US3617359A - Process for the vapor deposition of metals - Google Patents

Process for the vapor deposition of metals Download PDF

Info

Publication number
US3617359A
US3617359A US817591*A US3617359DA US3617359A US 3617359 A US3617359 A US 3617359A US 3617359D A US3617359D A US 3617359DA US 3617359 A US3617359 A US 3617359A
Authority
US
United States
Prior art keywords
titanium
chromium
substrate
hydrogen
halides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US817591*A
Inventor
Gene F Wakefield
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Application granted granted Critical
Publication of US3617359A publication Critical patent/US3617359A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides

Definitions

  • Hassell and Harold Levine ABSTRACT A method of vapor depositing metal on a substrate by reducing titanium and chromium halides with hydrogen under controlled conditions to chemically vapor deposit titanium and chromium alloys on the substrate. Best results are obtained when the halides are introduced into the deposition chamber as a gaseous mixture with an inert gas carner.
  • This invention relates to the deposition of metals upon a substrate by the reductionof the halides of the metals with hydrogen.
  • alloy deposits of titanium and chromium for example, are 'chemi cally vapor deposited upon a substrate from controlled mixtures of titanium and chromium halides-by reduction with hydrogen.
  • one or more metals are deposited upon a surface of a substrate by the reduction of halides of one or more metals with hydrogen diffused through the substrate.
  • Refractory metals such as tantalum, molybdenum, columbium (niobium) and tungsten by way of examples, are especially desirable for applications requiring high strength at elevated temperature, particularly where ease'of fabrication and ductility are needed. However, before any of these metals can satisfy a wide range of requirements, they must receive an oxidation resistant coating. Titanium and chromium, being metallurgicallycompatible with refractory metals, form a good base coating which, when alloyed with silicon, will protect them against oxidation.
  • objects of the present invention are to provide a method for the simultaneous production of titanium and chromium halides for the codeposition of titanium and chromium upon a substrate; to provide a method of controlling the composition of the gas stream containing said metal halides; to provide a method for obtaining a uniform mixture of the two halide gas streams; to eliminate the presence of hydrogen chloride in the reactant mixture; to provide a method for controlling the rate of reaction and thickness of a chemically vapor deposited metal upon a substrate by diffusing hydrogen through the substrate, and to provide a method for forming uniform coatings of a chemically vapor deposited metal upon a substrate.
  • controlled uniform mixtures of titanium and chromium halides are obtained by flowing an appropriate titanium halide in an inert gas stream over heated chromium and titanium metals, contained in separate compartments within a generating chamber.
  • the relative concentration of halides obtained from the chamber can be controlled by regulating the amount of titanium halide gas entering each compartment, and by regulating the composition of the metals in each chamber.
  • the process of the present invention is operationally convenient because, in contrast with the prior art in which the flow rate of hydrogen chloride must be controlled, only the flow of titanium halide must be controlled since no hydrogen chloride is used, The possibility of unreacted hydrogen chloride being present to inhibit the subsequent reduction of the metals is also eliminated which resultsin higher deposition rates. Furthermore, the method of the present invention does not require that hydroscopic halides of either titanium or chromium be handled in the solid state. Also the equipment and materials contained in the halide generating chamber can be heated under vacuum, if necessary, to remove any absorbed impurity gases without harming the subsequent deposition process. This is not usually possible when halide materials are contained in the reactor itself.
  • FIGS. 1 and 2 illustrate suitable apparatus for the generation of controlled mixtures of titanium. and chromium halides and the simultaneous codeposition of titanium and chromium metals from these halides upon asubstrate;
  • FIG. 3 is a plot of the composition of the coating against the composition of the reactant gas phase.
  • FIGS. 4 and 5 illustrate suitable apparatus for controlling the rate of reaction and thickness of chemically vapor deposited metals upon a substrate by diffusing hydrogen through the substrate.
  • FIG. 1 depicts a coating reactor for the reduction of metallic halides with hydrogen.
