US3535093A - Aluminum composite containing carbon fibers coated with silver - Google Patents
Aluminum composite containing carbon fibers coated with silver Download PDFInfo
- Publication number
- US3535093A US3535093A US727898A US3535093DA US3535093A US 3535093 A US3535093 A US 3535093A US 727898 A US727898 A US 727898A US 3535093D A US3535093D A US 3535093DA US 3535093 A US3535093 A US 3535093A
- Authority
- US
- United States
- Prior art keywords
- silver
- aluminum
- carbon fibers
- fibers
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052782 aluminium Inorganic materials 0.000 title description 32
- 239000002131 composite material Substances 0.000 title description 32
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title description 31
- 229910052709 silver Inorganic materials 0.000 title description 31
- 239000004332 silver Substances 0.000 title description 31
- 229920000049 Carbon (fiber) Polymers 0.000 title description 28
- 239000004917 carbon fiber Substances 0.000 title description 27
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 30
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 22
- 239000011159 matrix material Substances 0.000 description 22
- 239000000835 fiber Substances 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 239000000956 alloy Substances 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 10
- 239000010439 graphite Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- -1 silver-aluminum Chemical compound 0.000 description 7
- 239000004753 textile Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- LFAGQMCIGQNPJG-UHFFFAOYSA-N silver cyanide Chemical compound [Ag+].N#[C-] LFAGQMCIGQNPJG-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 241000518994 Conta Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- AZOGHWKWLDALDD-UHFFFAOYSA-N alumane;silver Chemical compound [AlH3].[AlH3].[Ag] AZOGHWKWLDALDD-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229940098221 silver cyanide Drugs 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/14—Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C47/00—Making alloys containing metallic or non-metallic fibres or filaments
- C22C47/02—Pretreatment of the fibres or filaments
- C22C47/04—Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/19—Inorganic fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12444—Embodying fibers interengaged or between layers [e.g., paper, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12486—Laterally noncoextensive components [e.g., embedded, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12625—Free carbon containing component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/1275—Next to Group VIII or IB metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2918—Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
Definitions
- the preferred process for producing such composites comprises contacting silver coated carbon fibers with an aluminum base material followed by hot pressing the so-contacted fibers at the solidus temperature of the aluminum base material to infiltrate aluminum around the silver coated fibers and then cooling the resultant article to a completely solidified state.
- Such composite articles are characterized by a high tensile strength coupled with a high modulus of elasticity and are especially suited as materials of construction for aerospace and hydrospace vehicles and systems.
- the present invention relates to high strength, high modulus composite refractory articles composed of a plurality of carbon fibers which are essentially coated with a thin layer of silver and/or silver base alloys and bonded together by an aluminum base matrix and to the process of producing the same.
- the prime object of forming such composites is to increase the strength of the metal matrix by the inclusion therein of high strength carbon fibers.
- Aluminum has been suggested as the matrix media for carbon fiber-metal composites which are intended for use in aerospace applications, in the main, due to its low density.
- attempts heretofore to incorporate carbon fibers in an aluminum matrix have met with little or no practical success due to the fact that carbon, especially its graphitic form, is not readily wetted by molten aluminum.
- Patented Oct. 20, 1970 The present invention overcomes the foregoing problem by employing an intermediate coating or wetting agent which when applied to the carbon fibers enables them to be readily bonded together by an aluminum base matrix material.
- the carbon fiber-aluminum composite article of the invention comprises a plurality of carbon fibers each of which is coated with either a thin layer of silver, a silver-aluminum base alloy or mixtures thereof and bonded together, preferably in a side-by-side or paral lel manner, with an aluminum binder or matrix material.
- this composite article may be provided by a process which comprises coating carbon fibers with a thin but essentially continuous film of silver, contacting the so-coated fibers with a solidified aluminum base material, hot pressing the so-produced assembly at the solidus temperature of the aluminum base material to infiltrate it around the coated fibers and cooling the resultant aluminum bonded carbon fibers to produce a composite article.
- This article can then be formed into any desired shape by known techniques which will readily suggest themselves to those skilled in the art.
- FIG. 1 is a diagrammatical illustration of a portion of carbon fiber-aluminum composite article produced according to the preferred teachings of the invention.
- FIG. 2 is a greatly magnified diagrammatical illustration of a single fiber found in the composite of FIG. 1.
- FIG. 1 shows a portion of a rectangular composite article 10 consisting of aligned graphite fibers 12 (the silver coating and aluminum-silver zone thereon are not shown) bonded together by an aluminum matrix 18.
