US3516850A - Process for metal coating a hydrogen permeable material - Google Patents

Process for metal coating a hydrogen permeable material Download PDF

Info

Publication number
US3516850A
US3516850A US579963A US3516850DA US3516850A US 3516850 A US3516850 A US 3516850A US 579963 A US579963 A US 579963A US 3516850D A US3516850D A US 3516850DA US 3516850 A US3516850 A US 3516850A
Authority
US
United States
Prior art keywords
titanium
chromium
hydrogen
substrate
halides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US579963A
Other languages
English (en)
Inventor
Gene F Wakefield
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Application granted granted Critical
Publication of US3516850A publication Critical patent/US3516850A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides

Definitions

  • PROCESS FOR METAL COATING A HYDROGEN PERMEABLE MATERIAL Filed Sept. 16, 1966 3 Sheets-Sheet 5 1 'UUUU/UUU III/II/l/ United States Patent 3,516,850 PROCESS FOR METAL COATING A HYDROGEN PERMEABLE MATERIAL Gene F. Wakefield, Richardson, Tex., assignor to Texas Instruments Incorporated, Dallas, Tex., a corporation of Delaware Filed Sept. 16, 1966, Ser. No. 579,963 Int. Cl. C23c 11/02, 17/00 US. Cl.
  • This invention relates to the deposition of metals upon a substrate by the reduction of the halides of the metals with hydrogen.
  • alloy deposits of titanium and chromium for example, are chemically vapor deposited upon a substrate from controlled mixtures of titanium and chromium halides by reduction with hydrogen.
  • one or more metals are deposited upon a surface of a substrate by the reduction of halides of one or more metals with hydrogen diffused through the substrate.
  • Refractory metals such as tantalum, molybdenum, columbium (niobium) and tungsten by way of examples, are especially desirable for applications requiring high strength at elevated temperature, particularly where ease of fabrication and ductility are needed. However, before any of these metals can satisfy a wide range of requirements, they must receive an oxidation resistant coating. Titanium and chromium, being metallurgically compatible with refractory metals, form a good base coating which, when alloyed with silicon, will protect them against oxidation.
  • objects of the present invention are to provide a method for the simultaneous production of titanium and chromium halides for the co-deposition of titanium and chromium upon a substrate; to provide a method of controlling the composition of the gas stream containing said metal halides; to provide a method for obtaining a uniform mixture of the two halide gas streams;
  • controlled uniform mixtures of titanium and chromium halides are obtained by flowing an appropriate titanium halide in an inert gas stream over heated chromium and titanium metals, contained in separate compartments within a generating chamber.
  • the relative concentration of halides obtained from the chamber can be controlled by regulating the amount of titanium halide gas entering each compartment, and by regulating the composition of the metals in each chamber.
  • the process of the present invention is operationally convenient because, in contrast with the prior art in which the flow rate of hydrogen chloride must be controlled, only the flow of titanium halide must be controlled since no hydrogen chloride is used.
  • the possibility of unreacted hydrogen chloride being present to inhibit the subsequent reduction of the metals is also eliminated which results in higher deposition rates.
  • the method of the present invention does not require that hydroscopic halides of either titanium or chromium be handled in the solid state.
  • the equipment and materials contained in the halide generating chamber can be heated under vacuum, if necessary, to remove any absorbed impurity gases without harming the subsequent deposition process. This is not usually possible when halide materials are contained in the reactor itself.
  • FIGS. 1 and 2 illustrate suitable apparatus for the generation of controlled mixtures of titanium and chromium halides and the simultaneous co-deposition of titanium and chromium metals from these halides upon a substrate;
  • FIG. 3 is a plot of the composition of the coating against the composition of the reactant gas phase.
  • FIGS. 4 and 5 illustrate suitable apparatus for controlling the rate of reaction and thickness of chemically vapor deposited metals upon a substrate by diffusing hydrogen through the substrate.
  • FIG. 1 depicts a coating reactor for the reduction of metallic halides with hydrogen.
  • the reactor is comprised of a furnace 1 containing a resistance heater (not shown), a halide inlet 2 at the top of the reactor, a reducing hydrogen inlet 3 at the upper part of one side of the reactor, a substrate 4 to be coated and located directly beneath the furnace 1, a substrate support 5, a substrate heater 14 mounted below the substrate upon the substrate support and an exhaust outlet 6 at the bottom of the reactor.