  • the reactor is comprised of a furnace 1 containing a resistance heaters (not shown), a halide inlet 2 at the top of the reactor, areducing hydrogen inlet 3 at the upper part of one side of the reactor, a substrate 4 to be coated and located directly beneath the furnace l, a substrate support 5, a substrate heater 14 mounted below the substrate upon the substrate support and an exhaust outlet 6 at the bottom of the reactor.
  • a halide generating chamber comprised of a quartz chamber 7 which is divided into two compartments 8 and 9, containing, for example, titanium metal 10 and chromium metal 11, respectively.
  • a divider plate 12 is located at one end of the chamber and an exit 13 is provided at the other end for the impingement of the mixture of gases upon the substrate 4.
  • Controlled mixtures of titanium trichloride (TiCl,) and chromium dichloride (CrCl may be obtained by flowing titanium tetrachloride (TiCL) in a stream of inert gas such as argon or helium over heated chromium and titanium metals contained in the compartments 8 and 9 within the chamber 7. The following reactions are believed to occur:
  • the metals are preferably maintained at a temperature between 750 C. and 900 C.
  • the preferred manner of controlling the relative concentration of chlorides obtained from the chamber 7 is by regulating the amount of titanium tetrachloride gas (TiCL) entering each compartment. This may be accomplished by varying the size and number of holes in the divider plate 12, and by regulating the composition of the metals in each chamber, by which is meant that the same metal, chromium or titanium, is placed in both chambers, that chromium is placed in one chamber and titanium in the other, or that a mixture of titanium and chromium is placed in one chamber and either titanium or chromium is placed in the other.
  • TiCL titanium tetrachloride gas
  • This control of the ratio of titanium chloride to chromium chloride in the reactant gas stream allows control of the composition of the alloy deposited upon the substrate.
  • Hydrogen gas in excess of the stoichiometric amount which passes from inlet 3 downward through the reactor along the outside walls of the chloride generating chamber 7, then mixes into the stream of chlorides in the proximity of the heated substrate 4 to reduce the chlorides and produce pure titanium and chromium according to the following equation:
  • the relative concentration of halides in the reactant gas stream may also be controlled by the use of a single compartment generating chamber containing alloys of titanium and chromium, as shown in FIG. 2.
  • the composition of the alloy placed in the chamber determines the composition of the alloy deposited upon the substrate.
  • FIG. 2 depicts a single compartment halide generating chamber comprised of a quartz chamber 21 which contains an alloy of titanium and chromium 22, the rest of the apparatus being the same as shown in FIG. 1.
  • a titanium halide in an inert carrier gas stream is admitted through inlet 23 and reduced by the metals in the alloy to form a stream of reactant gases which exits through outlet 24.
  • a titanium-chromium alloy 22 composed of 75% titanium and 25% chromium is placed in the chamber 21.
  • variation of the proportion of the titanium tetrachloride gas passed through each of the compartments and the selection of the metals placed in either compartment determine the composition of the alloy deposited upon the substrate 4.
  • titanium is placed in one compartment and chromium in the other.
  • Variation of the ratio of the amount of tetrachloride gas passed through the chromium compartment to the amount passed through the titanium compartment further varies the ratio of chromium to titanium in the alloy deposit.
  • Alloys of high chromium metal concentration for example 90 to 95% chromium and to 5% titanium, have been obtained by placing only chromium metal in the chloride generating chamber. (A high concentration of chromium results because chromium is more readily reduced by the hydrogen gas). Alloys of high titanium concentration have been produced by substituting a mixture of titanium and chromium metal in the chromium compartment 9, which is then reacted with the titanium tetrachloride. The alloys deposited utilizing this chloride source are about 95% titanium and 5% chromium, which is the result of the preferential formation of titanium chloride over chromium chloride in the gas phase, causing the chromium concentration in the alloy to be correspondingly low.
  • the graph in FIG. 3 expresses the composition of the coating deposit to be expected from any particular ratio of titanium trichloride to chromium dichloride in the reactant gas mixture over a range from near zero to about l9.