- the graphite fibers 12 are disposed in the aluminum matrix in a parallel manner with their length dimension being perpendicular to the surface of the drawing.
- FIG. 2 shows a single graphite fiber 12 taken from the composite 10 of FIG. 1 having on its surface a coating of silver 14 and an aluminum-silver interface zone 16 between the silver coating and the aluminum matrix 18.
- Carbon textiles in any form can be employed in the practice of the instant invention. However, it is preferred to employ carbon fibers in yarn or multi-filament form. Carbon textiles are available commercially and are generally produced by the techniques described in US. Pats. 3,107,152 and 3,116,975, among others.
- Silver can be deposited on the carbon fibers by a variety of methods.
- the techniques available for accomplishing this include electrodeposition from a conductive bath, reduction of salts to the metal or sputtering.
- the exact deposition technique to be employed is dictated by a number of factors.
- Sputtering can be used on relatively complex shapes and results in a tenacious bond between the thin silver coating and the carbon fiber substrate. Such a bond is a highly desirable feature in carbon fibermetal matrix composites. Dipping of the carbon fibers into a silver containing solution and chemically reducing the salt to the metal can also be employed, however, with this technique it is difiicult to accurately control the thickness of the silver coating.
- Electrodeposition of silver from a conductive bath is an ideal way of coating carbon fibers with a thin film of silver and is the preferred method since it results in a uniform, tenaciously bonded metallic coating.
- the slightly oxidized fibers were immediately plated electrolytically with silver by placing them in a strike solution for about 5 to seconds and then into a conventional plating solution for about 5 to 10 seconds.
- the plating current employed was about 400 milliamps for the strike solution and between about 600 to 800 milliamps for the conventional plating solution.
- the make up of the strike and conventional plating solution was as follows:
- KCN Potassium cyanide
- the composite was subsequently cooled in the mold to room temperature and then formed into a inch X inch X 1 inch specimen for physical property measurements.
- This specimen evidenced an average tensile strength of 44,100 lb./lb. and a Youngs modulus of 13.0 10 1b./in.
- the table below shows the improvement obtained by incorporating silver coated graphite fibers in an aluminum base matrix material by the technique of the instant in- 55 vention.
- the instant invention results in a unique type of composite comprising carbon fiber which are coated with either silver, a silver-aluminum base alloy or mixture thereof and bonded together by an aluminum base matrix.
- the carbon fibers may be randomly orientated in the aluminum matrix if more isotropic physical properties are desired without losing the benefits of the instant invention.
- the thickness of the silver can be varied as desired. All that is required is that it be thick enough to prevent the aluminum martix metal from coming into contact with the reinforcing carbon fibers to such an extent that there is essentially no bonding between the fibers and the matrix metal.
- graphite fibers and fabrics are preferred in the practice of the instant invention, non-graphitic carbon fibers and fabrics may also be employed.
- the preferred practice of the invention inyolves infiltrating the matrix metal around the filaments by heating the metal to a temperature at which it begins to melt but below that at which it becomes completely liquid, i.e., at its solidus temperature, and then forcing the so-softened matrix metal around the individual filaments by the means of an applied pressure.
- the amount of pressure to be applied is not particularly critical and need only be sufficient to compact the fibers and matrix material into an essentially non-porous article.
- carbon as used herein and in the appended claims is meant to include both the non-graphitic and graphitic forms of carbon.
- a refractory composite article comprising a plurality of carbon fibers bonded together by an aluminum base matrix, said carbon fibers having an essentially continuous coating of a material selected from the group TABLE-PROPERTIES OF GRAPIIITE-FIBER, ALUMINUM COMPOSITE Aluminum Volume Yonngs Tensile layers in percent modulus, strength, composite of fibers X10 lb./in. lb./in.
