |
US4981602A (en) * | 1988-06-13 | 1991-01-01 | The Lubrizol Corporation | Lubricating oil compositions and concentrates |
US4957649A (en) * | 1988-08-01 | 1990-09-18 | The Lubrizol Corporation | Lubricating oil compositions and concentrates |
US4938881A (en) * | 1988-08-01 | 1990-07-03 | The Lubrizol Corporation | Lubricating oil compositions and concentrates |
TW197468B (en) * | 1988-09-08 | 1993-01-01 | Lubrizol Corp | |
US5334329A (en) * | 1988-10-07 | 1994-08-02 | The Lubrizol Corporation | Lubricant and functional fluid compositions exhibiting improved demulsibility |
US4954572A (en) * | 1988-11-07 | 1990-09-04 | Exxon Chemical Patents Inc. | Dispersant additives prepared from monoepoxy alcohols |
US5205947A (en) * | 1988-11-07 | 1993-04-27 | Exxon Chemical Patents Inc. | Dispersant additives comprising amine adducts of dicarboxylic acid monoepoxy thiol reaction products |
US5057617A (en) * | 1988-11-07 | 1991-10-15 | Exxon Chemical Patents Inc. | Dispersant additives prepared from monoepoxy thiols |
US5254276A (en) * | 1988-12-30 | 1993-10-19 | Mobil Oil Corporation | Diol phosphite adducts of olefins as multifunctional lubricants and additives for lubricants |
CA2008258C (en) * | 1989-01-30 | 2001-09-11 | Jacob Emert | Oil soluble dispersant additives modified with monoepoxy monounsaturated compounds |
US4941984A (en) * | 1989-07-31 | 1990-07-17 | The Lubrizol Corporation | Lubricating oil compositions and methods for lubricating gasoline-fueled and/or alcohol-fueled, spark-ignited engines |
US5160507A (en) * | 1990-06-04 | 1992-11-03 | Mobil Oil Corp. | Multifunctional ester-type additives for liquid hydrocarbyl or hydrocarbyloxy fuel |
CA2030481C (en) * | 1990-06-20 | 1998-08-11 | William B. Chamberlin, Iii | Lubricating oil compositions for meoh-fueled diesel engines |
CA2060226C (en) * | 1990-07-30 | 1996-02-13 | Yasuhisa Tajiri | Rust-preventive lubricant composition for zinc-plated steel material |
GB9027389D0 (en) * | 1990-12-18 | 1991-02-06 | Shell Int Research | Gasoline composition |
US5490945A (en) * | 1991-04-19 | 1996-02-13 | The Lubrizol Corporation | Lubricating compositions and concentrates |
US5562864A (en) * | 1991-04-19 | 1996-10-08 | The Lubrizol Corporation | Lubricating compositions and concentrates |
US5614480A (en) * | 1991-04-19 | 1997-03-25 | The Lubrizol Corporation | Lubricating compositions and concentrates |
TW205067B (en) | 1991-05-30 | 1993-05-01 | Lubrizol Corp | |
CA2090202A1 (en) * | 1992-02-25 | 1993-08-26 | Jeffrey A. Jones | Method for improving anhydride-functionalized polymers and products |
CA2091420A1 (en) * | 1992-03-17 | 1993-09-18 | Richard W. Jahnke | Compositions containing combinations of surfactants and derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same |
CA2091402A1 (en) * | 1992-03-17 | 1993-09-18 | Richard W. Jahnke | Compositions containing derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same |
US5330662A (en) * | 1992-03-17 | 1994-07-19 | The Lubrizol Corporation | Compositions containing combinations of surfactants and derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same |
US5328620A (en) * | 1992-12-21 | 1994-07-12 | The Lubrizol Corporation | Oil additive package useful in diesel engine and transmission lubricants |
US5356552A (en) * | 1993-03-09 | 1994-10-18 | Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. | Chlorine-free lubricating oils having modified high molecular weight succinimides |
US6294506B1 (en) | 1993-03-09 | 2001-09-25 | Chevron Chemical Company | Lubricating oils having carbonated sulfurized metal alkyl phenates and carbonated metal alkyl aryl sulfonates |
TW291495B (en) | 1994-08-03 | 1996-11-21 | Lubrizol Corp | |
TW425425B (en) | 1994-08-03 | 2001-03-11 | Lubrizol Corp | Lubricating compositions, concentrates, and greases containing the combination of an organic polysulfide and an overbased composition or a phosphorus or boron compound |
GB2293389A (en) | 1994-09-26 | 1996-03-27 | Ethyl Petroleum Additives Ltd | Mixed zinc salt lubricant additives |
EP0743973B2 (en) * | 1994-12-13 | 2013-10-02 | Infineum USA L.P. | Fuel oil composition containing polyoxyalkylenes |
US5814111A (en) * | 1995-03-14 | 1998-09-29 | Shell Oil Company | Gasoline compositions |
US5736492A (en) * | 1995-09-08 | 1998-04-07 | Shell Oil Company | Alkenyl-substituted dicarboxylic derivatives |
US5821205A (en) | 1995-12-01 | 1998-10-13 | Chevron Chemical Company | Polyalkylene succinimides and post-treated derivatives thereof |
EP0781794B1 (en) | 1995-12-19 | 2000-05-17 | Chevron Chemical Company LLC | Very long chain alkylphenyl polyoxyalkylene amines and fuel compositions containing the same |
US5637119A (en) | 1995-12-29 | 1997-06-10 | Chevron Chemical Company | Substituted aromatic polyalkyl ethers and fuel compositions containing the same |
SK284524B6 (en) * | 1996-05-31 | 2005-05-05 | The Associated Octel Company Limited | Use of esterified alkenylsuccinic acids to increase the lubricity of liquid hydrocarbon fuel |
US5792729A (en) | 1996-08-20 | 1998-08-11 | Chevron Chemical Corporation | Dispersant terpolymers |
FR2762006B1 (en) * | 1997-04-11 | 2003-09-12 | Chevron Res & Tech | USE OF HIGH MOLECULAR WEIGHT SURFACTANTS AS AGREEMENTS TO IMPROVE FILTERABILITY IN HYDRAULIC LUBRICANTS |
US6268319B1 (en) | 1997-07-08 | 2001-07-31 | General Oil Company | Slide way lubricant composition, method of making and method of using same |
GB9720102D0 (en) * | 1997-09-22 | 1997-11-19 | Exxon Chemical Patents Inc | Lubricity additives for fuel oil compositions |
GB9818323D0 (en) * | 1998-08-21 | 1998-10-14 | Ass Octel | Fuel additives |
US6780209B1 (en) | 2000-01-24 | 2004-08-24 | The Lubrizol Corporation | Partially dehydrated reaction product process for making same, and emulsion containing same |