  • the coating method of the present invention also offers a practical solution to the problem of corrosion through the application of a corrosion resistant protective layer by chemical vapor deposition to a cheaper, stronger material such as low carbon steel. Application of these materials may be carried out following formation into the final desired shape.
  • hydrogen may be passed through the iron to form a coating by reaction of the outward difi'using hydrogen with a gaseous halide of one or more metals at the surface of the permeable substrate to be coated.
  • the reaction thus occurs at the interface of the solid containing hydrogen and the gas phase containing the reducible metal halides.
  • the hydrogen is contained on the inside of the tube and the gaseous metal halides are maintained on the exterior of the tube.
  • gaseous metal halides are contained within the tube and the hydrogen is introduced from the exterior.
  • a liquid or a fused salt solution containing a reducible metal halide is substituted for the gaseous metal halides.
  • the reaction occurs at the interface of the solid and the liquid containing the reducible metal halide.
  • the thickness of the metal coating is controlled inherently since the thicker portions of the coating tend to produce a slower rate of diffusion. Thus a leveling effect is produced.
  • the state of absorbed hydrogen at the metal surface is atomic rather than molecular.
  • Atomic hydrogen is a better reducing agent than molecular hydrogen by approximately 50 K- cal/mole, the energy necessary to separate the hydrogen atoms. This permits reaction at temperatures and rates which are impossible with molecular hydrogen. such as the reduction of titanium chloride at 700 to 800 C.
  • FIG. 4 illustrates suitable apparatus for practicing an embodiment of the difi'usion coating method described above, wherein the interior or exterior surface of a hydrogen permeable tube may be coated by the reaction of hydrogen and a gaseous metal halide by way of example.
  • the coating reactor comprises a furnace 41 provided with heating coils 42 which maintain the furnace at the appropriate deposition temperature. lnlets 43 and 44 are located at the top of the reactor.
  • the substrate to be coated consists of a tube 45 which is attached to inlet 44 within the chamber 46. Exhaust outlet 47 at the end of tube 45 and exhaust outlet 48 at the bottom of the chamber 46 are for the exit of the spent gasses.
  • hydrogen is introduced through inlet 44 and gaseous metal halides through inlet 43.
  • gaseous metal halides are introduced through the inlet 44 and hydrogen through inlet 43.
  • EXAMPLE Ill The reactor was first brought to an operating temperature of 1000 C.
  • An argon carrier gas stream containing 1.7 atomic titanium trichloride (Ticl was admitted through inlet 44 and passed through a steel tube 45 having a wall thickness of 32 mils.
  • Hydrogen gas was admitted through inlet 43 and allowed to purge the chamber 46 of atmospheric gases. Thereafter, the exhaust valve 48-was closed and the hydrogen gas was maintained in chamber46 at a pressure of 25 p.s.i.
  • An operating time of 30 minutes produced a coating of titanium on the interior of the tube on the order of l mil in thickness.
  • FIG. 5 illustrates suitable apparatus for practicing another embodiment of the diffusion coating method of the invention, wherein a flat hydrogen-permeable sheet may be coated by the reaction of hydrogen and a reducible metal halide containcd in a fused salt solution.
  • FIG. 5 depicts a flat iron plate 51 to be coated on its upper surface, mounted between a hydrogen chamber 52 provided with heating coils 53 and a fused salt chamber 54 also provided with heating coils 55. These coils are shown separate but they need not be.
  • Hydrogen chamber 52 is further provided with an inlet 56 near the top of one side of said chamber and an outlet 57 near the bottom of the other side.
  • the invention supplied a method for the simultaneous production of titanium and chromium halides for the codeposition of titanium and chromium upon a substrate which advantageously provides a control of the composition of the gas stream containing said metal halides, and results in uniform mixtures of the two halide gas streams.
  • a further advantage of the invention is the elimination of hydrogen chloride from the reactant mixture, thus favoring sition of titanium.
  • the invention also provides a metho for controlling the rate of reaction and thickness of a chemically vapor deposited metal upon a substrate by the diffusion of hydrogen through the substrate, thereby forming uniform coatings.