- Matrix metal 0 .10. 4 36,100 Silver-coated fibers. 1G 13. 0 44, 100 Silver-coated fibe1s 28 15. 3 56, 700
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Ceramic Products (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US72789868A | 1968-05-09 | 1968-05-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3535093A true US3535093A (en) | 1970-10-20 |
Family
ID=24924555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US727898A Expired - Lifetime US3535093A (en) | 1968-05-09 | 1968-05-09 | Aluminum composite containing carbon fibers coated with silver |
Country Status (4)
Country | Link |
---|---|
US (1) | US3535093A (enrdf_load_stackoverflow) |
DE (1) | DE1912465B2 (enrdf_load_stackoverflow) |
FR (1) | FR2008114B1 (enrdf_load_stackoverflow) |
GB (1) | GB1187007A (enrdf_load_stackoverflow) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3717445A (en) * | 1969-11-12 | 1973-02-20 | Mitsubishi Steel Mfg | Electrode holder for electric arc furnace and make the same |
US3807996A (en) * | 1972-07-10 | 1974-04-30 | Union Carbide Corp | Carbon fiber reinforced nickel matrix composite having an intermediate layer of metal carbide |
US4132828A (en) * | 1976-11-26 | 1979-01-02 | Toho Beslon Co., Ltd. | Assembly of metal-coated carbon fibers, process for production thereof, and method for use thereof |
US4240830A (en) * | 1978-11-30 | 1980-12-23 | Westinghouse Electric Corp. | Method for making sintered metal-coated graphite for high-current collector brushes |
US4347083A (en) * | 1973-03-12 | 1982-08-31 | Union Carbide Corporation | Chemically bonded aluminum coating for carbon via monocarbides |
DE3144947A1 (de) * | 1980-11-14 | 1982-09-09 | Material Concepts, Inc., Columbus, Ohio | Verfahren zum behandeln einer faser |
US4402744A (en) * | 1973-03-12 | 1983-09-06 | Union Carbide Corporation | Chemically bonded aluminum coating for carbon via monocarbides |
US4416840A (en) * | 1981-12-21 | 1983-11-22 | General Electric Company | Al2 O3 Ceramic composite |
US4461855A (en) * | 1980-08-28 | 1984-07-24 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Resin composite reinforced with fibers having a flat-sided triangular shape |
US4546049A (en) * | 1982-12-17 | 1985-10-08 | Tokyo Shibaura Denki Kabushiki Kaisha | Ornamental composite of a metal alloy surrounding a mineral powder core for use in spectacle frames |
US4578287A (en) * | 1984-10-09 | 1986-03-25 | The United States Of America As Represented By The Secretary Of The Navy | Process for producing graphite fiber/aluminum-magnesium matrix composites |
US4609449A (en) * | 1982-03-16 | 1986-09-02 | American Cyanamid Company | Apparatus for the production of continuous yarns or tows comprising high strength metal coated fibers |
US4657822A (en) * | 1986-07-02 | 1987-04-14 | The United States Of America As Represented By The Secretary Of The Navy | Fabrication of hollow, cored, and composite shaped parts from selected alloy powders |
US4661403A (en) * | 1982-03-16 | 1987-04-28 | American Cyanamid Company | Yarns and tows comprising high strength metal coated fibers, process for their production, and articles made therefrom |
US4817578A (en) * | 1986-07-31 | 1989-04-04 | Honda Giken Kogyo Kabushiki Kaisha | Internal combustion engine |
US4853294A (en) * | 1988-06-28 | 1989-08-01 | United States Of America As Represented By The Secretary Of The Navy | Carbon fiber reinforced metal matrix composites |
US4909910A (en) * | 1982-03-16 | 1990-03-20 | American Cyanamid | Yarns and tows comprising high strength metal coated fibers, process for their production, and articles made therefrom |
US4942090A (en) * | 1982-03-16 | 1990-07-17 | American Cyanamid | Chaff comprising metal coated fibers |
US6548013B2 (en) | 2001-01-24 | 2003-04-15 | Scimed Life Systems, Inc. | Processing of particulate Ni-Ti alloy to achieve desired shape and properties |
DE102004002343A1 (de) * | 2004-01-16 | 2005-08-11 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Hybridfaser, Verfahren zu ihrer Herstellung und Verwendung |
WO2008089722A3 (de) * | 2007-01-24 | 2008-12-04 | Eads Deutschland Gmbh | Faserverbundwerkstoff mit metallischer matrix und verfahren zu seiner herstellung |