DE10125158A1 (en) * | 2001-05-22 | 2002-12-05 | Basf Ag | Low and high molecular weight emulsifiers, in particular on bases of polyisobutylene, and mixtures thereof |
US7012148B2 (en) * | 2001-09-25 | 2006-03-14 | Trustees Of Dartmouth College | Compositions and methods for thionation during chemical synthesis reactions |
DE10147650A1 (en) * | 2001-09-27 | 2003-04-10 | Basf Ag | Hydrophilic emulsifiers based on polyisobutylene |
US6627584B2 (en) | 2002-01-28 | 2003-09-30 | Ethyl Corporation | Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids |
US6573223B1 (en) | 2002-03-04 | 2003-06-03 | The Lubrizol Corporation | Lubricating compositions with good thermal stability and demulsibility properties |
JP2004217797A (en) * | 2003-01-15 | 2004-08-05 | Ethyl Japan Kk | Gear oil composition having long life and excellent thermal stability |
US20050065043A1 (en) * | 2003-09-23 | 2005-03-24 | Henly Timothy J. | Power transmission fluids having extended durability |
US7695534B2 (en) * | 2003-11-12 | 2010-04-13 | Ecr Technologies, Inc. | Chemical synthesis methods using electro-catalysis |
CA2496100A1 (en) * | 2004-03-10 | 2005-09-10 | Afton Chemical Corporation | Power transmission fluids with enhanced extreme pressure characteristics |
US20060003905A1 (en) * | 2004-07-02 | 2006-01-05 | Devlin Cathy C | Additives and lubricant formulations for improved corrosion protection |
US20060025314A1 (en) * | 2004-07-28 | 2006-02-02 | Afton Chemical Corporation | Power transmission fluids with enhanced extreme pressure and antiwear characteristics |
US20060135375A1 (en) * | 2004-12-21 | 2006-06-22 | Chevron Oronite Company Llc | Anti-shudder additive composition and lubricating oil composition containing the same |
US20060223716A1 (en) * | 2005-04-04 | 2006-10-05 | Milner Jeffrey L | Tractor fluids |
US20060264339A1 (en) * | 2005-05-19 | 2006-11-23 | Devlin Mark T | Power transmission fluids with enhanced lifetime characteristics |
JP2007072390A (en) * | 2005-09-09 | 2007-03-22 | Fujifilm Corp | Cellulose acylate film, and optical compensation film, polarizing plate, and liquid crystal display device using same |
US20070111906A1 (en) * | 2005-11-12 | 2007-05-17 | Milner Jeffrey L | Relatively low viscosity transmission fluids |
CA2641399C (en) | 2006-02-27 | 2015-11-24 | Basf Se | Use of polynuclear phenolic compounds as stabilisers |
US20070270317A1 (en) * | 2006-05-19 | 2007-11-22 | Milner Jeffrey L | Power Transmission Fluids |
WO2007135017A1 (en) * | 2006-05-23 | 2007-11-29 | Ciba Holding Inc. | Corrosion inhibiting composition for non-ferrous metals |
US20080015127A1 (en) * | 2006-07-14 | 2008-01-17 | Loper John T | Boundary friction reducing lubricating composition |
US20080119377A1 (en) * | 2006-11-22 | 2008-05-22 | Devlin Mark T | Lubricant compositions |
ATE490299T1 (en) | 2007-03-02 | 2010-12-15 | Basf Se | ADDITIVE FORMULATION SUITABLE FOR ANTI-STATIC FINISH AND IMPROVE THE ELECTRICAL CONDUCTIVITY OF INLIVIANT ORGANIC MATERIAL |
US20080274921A1 (en) * | 2007-05-04 | 2008-11-06 | Ian Macpherson | Environmentally-Friendly Lubricant Compositions |
US20090011963A1 (en) * | 2007-07-06 | 2009-01-08 | Afton Chemical Corporation | Truck fleet fuel economy by the use of optimized engine oil, transmission fluid, and gear oil |
SG183026A1 (en) | 2007-07-16 | 2012-08-30 | Basf Se | Synergistic mixture |
US20090071067A1 (en) * | 2007-09-17 | 2009-03-19 | Ian Macpherson | Environmentally-Friendly Additives And Additive Compositions For Solid Fuels |
US8703669B2 (en) * | 2008-03-11 | 2014-04-22 | Afton Chemical Corporation | Ultra-low sulfur clutch-only transmission fluids |
DE102009012567B4 (en) | 2008-03-11 | 2016-11-10 | Afton Chemical Corp. | Transmission oils with very little sulfur only for coupling and their use |
DE102009001301A1 (en) | 2008-03-11 | 2009-09-24 | Volkswagen Ag | Method for lubricating a component only for the clutch of an automatic transmission, which requires lubrication |
US20100160193A1 (en) * | 2008-12-22 | 2010-06-24 | Chevron Oronite LLC | Additive composition and method of making the same |
US8859473B2 (en) * | 2008-12-22 | 2014-10-14 | Chevron Oronite Company Llc | Post-treated additive composition and method of making the same |
BRPI1008703B1 (en) | 2009-02-18 | 2018-05-08 | Lubrizol Corp | “AMINE DERIVATIVES AS LUBRICANT TRAFFIC MODIFIERS” |
US20100311620A1 (en) * | 2009-06-05 | 2010-12-09 | Clearwater International, Llc | Winterizing agents for oil base polymer slurries and method for making and using same |
ES2586242T3 (en) | 2010-09-07 | 2016-10-13 | The Lubrizol Corporation | Hydroxychroman derivatives as antioxidants |
JP6100243B2 (en) | 2011-05-12 | 2017-03-22 | ザ ルブリゾル コーポレイションThe Lubrizol Corporation | Aromatic imides and esters as lubricating additives |
CA2864434A1 (en) | 2012-02-17 | 2013-08-22 | The Lubrizol Corporation | Mixtures of olefin-ester copolymer with polyolefin as viscosity modifier |
CN104220570A (en) | 2012-02-17 | 2014-12-17 | 卢布里佐尔公司 | Lubricating composition including esterified copolymer and low dispersant levels suitable for driveline applications |
WO2014028193A1 (en) * | 2012-08-14 | 2014-02-20 | General Electric Company | Demulsifying compositions and methods of use |
EP2898051B1 (en) | 2012-09-24 | 2017-08-16 | The Lubrizol Corporation | Lubricant comprising a mixture of an olefin-ester copolymer with an ethylene alpha-olefin copolymer |
JP5213291B1 (en) * | 2012-09-28 | 2013-06-19 | 竹本油脂株式会社 | Synthetic fiber treatment agent, synthetic fiber treatment aqueous solution, synthetic fiber treatment method and synthetic fiber |
WO2014099537A1 (en) | 2012-12-20 | 2014-06-26 | The Lubrizol Corporation | Lubricant composition including 4-hydroxybenzamide friction modifier |
ES2633936T3 (en) | 2013-06-07 | 2017-09-26 | Basf Se | Nitrogen compounds transformed into quaternaries with alkylene oxide and hydrocarbyl-substituted polycarboxylic acids, as additives in fuels and lubricants |