  • a method of forming an alloy deposit of chromium and titanium upon a heated substrate the process of simultaneously reducing halides of chromium and titanium with hydrogen in a gaseous steam at a surface of said substrate, including the step of passing a mixture consisting essentially of an inert gas and a titanium halide gas through a heated chamber, said chamber containing chromium or an alloy of chromium and titanium, to produce the gaseous mixture of the halides of titanium and chromium.
  • gaseous mixture of halides comprises titanium trichloride and chromium dichloride.
  • said heated chamber comprises two compartments and one of said compartments contains titanium or a titanium-chromium alloy and the other compartment contains chromium or a chromiumtitanium alloy.
  • a method according to claim 3 wherein the amount of titanium halide gas entering each of said compartments is regulated by varying the size and number of holes in a divider plate located at the entrance to said two compartments.
  • one compartment of said heated chamber contains a mixture of titanium and chromium or an alloy of titanium and chromium and the other compartment contains titanium or a titanium-chromium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A method of vapor depositing metal on a substrate by reducing titanium and chromium halides with hydrogen under controlled conditions to chemically vapor deposit titanium and chromium alloys on the substrate. Best results are obtained when the halides are introduced into the deposition chamber as a gaseous mixture with an inert gas carrier.

Description

United States Patent Inventor Gene F. Wakefield [56] References Cited Ri h r T UNITED STATES PATENTS Q 5 3 2,885,310 5/1959 Olson etal 117/107.2x 1 7 9 6 966 2,887,407 5/1959 Koch 117/1072 ,1 3,188,230 6/1965 Bakish m1. 117/107.2x Pat-1033281607- 3,190,771 6/1965 McLean etal.... 117/107x Patented Nov-2,1971 3,252,823 5/1966 Jacobsen etal... 117/107.2x Asslsnee Texlnmumenslnmmmed 3265 521 8/1966 Spacil 117/1072 Dallas, Tex.
PROCESS FOR THE VAPOR DEPOSITION OF METALS 6 Claims, 5 Drawing Figs.
US. Cl. ..ll7/l07.2R
Int. Cl C23c 11/02 Field of Search 1 17/1072,
Primary Examiner-Alfred L. Leavitt Assistant Examiner-Wm. E. Hall Attorneys-Samuel M. Mims, Jr., James 0. Dixon, Andrew M.
Hassell and Harold Levine ABSTRACT: A method of vapor depositing metal on a substrate by reducing titanium and chromium halides with hydrogen under controlled conditions to chemically vapor deposit titanium and chromium alloys on the substrate. Best results are obtained when the halides are introduced into the deposition chamber as a gaseous mixture with an inert gas carner.
TICI +ARGON,Z
HYDR 0GEN,3
FURNACE,/
DIVIDER PLATE 1? QUARTZ CHAMBER] TITANIUM COMPARTMENT,8
CHROMIUM COMPARTMENT,9 TITANIUM METAL,/0
CHROMIUM METAL,
SUBSTRATE, 4 SUBSTRATE HEATER,/4
SUBSTRATE SUPPORT,5
lNVEN'lOR EXHAUST,6 Gene Wakefield PROCESS FOR THE VAPOR DEPOSITION OF METALS This is a division of application serial number 579,963 tiled Sept. 16, 1966 now U.S. Pat. No. 3,428,607.
This invention relates to the deposition of metals upon a substrate by the reductionof the halides of the metals with hydrogen. According to one aspect of the invention, alloy deposits of titanium and chromium, for example, are 'chemi cally vapor deposited upon a substrate from controlled mixtures of titanium and chromium halides-by reduction with hydrogen. According to another aspect of the invention, one or more metals are deposited upon a surface of a substrate by the reduction of halides of one or more metals with hydrogen diffused through the substrate.
Refractory metals, such as tantalum, molybdenum, columbium (niobium) and tungsten by way of examples, are especially desirable for applications requiring high strength at elevated temperature, particularly where ease'of fabrication and ductility are needed. However, before any of these metals can satisfy a wide range of requirements, they must receive an oxidation resistant coating. Titanium and chromium, being metallurgicallycompatible with refractory metals, form a good base coating which, when alloyed with silicon, will protect them against oxidation.