US10124402B2 (en) | 2016-03-04 | 2018-11-13 | Korea Institute Of Science And Technology | Methods for manufacturing carbon fiber reinforced aluminum composites using stir casting process |
US11667996B2 (en) | 2017-12-05 | 2023-06-06 | Ut-Battelle, Llc | Aluminum-fiber composites containing intermetallic phase at the matrix-fiber interface |
CN119265446A (zh) * | 2024-12-05 | 2025-01-07 | 内蒙古恒铸智造科技有限公司 | 一种铝基复合材料及其制备方法和应用 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5138643B1 (enrdf_load_stackoverflow) * | 1970-09-30 | 1976-10-22 | ||
US3894677A (en) * | 1971-03-24 | 1975-07-15 | Nasa | Method of preparing graphite reinforced aluminum composite |
FR2698582B1 (fr) * | 1992-11-30 | 1995-02-24 | Aerospatiale | Matériau composite à fibres de renfort et à matrice métallique. |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3038248A (en) * | 1954-11-04 | 1962-06-12 | Kremer Henry | Strengthening of metal |
US3187422A (en) * | 1956-08-27 | 1965-06-08 | Owens Corning Fiberglass Corp | Reinforcement of metal |
US3256596A (en) * | 1961-02-06 | 1966-06-21 | William S Fiedler | Process for making article of vitreous material and metal |
-
1968
- 1968-05-09 US US727898A patent/US3535093A/en not_active Expired - Lifetime
-
1969
- 1969-02-07 FR FR6902881A patent/FR2008114B1/fr not_active Expired
- 1969-02-10 GB GB7013/69A patent/GB1187007A/en not_active Expired
- 1969-03-12 DE DE19691912465 patent/DE1912465B2/de active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3038248A (en) * | 1954-11-04 | 1962-06-12 | Kremer Henry | Strengthening of metal |
US3187422A (en) * | 1956-08-27 | 1965-06-08 | Owens Corning Fiberglass Corp | Reinforcement of metal |
US3256596A (en) * | 1961-02-06 | 1966-06-21 | William S Fiedler | Process for making article of vitreous material and metal |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3717445A (en) * | 1969-11-12 | 1973-02-20 | Mitsubishi Steel Mfg | Electrode holder for electric arc furnace and make the same |
US3807996A (en) * | 1972-07-10 | 1974-04-30 | Union Carbide Corp | Carbon fiber reinforced nickel matrix composite having an intermediate layer of metal carbide |
US4402744A (en) * | 1973-03-12 | 1983-09-06 | Union Carbide Corporation | Chemically bonded aluminum coating for carbon via monocarbides |
US4347083A (en) * | 1973-03-12 | 1982-08-31 | Union Carbide Corporation | Chemically bonded aluminum coating for carbon via monocarbides |
US4132828A (en) * | 1976-11-26 | 1979-01-02 | Toho Beslon Co., Ltd. | Assembly of metal-coated carbon fibers, process for production thereof, and method for use thereof |
US4240830A (en) * | 1978-11-30 | 1980-12-23 | Westinghouse Electric Corp. | Method for making sintered metal-coated graphite for high-current collector brushes |
US4461855A (en) * | 1980-08-28 | 1984-07-24 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Resin composite reinforced with fibers having a flat-sided triangular shape |
DE3144947A1 (de) * | 1980-11-14 | 1982-09-09 | Material Concepts, Inc., Columbus, Ohio | Verfahren zum behandeln einer faser |
US4416840A (en) * | 1981-12-21 | 1983-11-22 | General Electric Company | Al2 O3 Ceramic composite |
US4909910A (en) * | 1982-03-16 | 1990-03-20 | American Cyanamid | Yarns and tows comprising high strength metal coated fibers, process for their production, and articles made therefrom |
US4609449A (en) * | 1982-03-16 | 1986-09-02 | American Cyanamid Company | Apparatus for the production of continuous yarns or tows comprising high strength metal coated fibers |
US4661403A (en) * | 1982-03-16 | 1987-04-28 | American Cyanamid Company | Yarns and tows comprising high strength metal coated fibers, process for their production, and articles made therefrom |
US4942090A (en) * | 1982-03-16 | 1990-07-17 | American Cyanamid | Chaff comprising metal coated fibers |
US4546049A (en) * | 1982-12-17 | 1985-10-08 | Tokyo Shibaura Denki Kabushiki Kaisha | Ornamental composite of a metal alloy surrounding a mineral powder core for use in spectacle frames |
US4578287A (en) * | 1984-10-09 | 1986-03-25 | The United States Of America As Represented By The Secretary Of The Navy | Process for producing graphite fiber/aluminum-magnesium matrix composites |