EP2811007A1 (en) | 2013-06-07 | 2014-12-10 | Basf Se | Alkylene oxide and hydrocarbyl-substituted polycarboxylic acid quaternised alkylamine as additives in fuels and lubricants and their use |
EP3052599B1 (en) | 2013-09-30 | 2020-09-16 | The Lubrizol Corporation | Method of friction control |
KR102425108B1 (en) | 2014-06-27 | 2022-07-26 | 더루우브리졸코오포레이션 | Mixtures of friction modifiers to provide good friction performance to transmission fluids |
EP3268454B1 (en) | 2015-03-10 | 2023-10-04 | The Lubrizol Corporation | Lubricating compositions comprising an anti-wear/friction modifying agent |
KR102403745B1 (en) | 2015-07-22 | 2022-05-31 | 셰브런 오로나이트 테크놀로지 비.브이. | Marine Diesel Cylinder Lubricating Oil Composition |
BR112018008909A2 (en) * | 2015-11-02 | 2018-11-21 | Lubrizol Corp | “Lubricant for a water based drilling fluid” |
DE102016107522A1 (en) | 2016-04-22 | 2017-10-26 | Basf Se | A fuel additive device, method for adding fuel and use of the same |
CN109415649B (en) | 2016-05-18 | 2022-11-08 | 路博润公司 | Hydraulic fluid composition |
WO2017205271A1 (en) | 2016-05-24 | 2017-11-30 | The Lubrizol Corporation | Seal swell agents for lubricating compositions |
US11174449B2 (en) | 2016-05-24 | 2021-11-16 | The Lubrizol Corporation | Seal swell agents for lubricating compositions |
CN109563430B (en) | 2016-05-24 | 2021-11-19 | 路博润公司 | Seal swell agents for lubricating compositions |
WO2018041732A1 (en) | 2016-08-29 | 2018-03-08 | Chevron Oronite Technology B.V. | Marine diesel cylinder lubricant oil compositions |
WO2018057678A1 (en) | 2016-09-21 | 2018-03-29 | The Lubrizol Corporation | Fluorinated polyacrylate antifoam components for lubricating compositions |
JP7123057B2 (en) | 2016-09-21 | 2022-08-22 | ザ ルブリゾル コーポレイション | Polyacrylate antifoam component with improved thermal stability |
US20190256791A1 (en) | 2016-10-12 | 2019-08-22 | Chevron Oronite Technology B.V. | Marine diesel lubricant oil compositions |
SG11201901690UA (en) | 2016-10-18 | 2019-03-28 | Chevron Oronite Tech Bv | Marine diesel lubricant oil compositions |
CN110312781A (en) | 2016-12-22 | 2019-10-08 | 路博润公司 | Fluorinated acrylate defoaming component for lubricating composition |
US10479953B2 (en) * | 2018-01-12 | 2019-11-19 | Afton Chemical Corporation | Emulsifier for use in lubricating oil |
EP3768810A1 (en) | 2018-03-21 | 2021-01-27 | The Lubrizol Corporation | Novel fluorinated polyacrylates antifoams in ultra-low viscosity (<5 cst) finished fluids |
CA3126759A1 (en) | 2019-01-17 | 2020-07-23 | The Lubrizol Corporation | Traction fluids |
CN114790041A (en) | 2021-01-26 | 2022-07-26 | 埃科莱布美国股份有限公司 | Antifreezing dispersant and manufacturing process thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2091627A (en) * | 1934-06-08 | 1937-08-31 | Rohm & Haas | Composition of matter and process |
US2444328A (en) * | 1943-12-31 | 1948-06-29 | Petrolite Corp | Composition of matter |
US2977334A (en) * | 1956-10-04 | 1961-03-28 | Monsanto Chemicals | Derivatives of ethylene/maleic anhydride copolymers |
US2993032A (en) * | 1956-02-03 | 1961-07-18 | California Research Corp | Detergent copolymers |
US3251906A (en) * | 1962-11-13 | 1966-05-17 | Rohm & Haas | Preparation of detergent oil-additive graft copolymers by delayed addition of a lower alkyl acrylate to a partially polymerized long chain alkyl acrylate |
US3485754A (en) * | 1967-06-30 | 1969-12-23 | Emery Industries Inc | Lubricant composition and method of refining |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2962443A (en) * | 1955-08-31 | 1960-11-29 | Lubrizol Corp | Steam turbine lubricant |
US2933468A (en) * | 1956-01-26 | 1960-04-19 | Exxon Research Engineering Co | Emulsifiers from hydrocarbon polymer, maleic anhydride, and polyalkylene oxide glycol, emulsion containing same and methods for making thereof |
US3045042A (en) * | 1957-08-16 | 1962-07-17 | Monsanto Chemicals | Acid polyester succinates |
US3269946A (en) * | 1961-08-30 | 1966-08-30 | Lubrizol Corp | Stable water-in-oil emulsions |
GB1009197A (en) * | 1961-08-30 | 1965-11-10 | Lubrizol Corp | Stable water-in-oil emulsion |
US3184474A (en) * | 1962-09-05 | 1965-05-18 | Exxon Research Engineering Co | Reaction product of alkenyl succinic acid or anhydride with polyamine and polyhydricmaterial |
DE1250583B (en) * | 1962-10-04 | 1967-09-21 | Shell Internationale Research Maatschappi] N V Den Haag | Lubricating oil |
US3197409A (en) * | 1963-03-28 | 1965-07-27 | California Research Corp | Alkylene glycol ester reaction product |
US3281356A (en) * | 1963-05-17 | 1966-10-25 | Lubrizol Corp | Thermally stable water-in-oil emulsions |
US3272746A (en) * | 1965-11-22 | 1966-09-13 | Lubrizol Corp | Lubricating composition containing an acylated nitrogen compound |
-
1964
- 1964-04-21 DE DEP1271A patent/DE1271877B/en active Pending
- 1964-04-23 GB GB16881/64A patent/GB1055337A/en not_active Expired
-
1966
- 1966-07-22 US US567052A patent/US3522179A/en not_active Expired - Lifetime
-
1969
- 1969-10-03 US US866084A patent/US3579450A/en not_active Expired - Lifetime
- 1969-10-03 US US866081A patent/US3542680A/en not_active Expired - Lifetime
-
1970
- 1970-02-13 US US11335A patent/US3632510A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2091627A (en) * | 1934-06-08 | 1937-08-31 | Rohm & Haas | Composition of matter and process |
US2444328A (en) * | 1943-12-31 | 1948-06-29 | Petrolite Corp | Composition of matter |
US2993032A (en) * | 1956-02-03 | 1961-07-18 | California Research Corp | Detergent copolymers |
US2977334A (en) * | 1956-10-04 | 1961-03-28 | Monsanto Chemicals | Derivatives of ethylene/maleic anhydride copolymers |
US3251906A (en) * | 1962-11-13 | 1966-05-17 | Rohm & Haas | Preparation of detergent oil-additive graft copolymers by delayed addition of a lower alkyl acrylate to a partially polymerized long chain alkyl acrylate |