  • a halide generating chamber comprised of a quartz chamber 7 which is divided into two compartments 8 and 9, containing, for example, titanium metal 10 and chromium metal 11, respectively.
  • a divider plate 12 is located at one end of the chamber and an exit 13 is provided at the other end for the impingement of the mixture of gases upon the substrate 4.
  • Controlled mixtures of titanium trichloride (TiCl and chromium dichloride (CrCl may be obtained by flowing titanium tetrachloride (TiC1 in a stream of inert gas such as argon or helium over heated chromium and titanium metals contained in the compartments 8 and 9 within the chamber 7. The following reactions are believed to occur:
  • the metals are preferably maintained at a temperature between 750 C. and 900 C.
  • the preferred manner of controlling the relative concentration of chlorides obtained from the chamber 7 is by regulating the amount of titanium tetrachloride gas (TiCl entering each compartment. This may be accomplished by varying the size and number of holes in the divider plate 12, and by regulating the composition of the metals in each chamber, by which is meant that the same metal, chromium or titanium, is placed in both chambers, that chromium is placed in one chamber and titanium in the other, or that a mixture of titanium and chromium is placed in one chamber and either titanium or chromium is placed in the other.
  • titanium is placed in one compartment 8 and chromium in the other compartment 9.
  • This control of the ratio of titanium chloride to chromium chloride in the reactant gas stream allows control of the composition of the alloy deposited upon the substrate.
  • Hydrogen gas in excess of the stoichiometric amount which passes from inlet 3 downward through the reactor along the outside walls of the chloride generating chamber 7, then mixes into the stream of chlorides in the proximity of the heated substrate 4 to reduce the chlorides and produce pure titanium and chromium according to the following equation:
  • the pure titanium and chromium then deposit in alloy form upon the substrate 4, the HCl gas and other spent gases exit through exhaust 6.
  • the temperature of deposition which is preferably maintained from about 1250 C. to about 1375 C., by the substrate heater '14, which is heated by any suitable means (not shown) to the indicated temperature, also affects the ratio of metals in the deposit, higher temperatures favoring titanium reduction; lower temperatures favoring chromium reduction. Coatings formed by the utilization of the above-described chloride source and deposition process are uniform in appearance and thickness.
  • the relative concentration of halides in the reactant gas stream may also be controlled by the use of a single compartment generating chamber containing alloys of titanium and chromium, as shown in FIG. 2.
  • the composition of the alloy placed in the chamber determines the composition of the alloy deposited upon the substrate.
  • FIG. 2 depicts a single compartment halide generating chamber comprised of a quartz chamber 21 which contains an alloy of titanium and chromium 22, the rest of the apparatus being the same as shown in FIG. 1.
  • a titanium halide in an inert carrier gas stream is admitted through 4- inlet 23 and reduced by the metals in the alloy to form a stream of reactant gases which exits through outlet 24.
  • a titaniumchromium alloy 22 composed of 75% titanium and 25% chromium is placed in the chamber 21.
  • variation of the proportion of the titanium tetrachloride gas passed through each of the compartments and the selection of the metals placed in either compartment determine the composition of the alloy deposited upon the substrate 4.
  • titanium is placed in one compartment and chromium in the other.
  • Variation of the ratio of the amount of tetrachloride gas passed through the chromium compartment to the amount passed through the titanium compartment further varies the ratio of chromium to titanium in the alloy deposit.
  • Alloys of high chromium metal concentration for example to chromium and 10 to 5% titanium, have been obtained by placing only chromium metal in the chloride generating chamber. (A high concentration of chromium results because chromium is more readily reduced by the hydrogen gas.) Alloys of high titanium concentration have been produced by substituting a mixture of titanium and chromium metal in the chromium compartment 9, which is then reacted with the titanium tetrachloride. The alloys deposited utilizing this chloride source are about 95% titanium and 5% chromium, which is the result of the preferential formation of titanium chloride over chromium chloride in the gas phase, causing the chromium concentration in the alloy to be correspondingly low.
  • the graph in FIG. 3 expresses the composition of the coating deposit to be expected from any particular ratio of titanium trichloride to chromium dichloride in the reactant gas mixture over a range from near zero to about nineteen.