US4657822A (en) * | 1986-07-02 | 1987-04-14 | The United States Of America As Represented By The Secretary Of The Navy | Fabrication of hollow, cored, and composite shaped parts from selected alloy powders |
US4817578A (en) * | 1986-07-31 | 1989-04-04 | Honda Giken Kogyo Kabushiki Kaisha | Internal combustion engine |
US4853294A (en) * | 1988-06-28 | 1989-08-01 | United States Of America As Represented By The Secretary Of The Navy | Carbon fiber reinforced metal matrix composites |
US6548013B2 (en) | 2001-01-24 | 2003-04-15 | Scimed Life Systems, Inc. | Processing of particulate Ni-Ti alloy to achieve desired shape and properties |
DE102004002343A1 (de) * | 2004-01-16 | 2005-08-11 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Hybridfaser, Verfahren zu ihrer Herstellung und Verwendung |
DE102004002343B4 (de) * | 2004-01-16 | 2006-08-03 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Hybridfaser, Verfahren zu ihrer Herstellung und Verwendung |
WO2008089722A3 (de) * | 2007-01-24 | 2008-12-04 | Eads Deutschland Gmbh | Faserverbundwerkstoff mit metallischer matrix und verfahren zu seiner herstellung |
US20100092751A1 (en) * | 2007-01-24 | 2010-04-15 | Airbus Sas | Fiber composite comprising a metallic matrix, and method for the production thereof |
JP2010516504A (ja) * | 2007-01-24 | 2010-05-20 | エアバス・エスエーエス | 金属質母材を備えた繊維複合材料及びその製造方法 |
CN101636516B (zh) * | 2007-01-24 | 2011-12-14 | 空中巴士公司 | 制备带有金属基体的纤维复合材料的方法 |
RU2465364C2 (ru) * | 2007-01-24 | 2012-10-27 | Эрбус Сас | Волокнистый композиционный материал с металлической матрицей и способ его изготовления |
US10124402B2 (en) | 2016-03-04 | 2018-11-13 | Korea Institute Of Science And Technology | Methods for manufacturing carbon fiber reinforced aluminum composites using stir casting process |
US11667996B2 (en) | 2017-12-05 | 2023-06-06 | Ut-Battelle, Llc | Aluminum-fiber composites containing intermetallic phase at the matrix-fiber interface |
CN119265446A (zh) * | 2024-12-05 | 2025-01-07 | 内蒙古恒铸智造科技有限公司 | 一种铝基复合材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
DE1912465B2 (de) | 1972-06-22 |
FR2008114A1 (enrdf_load_stackoverflow) | 1970-01-16 |
FR2008114B1 (enrdf_load_stackoverflow) | 1975-07-04 |
DE1912465A1 (de) | 1970-02-26 |
GB1187007A (en) | 1970-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3535093A (en) | Aluminum composite containing carbon fibers coated with silver | |
US3571901A (en) | Method of fabricating a carbon-fiber reinforced composite article | |
US3622283A (en) | Tin-carbon fiber composites | |
US3553820A (en) | Method of producing aluminum-carbon fiber composites | |
US4341823A (en) | Method of fabricating a fiber reinforced metal composite | |
US3473900A (en) | Aluminum-carbon fiber composites | |
US3550247A (en) | Method for producing a metal composite | |
US3807996A (en) | Carbon fiber reinforced nickel matrix composite having an intermediate layer of metal carbide | |
US3860443A (en) | Graphite composite | |
US3918141A (en) | Method of producing a graphite-fiber-reinforced metal composite | |
US4157409A (en) | Method of making metal impregnated graphite fibers | |
HK51693A (en) | Titanium-copper-nickel braze filler metal | |
US3953647A (en) | Graphite fiber reinforced metal matrix composite | |
US3796587A (en) | Carbon fiber reinforced nickel matrix composite having an intermediate layer of metal carbide | |
US3894677A (en) | Method of preparing graphite reinforced aluminum composite | |
US4680093A (en) | Metal bonded composites and process | |
US2445858A (en) | Laminated structure | |
JPS6199692A (ja) | 繊維強化金属複合体 | |
EP0074277B1 (en) | Composite material | |
US5968671A (en) | Brazed composites | |
US2842440A (en) | Process of making structural material by heat bonding wire filaments | |
US3848847A (en) | Casting method for aluminum or aluminum alloys and a mold therefor | |
US3505177A (en) | Electroforming process | |
JP2005082876A (ja) | 炭素繊維強化アルミニウム基複合材料 | |
US20050247426A1 (en) | Method for manufacturing a mold core coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AMOCO CORPORATION, A CORP. OF INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:004634/0001 Effective date: 19860620 |