US3485754A (en) * | 1967-06-30 | 1969-12-23 | Emery Industries Inc | Lubricant composition and method of refining |
Cited By (202)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3755169A (en) * | 1970-10-13 | 1973-08-28 | Lubrizol Corp | High molecular weight carboxylic acid acylating agents and the process for preparing the same |
US4194886A (en) * | 1974-04-09 | 1980-03-25 | The Lubrizol Corporation | Haloalkyl hydroxy-aromatic condensation products as fuel additives |
US4108784A (en) * | 1974-04-09 | 1978-08-22 | The Lubrizol Corporation | Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives |
US4163730A (en) * | 1974-04-09 | 1979-08-07 | The Lubrizol Corporation | Hydroxyalkyl hydroxy-aromatic condensation products as lubricant additives |
US4176077A (en) * | 1974-04-09 | 1979-11-27 | The Lubrizol Corporation | Haloalkyl hydroxy-aromatic condensation products as lubricant additives |
US4179449A (en) * | 1974-04-09 | 1979-12-18 | The Lubrizol Corporation | Haloalkyl hydroxy-aromatic condensation products as fuel and lubricant additives |
US4108783A (en) * | 1974-04-09 | 1978-08-22 | The Lubrizol Corporation | Haloalkyl hydroxy-aromatic condensation products as fuel and lubricant additives |
US4205960A (en) * | 1974-04-09 | 1980-06-03 | The Lubrizol Corporation | Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives |
US4219431A (en) * | 1976-07-28 | 1980-08-26 | Mobil Oil Corporation | Aroyl derivatives of alkenylsuccinic anhydride as lubricant and fuel additives |
US4285824A (en) * | 1979-01-22 | 1981-08-25 | The Lubrizol Corporation | Hydroxyalkyl hydroxy-aromatic condensation products as fuel and lubricant additives |
US4343740A (en) * | 1980-02-22 | 1982-08-10 | The Lubrizol Corporation | Hydroxylalkyl hydroxy-aromatic condensation products as fuel and lubricant additives |
US4617134A (en) * | 1980-11-10 | 1986-10-14 | Exxon Research And Engineering Company | Method and lubricant composition for providing improved friction reduction |
US4571269A (en) * | 1981-03-31 | 1986-02-18 | Phillips Petroleum Company | Asphalt compositions |
US4723965A (en) * | 1985-01-31 | 1988-02-09 | Nippon Oil Co., Ltd. | Motor gasoline compositions |
EP0558835A1 (en) | 1992-01-30 | 1993-09-08 | Albemarle Corporation | Biodegradable lubricants and functional fluids |
US5650536A (en) * | 1992-12-17 | 1997-07-22 | Exxon Chemical Patents Inc. | Continuous process for production of functionalized olefins |
US5703256A (en) * | 1992-12-17 | 1997-12-30 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5444135A (en) * | 1992-12-17 | 1995-08-22 | Exxon Chemical Patents Inc. | Direct synthesis by living cationic polymerization of nitrogen-containing polymers |
US5554310A (en) * | 1992-12-17 | 1996-09-10 | Exxon Chemical Patents Inc. | Trisubstituted unsaturated polymers |
US5629394A (en) * | 1992-12-17 | 1997-05-13 | Exxon Chemical Patents Inc | Direct synthesis by living cationic polymerization of nitrogen-containing polymers |
US5629434A (en) * | 1992-12-17 | 1997-05-13 | Exxon Chemical Patents Inc | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US6030930A (en) * | 1992-12-17 | 2000-02-29 | Exxon Chemical Patents Inc | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant disperant additives |
US5643859A (en) * | 1992-12-17 | 1997-07-01 | Exxon Chemical Patents Inc. | Derivatives of polyamines with one primary amine and secondary of tertiary amines |
US5646332A (en) * | 1992-12-17 | 1997-07-08 | Exxon Chemical Patents Inc. | Batch Koch carbonylation process |
US5717039A (en) * | 1992-12-17 | 1998-02-10 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5663130A (en) * | 1992-12-17 | 1997-09-02 | Exxon Chemical Patents Inc | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives |
US5696064A (en) * | 1992-12-17 | 1997-12-09 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5698722A (en) * | 1992-12-17 | 1997-12-16 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5498809A (en) * | 1992-12-17 | 1996-03-12 | Exxon Chemical Patents Inc. | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives |
US5767046A (en) * | 1994-06-17 | 1998-06-16 | Exxon Chemical Company | Functionalized additives useful in two-cycle engines |
EP0713908A1 (en) | 1994-11-22 | 1996-05-29 | Ethyl Corporation | Power transmission fluids |
EP0778333A2 (en) | 1995-11-09 | 1997-06-11 | The Lubrizol Corporation | Carboxylic compositions, derivatives, lubricants, fuels and concentrates |
US5811379A (en) * | 1996-06-17 | 1998-09-22 | Exxon Chemical Patents Inc. | Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267) |
US6066603A (en) * | 1996-06-17 | 2000-05-23 | Exxon Chemical Patents Inc. | Polar monomer containing copolymers derived from olefins useful as lubricant and useful as lubricant and fuel oil additivies process for preparation of such copolymers and additives and use thereof |
US6468948B1 (en) | 1996-06-17 | 2002-10-22 | Infineum Usa L.P. | Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267) |
US6172015B1 (en) | 1997-07-21 | 2001-01-09 | Exxon Chemical Patents, Inc | Polar monomer containing copolymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such copolymers and additives and use thereof |
EP2302023A2 (en) | 2002-10-04 | 2011-03-30 | R.T. Vanderbilt Company, Inc. | Synergistic organoborate compositions and lubricating compositions containing same |
EP2366762A1 (en) | 2002-10-04 | 2011-09-21 | R.T. Vanderbilt Company Inc. | Synergistic organoborate compositions and lubricating compositions containing same |
EP2436753A1 (en) | 2002-10-04 | 2012-04-04 | R.T. Vanderbilt Company Inc. | Synergistic organoborate compositions and lubricating compositions containing same |
EP2460870A1 (en) | 2002-10-04 | 2012-06-06 | R.T. Vanderbilt Company, Inc. | Synergistic organoborate compositions and lubricating compositions containing same |