  • the coating method of the present invention also offers a practical solution to the problem of corrosion through the application of a corrosion resistant protective layer by chemical vapor deposition to a cheaper, stronger material such as low carbon steel. Application of these materials may be carried out following formation into the final desired shape.
  • hydrogen may be passed through the iron to form a coating by reaction of the outward diffusing hydrogen with a gaseous halide of one or more metals at the surface of the permeable substrate to be coated.
  • the reaction thus occurs at the interface of the solid containing hydrogen and the gas phase containing the reducible metal halides.
  • the hydrogen is contained on the inside of the tube and the gaseous metal halides are maintained on the exterior of the tube.
  • gaseous metal halides are contained within the tube and the hydrogen is introduced from the exterior.
  • a liquid or a fused salt solution containing a reducible metal halide is substituted for the gaseous metal halides.
  • the reaction occurs at the interface of the solid and the liquid containing the reducible metal halide.
  • the thickness of the metal coating is controlled inherently since the thicker portions of the coating tend to produce a slower rate of diffusion. Thus a leveling effect is produced.
  • the state of the absorbed hydrogen at the metal surface is atomic rather than molecular.
  • Atomic hydrogen is a better reducing agent than molecular hydrogen by approximately 50 k-caL/mole, the energy necessary to separate the hydrogen atoms. This permits reaction at temperatures and rates which are impossible with molecular hydrogen, such as the reduction of titanium chloride at 700 to 800 C.
  • molecular hydrogen such as the reduction of titanium chloride at 700 to 800 C.
  • FIG. 4 illustrates suitable apparatus for practicing an embodiment of the diffusion coating method described above, wherein the interior or exterior surface of a hydrogen permeable tube may be coated by the reaction of hydrogen and a gaseous metal halide by Way of example.
  • the coating reactor comprises a furnace 41 provided with heating coils 42 which maintain the furnace at the appropriate deposition temperature. Inlets 43 and 44 are located at the top of the reactor.
  • the substrate to be coated consists of a tube 45 which is attached to inlet 44 within the chamber 46. Exhaust outlet 47 at the end of tube 45 and exhaust outlet 48 at the bottom of the chamber 46 are for the exit of the spent gases.
  • hydrogen is introduced through inlet 44 and gaseous metal halides through inlet 43.
  • gaseous metal halides are introduced through the inlet 44 and hydrogen through inlet 43.
  • EXAMPLE III The reactor was first brought to an operating temperature of 1000 C.
  • An argon carrier gas stream containing 1.7 atomic percent titanium trichloride (TiCl was admitted through inlet 44 and passed through a steel tube 45 having a wall thickness of 32 mils.
  • Hydrogen gas was admitted through inlet 43 and allowed to purge the chamber 46 of atmospheric gases. Thereafter, the exhaust valve 48 was closed and the hydrogen gas was maintained in chamber 46 at a pressure of 25 p.s.i.
  • An operating time of 30 minutes produced a coating of titanium on the interior of the tube on the order of 1 mil in thickness.
  • FIG. 5 illustrates suitable apparatus for practicing another embodiment of the diffusion coating method of the invention, wherein a flat hydrogen-permeable sheet may be coated by the reaction of hydrogen and a reducible metal halide contained in a fused salt solution.
  • FIG. 5 depicts a flat iron plate 51 to be coated on its upper surface, mounted between a hydrogen chamber 52 provided with heating coils 53 and a fused salt chamber 54 also provided with heating coils 55. These coils are shown separate but they need not be.
  • Hydrogen chamber 52 is further provided with an inlet 56 near the top of one side of said chamber and an outlet 57 near the bottom of the other side.
  • the invention supplies a method for the simultaneous production of titanium and chromium halides for the co-deposition of titanium and chromium upon a substrate which advantageously, provides a control of the composition of the gas stream containing said metal halides, and results in uniform mixtures of the two halide gas streams.
  • a further advantage of the invention is the elimination of hydrogen chloride from the reactant mixture, thus favoring the deposition of titanium.
  • the invention also provides a method for controlling the rate of reaction and thickness of a chemically vapor deposited metal upon a substrate by the diffusion of hydrogen through the substrate, thereby forming uniform coatings.
  • a method of controlling the rate of reaction and thickness of a metal coating deposited upon a hydrogenpermeable material by controlling the rate at which hydrogen is admitted to the reaction comprising the steps of:

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
US579963A 1966-09-16 1966-09-16 Process for metal coating a hydrogen permeable material Expired - Lifetime US3516850A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US57996366A 1966-09-16 1966-09-16

Publications (1)

Publication Number Publication Date
US3516850A true US3516850A (en) 1970-06-23

Family

ID=24319073

Family Applications (1)

Application Number Title Priority Date Filing Date
US579963A Expired - Lifetime US3516850A (en) 1966-09-16 1966-09-16 Process for metal coating a hydrogen permeable material

Country Status (4)

Country Link
US (1) US3516850A (cs)
DE (1) DE1621362A1 (cs)
FR (1) FR1564488A (cs)
GB (1) GB1197757A (cs)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645695A (en) * 1969-10-14 1972-02-29 Ncr Co Furnace apparatus for blocking sodium ions
US3658577A (en) * 1969-10-01 1972-04-25 Gene F Wakefield Vapor phase deposition of silicide refractory coatings
US3787233A (en) * 1969-10-14 1974-01-22 Ncr METHOD OF GROWING MOBILE POSITIVE ION FREE SiO{11 {11 FILMS

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2205583B1 (cs) * 1972-11-07 1975-09-12 Commissariat Energie Atomique
US4374163A (en) * 1981-09-29 1983-02-15 Westinghouse Electric Corp. Method of vapor deposition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2887407A (en) * 1957-08-05 1959-05-19 Manufacturers Chemical Corp Preparation of diffusion coatings on metals
US3072498A (en) * 1961-02-28 1963-01-08 Texaco Inc Method of tin plating copper
US3147154A (en) * 1961-05-25 1964-09-01 Texaco Inc Method of depositing metal-containing material onto an extended surface
US3351487A (en) * 1963-11-06 1967-11-07 Dow Chemical Co Process for plating permeable membrane
US3373018A (en) * 1965-02-17 1968-03-12 Allied Chem Production of rigid shapes of refractory metals by decomposition of the metal hexafluoride in the interstices of a green compact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2887407A (en) * 1957-08-05 1959-05-19 Manufacturers Chemical Corp Preparation of diffusion coatings on metals
US3072498A (en) * 1961-02-28 1963-01-08 Texaco Inc Method of tin plating copper
US3147154A (en) * 1961-05-25 1964-09-01 Texaco Inc Method of depositing metal-containing material onto an extended surface
US3351487A (en) * 1963-11-06 1967-11-07 Dow Chemical Co Process for plating permeable membrane
US3373018A (en) * 1965-02-17 1968-03-12 Allied Chem Production of rigid shapes of refractory metals by decomposition of the metal hexafluoride in the interstices of a green compact

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658577A (en) * 1969-10-01 1972-04-25 Gene F Wakefield Vapor phase deposition of silicide refractory coatings
US3645695A (en) * 1969-10-14 1972-02-29 Ncr Co Furnace apparatus for blocking sodium ions
US3787233A (en) * 1969-10-14 1974-01-22 Ncr METHOD OF GROWING MOBILE POSITIVE ION FREE SiO{11 {11 FILMS

Also Published As

Publication number Publication date
GB1197757A (en) 1970-07-08
FR1564488A (cs) 1969-04-25
DE1621362A1 (de) 1971-05-13

Similar Documents

Publication Publication Date Title
US3617359A (en) Process for the vapor deposition of metals
US4623400A (en) Hard surface coatings for metals in fluidized beds
US4699082A (en) Apparatus for chemical vapor deposition
US3188230A (en) Vapor deposition process and device
US4803127A (en) Vapor deposition of metal compound coating utilizing metal sub-halides and coated metal article
US5308399A (en) Method and apparatus for coating a structural component by gas diffusion
US3368914A (en) Process for adherently depositing a metal carbide on a metal substrate
US20040255859A1 (en) Method and apparatus for delivering precursors
US3771976A (en) Metal carbonitride-coated article and method of producing same
US4698244A (en) Deposition of titanium aluminides
US2887407A (en) Preparation of diffusion coatings on metals
US3540920A (en) Process of simultaneously vapor depositing silicides of chromium and titanium
US7955569B2 (en) Metal halide reactor for CVD and method
US2689807A (en) Method of coating refractory metal articles
US3516850A (en) Process for metal coating a hydrogen permeable material
US3061463A (en) Metallic diffusion
US3399980A (en) Metallic carbides and a process of producing the same
US5230847A (en) Method of forming refractory metal free standing shapes
US4890574A (en) Internal reactor for chemical vapor deposition
US4005990A (en) Superconductors
JPH0382765A (ja) 微粒および/または等軸粒組織のコーティングを有する物品
US3637422A (en) Dispersion-hardened tungsten alloy
US4054686A (en) Method for preparing high transition temperature Nb3 Ge superconductors
EP0117542A2 (en) Chemical vapor deposition of metal compound coatings utilizing metal sub-halides
US4957780A (en) Internal reactor method for chemical vapor deposition