US20070054813A1 (en) * | 2003-09-25 | 2007-03-08 | Chip Hewette | Boron free automotive gear oil |
US9267093B2 (en) | 2003-11-10 | 2016-02-23 | Afton Chemical Corporation | Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids |
EP2230292A1 (en) | 2003-11-10 | 2010-09-22 | Afton Chemical Corporation | Methods of lubricating transmissions |
US20100279901A1 (en) * | 2003-11-10 | 2010-11-04 | Iyer Ramnath N | Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids |
EP1568759A2 (en) | 2004-02-27 | 2005-08-31 | Afton Chemical Corporation | Power transmission fluids |
US7947636B2 (en) | 2004-02-27 | 2011-05-24 | Afton Chemical Corporation | Power transmission fluids |
WO2006094011A2 (en) | 2005-03-01 | 2006-09-08 | R.T. Vanderbilt Company, Inc. | Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same |
US8557752B2 (en) | 2005-03-23 | 2013-10-15 | Afton Chemical Corporation | Lubricating compositions |
WO2006128795A3 (en) * | 2005-05-30 | 2007-04-12 | Basf Ag | Use of amphiphilic block copolymers for producing polymer blends |
EP2159233A1 (en) * | 2005-05-30 | 2010-03-03 | Basf Se | Process for the colouring of polymer compositions comprising polyolefins. |
WO2006128796A3 (en) * | 2005-05-30 | 2007-04-05 | Basf Ag | Polymer composition comprising polyolefins and amphiphilic block copolymers and optionally other polymers and/or fillers |
WO2006128795A2 (en) * | 2005-05-30 | 2006-12-07 | Basf Aktiengesellschaft | Use of amphiphilic block copolymers for producing polymer blends |
WO2006128796A2 (en) * | 2005-05-30 | 2006-12-07 | Basf Aktiengesellschaft | Polymer composition comprising polyolefins and amphiphilic block copolymers and optionally other polymers and/or fillers |
US20080293886A1 (en) * | 2005-05-30 | 2008-11-27 | Basf Aktiengessellschaft | Use Of Amphiphilic Block Copolymers For Producing Polymer Blends |
US20090039543A1 (en) * | 2005-05-30 | 2009-02-12 | Basf Aktiengesellschaft | Polymer Composition Comprising Polyolefins And Amphiphilic Block Copolymers And Optionally Other Polymers And/Or Fillers And Method For Dying Compositions Of That Type Or Printing Thereon |
EP2371933A1 (en) | 2006-02-06 | 2011-10-05 | The Lubrizol Corporation | Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof |
US7902133B2 (en) | 2006-07-14 | 2011-03-08 | Afton Chemical Corporation | Lubricant composition |
US20080015124A1 (en) * | 2006-07-14 | 2008-01-17 | Devlin Mark T | Lubricant composition |
US7879775B2 (en) | 2006-07-14 | 2011-02-01 | Afton Chemical Corporation | Lubricant compositions |
US7833953B2 (en) | 2006-08-28 | 2010-11-16 | Afton Chemical Corporation | Lubricant composition |
US20110065612A1 (en) * | 2008-06-09 | 2011-03-17 | Stokes Kristoffer K | Low interfacial tension surfactants for petroleum applications |
US8389456B2 (en) | 2008-06-09 | 2013-03-05 | Soane Energy, Llc | Low interfacial tension surfactants for petroleum applications |
US8227383B2 (en) | 2008-06-09 | 2012-07-24 | Soane Energy, Llc | Low interfacial tension surfactants for petroleum applications |
WO2010099136A1 (en) | 2009-02-26 | 2010-09-02 | The Lubrizol Corporation | Lubricating compositions containing the reaction product of an aromatic amine and a carboxylic functionalised polymer and dispersant |
EP2431448A1 (en) | 2009-02-26 | 2012-03-21 | The Lubrizol Corporation | Lubricating compositions containing the reaction product of an aromatic amine and a carboxylic functionalised polymer and dispersant |
WO2011022317A1 (en) | 2009-08-18 | 2011-02-24 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
WO2011022245A1 (en) | 2009-08-18 | 2011-02-24 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
WO2011022266A2 (en) | 2009-08-18 | 2011-02-24 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
EP2891701A1 (en) | 2009-08-18 | 2015-07-08 | The Lubrizol Corporation | Lubricating composition containing a corrosion inhibitor |
EP2891700A1 (en) | 2009-08-18 | 2015-07-08 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
US8969612B2 (en) | 2009-12-10 | 2015-03-03 | Soane Energy, Llc | Low interfacial tension surfactants for petroleum applications |
US8742165B2 (en) | 2009-12-10 | 2014-06-03 | Soane Energy, Llc | Low interfacial tension surfactants for petroleum applications |
WO2011081835A1 (en) | 2009-12-14 | 2011-07-07 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
WO2011075403A1 (en) | 2009-12-14 | 2011-06-23 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
WO2011075401A1 (en) | 2009-12-14 | 2011-06-23 | The Lubrizol Corporation | Lubricating composition containing a nitrile compound |
WO2011084657A1 (en) | 2009-12-17 | 2011-07-14 | The Lubrizol Corporation | Lubricating composition containing an aromatic compound |
WO2011143051A1 (en) | 2010-05-12 | 2011-11-17 | The Lubrizol Corporation | Tartaric acid derivatives in hths fluids |
WO2011146692A1 (en) | 2010-05-20 | 2011-11-24 | The Lubrizol Corporation | Lubricating composition containing a dispersant |
WO2011146467A1 (en) | 2010-05-20 | 2011-11-24 | The Lubrizol Corporation | Lubricating composition containing a dispersant |
EP3184615A1 (en) | 2010-08-31 | 2017-06-28 | The Lubrizol Corporation | Method of lubricating a driveline device |
WO2012030590A1 (en) | 2010-08-31 | 2012-03-08 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
WO2012030616A1 (en) | 2010-08-31 | 2012-03-08 | The Lubrizol Corporation | Star polymer and lubricating composition thereof |
EP2623582A1 (en) | 2010-08-31 | 2013-08-07 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
WO2012047949A1 (en) | 2010-10-06 | 2012-04-12 | The Lubrizol Corporation | Lubricating oil composition with anti-mist additive |
US8557002B2 (en) * | 2010-11-12 | 2013-10-15 | Baker Hughes Incorporated | Fuel additives for enhanced lubricity and anti-corrosion properties |
US20120117861A1 (en) * | 2010-11-12 | 2012-05-17 | Baker Hughes Incorporated | Fuel Additives for Enhanced Lubricity and Anti-Corrosion Properties |
WO2012078572A1 (en) | 2010-12-10 | 2012-06-14 | The Lubrizol Corporation | Lubricant composition containing viscosity index improver |
WO2012087773A1 (en) | 2010-12-21 | 2012-06-28 | The Lubrizol Corporation | Lubricating composition containing an antiwear agent |
WO2012087775A1 (en) | 2010-12-21 | 2012-06-28 | The Lubrizol Corporation | Lubricating composition containing a detergent |
WO2012106170A1 (en) | 2011-01-31 | 2012-08-09 | The Lubrizol Corporation | Lubricant composition comprising anti-foam agents |
WO2012112648A2 (en) | 2011-02-16 | 2012-08-23 | The Lubrizol Corporation | Method of lubricating a driveline device |
WO2012122202A1 (en) | 2011-03-10 | 2012-09-13 | The Lubrizol Corporation | Lubricating composition containing a thiocarbamate compound |
WO2012141855A1 (en) | 2011-04-15 | 2012-10-18 | R.T. Vanderbilt Company, Inc. | Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same |
WO2012174075A1 (en) | 2011-06-15 | 2012-12-20 | The Lubrizol Corporation | Lubricating composition containing an ester of an aromatic carboxylic acid |
WO2012174184A1 (en) | 2011-06-15 | 2012-12-20 | The Lubrizol Corporation | Lubricating composition containing a salt of a carboxylic acid |
WO2012177537A1 (en) | 2011-06-21 | 2012-12-27 | The Lubrizol Corporation | Lubricating composition containing a dispersant |
WO2012177549A1 (en) | 2011-06-21 | 2012-12-27 | The Lubrizol Corporation | Lubricating composition containing a dispersant |
WO2012177529A1 (en) | 2011-06-21 | 2012-12-27 | The Lubrizol Corporation | Lubricating compositions containing salts of hydrocarbyl substituted acylating agents |
WO2013013026A1 (en) | 2011-07-21 | 2013-01-24 | The Lubrizol Corporation | Carboxylic pyrrolidinones and methods of use thereof |
WO2013012987A1 (en) | 2011-07-21 | 2013-01-24 | The Lubrizol Corporation | Overbased friction modifiers and methods of use thereof |
WO2013062924A2 (en) | 2011-10-27 | 2013-05-02 | The Lubrizol Corporation | Lubricating composition containing an esterified polymer |
WO2013066585A1 (en) | 2011-10-31 | 2013-05-10 | The Lubrizol Corporation | Ashless friction modifiers for lubricating compositions |
WO2013070376A2 (en) | 2011-11-11 | 2013-05-16 | Vanderbilt Chemicals, Llc | Lubricant composition |
WO2013101882A1 (en) | 2011-12-29 | 2013-07-04 | The Lubrizol Corporation | Limited slip friction modifiers for differentials |
EP2610332A1 (en) | 2011-12-30 | 2013-07-03 | The Lubrizol Corporation | Star polymer and lubricating composition thereof |
EP3088498A1 (en) | 2011-12-30 | 2016-11-02 | The Lubrizol Corporation | Use of star polymers |
WO2013122898A2 (en) | 2012-02-16 | 2013-08-22 | The Lubrizol Corporation | Lubricant additive booster system |
WO2014074197A1 (en) | 2012-09-11 | 2014-05-15 | The Lubrizol Corporation | Lubricating composition containing an ashless tbn booster |
WO2014088814A1 (en) | 2012-12-07 | 2014-06-12 | The Lubrizol Corporation | Pyran dispersants |
WO2014137580A1 (en) | 2013-03-07 | 2014-09-12 | The Lubrizol Corporation | Limited slip friction modifiers for differentials |
WO2014164087A1 (en) | 2013-03-12 | 2014-10-09 | The Lubrizol Corporation | Lubricating composition containing lewis acid reaction product |
WO2014193543A1 (en) | 2013-05-30 | 2014-12-04 | The Lubrizol Corporation | Lubricating composition containing an oxyalkylated hydrocarbyl phenol |
EP3556830A1 (en) | 2013-05-30 | 2019-10-23 | The Lubrizol Corporation | Lubricating composition containing an oxyalkylated hydrocarbyl phenol |
WO2015017172A1 (en) | 2013-07-31 | 2015-02-05 | The Lubrizol Corporation | Method of lubricating a transmission which includes a synchronizer with a non-metallic surface |
WO2015021135A1 (en) | 2013-08-09 | 2015-02-12 | The Lubrizol Corporation | Reduced engine deposits from dispersant treated with copper |
WO2015021129A1 (en) | 2013-08-09 | 2015-02-12 | The Lubrizol Corporation | Reduced engine deposits from dispersant treated with cobalt |
EP4438702A2 (en) | 2013-09-19 | 2024-10-02 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
EP3878933A1 (en) | 2013-09-19 | 2021-09-15 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
EP3842508A1 (en) | 2013-09-19 | 2021-06-30 | The Lubrizol Corporation | Use of lubricant compositions for direct injection engines |
WO2015106090A1 (en) | 2014-01-10 | 2015-07-16 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
WO2015106083A1 (en) | 2014-01-10 | 2015-07-16 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
WO2015138088A1 (en) | 2014-03-11 | 2015-09-17 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
WO2015138108A1 (en) | 2014-03-12 | 2015-09-17 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
WO2015138109A1 (en) | 2014-03-12 | 2015-09-17 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
WO2015171674A1 (en) | 2014-05-06 | 2015-11-12 | The Lubrizol Corporation | Lubricant composition containing an antiwear agent |
EP3517593A1 (en) | 2014-05-30 | 2019-07-31 | The Lubrizol Corporation | Low molecular weight amide/ester containing quaternary ammonium salts |
EP3536766A1 (en) | 2014-05-30 | 2019-09-11 | The Lubrizol Corporation | Epoxide quaternized quaternary ammonium salts |
WO2015183908A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Low molecular weight imide containing quaternary ammonium salts |
WO2015184251A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Branched amine containing quaternary ammonium salts |
WO2015184247A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | High molecular weight imide containing quaternary ammonium salts |
WO2015184276A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Epoxide quaternized quaternary ammonium salts |
WO2015184254A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | High molecular weight amide/ester containing quaternary ammonium salts |
WO2015184280A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Imidazole containing quaternary ammonium salts |
EP3524663A1 (en) | 2014-05-30 | 2019-08-14 | The Lubrizol Corporation | Imidazole containing quaternary ammonium salts |
EP3521404A1 (en) | 2014-05-30 | 2019-08-07 | The Lubrizol Corporation | Low molecular weight imide containing quaternary ammonium salts |
WO2015184301A2 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Coupled quaternary ammonium salts |
EP3514220A1 (en) | 2014-05-30 | 2019-07-24 | The Lubrizol Corporation | Low molecular weight amide/ester containing quaternary ammonium salts |
WO2015183916A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Low molecular weight amide/ester containing quaternary ammonium salts |
EP3511396A1 (en) | 2014-05-30 | 2019-07-17 | The Lubrizol Corporation | Low molecular weight imide containing quaternary ammonium salts |
WO2015195614A1 (en) | 2014-06-18 | 2015-12-23 | The Lubrizol Corporation | Motorcycle engine lubricant |
WO2016033397A1 (en) | 2014-08-28 | 2016-03-03 | The Lubrizol Corporation | Lubricating composition with seals compatibility |
WO2016044262A1 (en) | 2014-09-15 | 2016-03-24 | The Lubrizol Corporation | Dispersant viscosity modifiers with sulfonate functionality |
WO2016077134A1 (en) | 2014-11-12 | 2016-05-19 | The Lubrizol Corporation | Mixed phosphorus esters for lubricant applications |
WO2016090065A1 (en) | 2014-12-03 | 2016-06-09 | The Lubrizol Corporation | Lubricating composition containing an oxyalkylated hydrocarbyl phenol |
WO2016090121A1 (en) | 2014-12-03 | 2016-06-09 | The Lubrizol Corporation | Lubricating composition containing an oxyalkylated aromatic polyol compound |
WO2016090108A1 (en) | 2014-12-03 | 2016-06-09 | The Lubrizol Corporation | Lubricating composition containing an oxyalkylated aromatic polyol compound |
WO2016099490A1 (en) | 2014-12-17 | 2016-06-23 | The Lubrizol Corporation | Lubricating composition for lead and copper corrosion inhibition |
WO2016138227A1 (en) | 2015-02-26 | 2016-09-01 | The Lubrizol Corporation | Aromatic detergents and lubricating compositions thereof |
WO2016138248A1 (en) | 2015-02-26 | 2016-09-01 | The Lubrizol Corporation | Aromatic tetrahedral borate compounds for lubricating compositions |
US10336963B2 (en) | 2015-02-26 | 2019-07-02 | The Lubrizol Corporation | Aromatic tetrahedral borate compounds for lubricating compositions |
WO2016144880A1 (en) | 2015-03-09 | 2016-09-15 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
US10669505B2 (en) | 2015-03-18 | 2020-06-02 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2016148708A1 (en) | 2015-03-18 | 2016-09-22 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
US11608478B2 (en) | 2015-03-25 | 2023-03-21 | The Lubrizol Corporation | Lubricant compositions for direct injection engine |
US10577556B2 (en) | 2015-06-12 | 2020-03-03 | The Lubrizol Corporation | Michael adduct amino esters as total base number boosters for marine diesel engine lubricating compositions |
US10988702B2 (en) | 2015-07-20 | 2021-04-27 | The Lubrizol Corporation | Zinc-free lubricating composition |
US11518954B2 (en) | 2015-07-20 | 2022-12-06 | The Lubrizol Corporation | Zinc-free lubricating composition |
WO2017039855A2 (en) | 2015-07-20 | 2017-03-09 | The Lubrizol Corporation | Zinc-free lubricating composition |
WO2017031143A1 (en) | 2015-08-20 | 2017-02-23 | The Lubrizol Corporation | Azole derivatives as lubricating additives |
WO2017083243A1 (en) | 2015-11-11 | 2017-05-18 | The Lubrizol Corporation | Lubricating composition comprising thioether-substituted phenolic compound |
WO2017096175A1 (en) | 2015-12-02 | 2017-06-08 | The Lubrizol Corporation | Ultra-low molecular weight imide containing quaternary ammonium salts having short hydrocarbon tails |
WO2017096159A1 (en) | 2015-12-02 | 2017-06-08 | The Lubrizol Corporation | Ultra-low molecular weight amide/ester containing quaternary ammonium salts having short hydrocarbon tails |
US10975323B2 (en) | 2015-12-15 | 2021-04-13 | The Lubrizol Corporation | Sulfurized catecholate detergents for lubricating compositions |
WO2017147380A1 (en) | 2016-02-24 | 2017-08-31 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
EP3778837A1 (en) | 2016-02-24 | 2021-02-17 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2017176546A1 (en) | 2016-04-07 | 2017-10-12 | The Lubrizol Corporation | Mercaptoazole derivatives as lubricating additives |
EP3255129A1 (en) | 2016-06-06 | 2017-12-13 | The Lubrizol Corporation | Thiol-carboxylic adducts as lubricating additives |
WO2017218664A1 (en) | 2016-06-17 | 2017-12-21 | The Lubrizol Corporation | Lubricating compositions |
WO2017218654A1 (en) | 2016-06-17 | 2017-12-21 | The Lubrizol Corporation | Lubricating compositions |
WO2017218657A2 (en) | 2016-06-17 | 2017-12-21 | The Lubrizol Corporation | Polyisobutylene-substituted phenol, derivatives thereof, and lubricating compositions containing the polyisobutylene-substituted phenol and its derivatives |
WO2017218662A1 (en) | 2016-06-17 | 2017-12-21 | The Lubrizol Corporation | Lubricating compositions |
EP3263678A1 (en) | 2016-06-30 | 2018-01-03 | The Lubrizol Corporation | Hydroxyaromatic succinimide detergents for lubricating compositions |
WO2018017449A1 (en) | 2016-07-20 | 2018-01-25 | The Lubrizol Corporation | Alkyl phosphate amine salts for use in lubricants |
WO2018017454A1 (en) | 2016-07-20 | 2018-01-25 | The Lubrizol Corporation | Alkyl phosphate amine salts for use in lubricants |
WO2018017911A1 (en) | 2016-07-22 | 2018-01-25 | The Lubrizol Corporation | Aliphatic tetrahedral borate compounds for lubricating compositions |
WO2018017913A1 (en) | 2016-07-22 | 2018-01-25 | The Lubrizol Corporation | Aliphatic tetrahedral borate compounds for fully formulated lubricating compositions |
US11427780B2 (en) | 2016-09-12 | 2022-08-30 | The Lubrizol Corporation | Total base number boosters for marine diesel engine lubricating compositions |
WO2018048781A1 (en) | 2016-09-12 | 2018-03-15 | The Lubrizol Corporation | Total base number boosters for marine diesel engine lubricating compositions |
WO2018053098A1 (en) | 2016-09-14 | 2018-03-22 | The Lubrizol Corporation | Lubricating composition comprising sulfonate detergent and ashless hydrocarbyl phenolic compound |
WO2018052692A1 (en) | 2016-09-14 | 2018-03-22 | The Lubrizol Corporation | Lubricating composition and method of lubricating an internal combustion engine |
EP3851508A1 (en) | 2016-09-14 | 2021-07-21 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
US11162048B2 (en) | 2016-12-27 | 2021-11-02 | The Lubrizol Corporation | Lubricating composition with alkylated naphthylamine |
WO2018125567A1 (en) | 2016-12-27 | 2018-07-05 | The Lubrizol Corporation | Lubricating composition with alkylated naphthylamine |
WO2018125569A1 (en) | 2016-12-27 | 2018-07-05 | The Lubrizol Corporation | Lubricating composition including n-alkylated dianiline |
WO2018136541A1 (en) | 2017-01-17 | 2018-07-26 | The Lubrizol Corporation | Engine lubricant containing polyether compounds |
WO2019005738A1 (en) | 2017-06-27 | 2019-01-03 | The Lubrizol Corporation | Lubricating composition for and method of lubricating an internal combustion engine |
EP3896142A1 (en) | 2017-06-27 | 2021-10-20 | The Lubrizol Corporation | Lubricating composition for and method of lubricating an internal combustion engine |
WO2019023219A1 (en) | 2017-07-24 | 2019-01-31 | Chemtool Incorporated | Extreme pressure metal sulfonate grease |
WO2019108588A1 (en) | 2017-11-28 | 2019-06-06 | The Lubrizol Corporation | Lubricant compositions for high efficiency engines |
WO2019112720A1 (en) | 2017-12-04 | 2019-06-13 | The Lubrizol Corporation | Alkylphenol detergents |
WO2019118117A1 (en) | 2017-12-15 | 2019-06-20 | The Lubrizol Corporation | Alkylphenol detergents |
WO2019246192A1 (en) | 2018-06-22 | 2019-12-26 | The Lubrizol Corporation | Lubricating compositions for heavy duty diesel engines |
US11702610B2 (en) | 2018-06-22 | 2023-07-18 | The Lubrizol Corporation | Lubricating compositions |
WO2020102672A1 (en) | 2018-11-16 | 2020-05-22 | The Lubrizol Corporation | Alkylbenzene sulfonate detergents |
WO2020263964A1 (en) | 2019-06-24 | 2020-12-30 | The Lubrizol Corporation | Continuous acoustic mixing for performance additives and compositions including the same |
US12098345B2 (en) | 2019-12-18 | 2024-09-24 | The Lubrizol Corporation | Polymeric surfactant compound |
WO2021127183A1 (en) | 2019-12-18 | 2021-06-24 | The Lubrizol Corporation | Polymeric surfactant compound |
WO2022212844A1 (en) | 2021-04-01 | 2022-10-06 | The Lubrizol Corporation | Zinc free lubricating compositions and methods of using the same |
WO2024030591A1 (en) | 2022-08-05 | 2024-02-08 | The Lubrizol Corporation | Processes for producing reaction products including quaternary ammonium salts |
WO2024030592A1 (en) | 2022-08-05 | 2024-02-08 | The Lubrizol Corporation | Processes for producing radically-functionalized pibsa product derivatives and compositions comprising same |
WO2024158648A1 (en) | 2023-01-24 | 2024-08-02 | The Lubrizol Corporation | Lubricating composition with phenolic antioxidant and low active sulfur |
WO2024163826A1 (en) | 2023-02-03 | 2024-08-08 | The Lubrizol Corporation | Processes for producing reaction products including quaternary ammonium salts |
Also Published As
Publication number | Publication date |
---|---|
GB1055337A (en) | 1967-01-18 |
DE1271877B (en) | 1968-07-04 |
US3579450A (en) | 1971-05-18 |
US3632510A (en) | 1972-01-04 |
US3522179A (en) | 1970-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3542680A (en) | Oil-soluble carboxylic acid phenol esters and lubricants and fuels containing the same | |
US3381022A (en) | Polymerized olefin substituted succinic acid esters | |
US3533945A (en) | Lubricating oil composition | |
US3403102A (en) | Lubricant containing phosphorus acid esters | |
US3401185A (en) | Metal salts of phosphorus acids and process | |
US3859318A (en) | Products produced by post-treating oil-soluble esters of mono- or polycarboxylic acids and polyhydric alcohols with epoxides | |
US4151173A (en) | Acylated polyoxyalkylene polyamines | |
US4034038A (en) | Boron-containing esters | |
US3708522A (en) | Reaction products of high molecular weight carboxylic acid esters and certain carboxylic acid acylating reactants | |
US3876550A (en) | Lubricant compositions | |
US3338832A (en) | Lubricating oil containing reaction product of certain acylated nitrogen containing intermediates and a boron compound | |
US3346493A (en) | Lubricants containing metal complexes of alkenyl succinic acid-amine reaction product | |
US4328111A (en) | Modified overbased sulfonates and phenates | |
US3281428A (en) | Reaction product of certain acylated nitrogen containing intermediates and a boron compound | |
US4119550A (en) | Sulfurized compositions | |
US3282955A (en) | Reaction products of acylated nitrogen intermediates and a boron compound | |
US3639242A (en) | Lubricating oil or fuel containing sludge-dispersing additive | |
EP0394359B1 (en) | Mixtures of partial fatty acid esters of polyhydric alcohols and sulfurized compositions, and use as lubricant additives | |
US3489682A (en) | Metal salt compositions | |
US3256185A (en) | Lubricant containing acylated aminecarbon disulfide product | |
EP0199782B1 (en) | Sulfurized compositions and lubricants | |
US3630904A (en) | Lubricating oils and fuels containing acylated nitrogen additives | |
US4308154A (en) | Mixed metal salts and lubricants and functional fluids containing them | |
US3562159A (en) | Synthetic lubricants | |
JPS62502199A (en) | Hydrogen sulfide stabilized oil-soluble sulfurized organic composition |