While many techniques can be employed to prepare coatings of titanium and chromium, several features make the vapor streaming technique of chemical vapor deposition especially desirable. Process parameters may beindividually and accurately controlled, allowing high reproducibility. Also, the chemical vapor deposition process possesses the inherent ability to form an overlay coating, that is, a coating which can be applied to a substrate with minimum interaction.
Attempts to coreduce titanium and chromium halides produced separately and individually introduced into a deposition chamber fail to yield satisfactory codeposits of titanium and chromium alloys upon a substrate, because of nonuniform mixing of the two halide gas streams and inadequate control of the composition of the reactant gas stream. Furthermore, in the separate production of, for example, the chlorides of the metals by the reaction of hydrogen chloride gas with the individual metals, 'the unreacted hydrogen chloride gas tends to inhibit the deposition of titanium metal.
Accordingly, objects of the present invention are to provide a method for the simultaneous production of titanium and chromium halides for the codeposition of titanium and chromium upon a substrate; to provide a method of controlling the composition of the gas stream containing said metal halides; to provide a method for obtaining a uniform mixture of the two halide gas streams; to eliminate the presence of hydrogen chloride in the reactant mixture; to provide a method for controlling the rate of reaction and thickness of a chemically vapor deposited metal upon a substrate by diffusing hydrogen through the substrate, and to provide a method for forming uniform coatings of a chemically vapor deposited metal upon a substrate.
in the preferred embodiment of the present invention, controlled uniform mixtures of titanium and chromium halides are obtained by flowing an appropriate titanium halide in an inert gas stream over heated chromium and titanium metals, contained in separate compartments within a generating chamber. The relative concentration of halides obtained from the chamber can be controlled by regulating the amount of titanium halide gas entering each compartment, and by regulating the composition of the metals in each chamber.
The process of the present invention is operationally convenient because, in contrast with the prior art in which the flow rate of hydrogen chloride must be controlled, only the flow of titanium halide must be controlled since no hydrogen chloride is used, The possibility of unreacted hydrogen chloride being present to inhibit the subsequent reduction of the metals is also eliminated which resultsin higher deposition rates. Furthermore, the method of the present invention does not require that hydroscopic halides of either titanium or chromium be handled in the solid state. Also the equipment and materials contained in the halide generating chamber can be heated under vacuum, if necessary, to remove any absorbed impurity gases without harming the subsequent deposition process. This is not usually possible when halide materials are contained in the reactor itself.
Other objects, features and advantages of the invention will become more readily understood from the following detailed description taken in conjunction with the appended claims and attached drawings in which:
FIGS. 1 and 2 illustrate suitable apparatus for the generation of controlled mixtures of titanium. and chromium halides and the simultaneous codeposition of titanium and chromium metals from these halides upon asubstrate;
FIG. 3 is a plot of the composition of the coating against the composition of the reactant gas phase; and
FIGS. 4 and 5 illustrate suitable apparatus for controlling the rate of reaction and thickness of chemically vapor deposited metals upon a substrate by diffusing hydrogen through the substrate.
Referring now to the FIGS. in detail, FIG. 1 depicts a coating reactor for the reduction of metallic halides with hydrogen. The reactor is comprised of a furnace 1 containing a resistance heaters (not shown), a halide inlet 2 at the top of the reactor, areducing hydrogen inlet 3 at the upper part of one side of the reactor, a substrate 4 to be coated and located directly beneath the furnace l, a substrate support 5, a substrate heater 14 mounted below the substrate upon the substrate support and an exhaust outlet 6 at the bottom of the reactor.
Mounted within the furnace l is a halide generating chamber comprised of a quartz chamber 7 which is divided into two compartments 8 and 9, containing, for example, titanium metal 10 and chromium metal 11, respectively. A divider plate 12 is located at one end of the chamber and an exit 13 is provided at the other end for the impingement of the mixture of gases upon the substrate 4.
Although the method of the present invention is described with reference to titanium and chromium chlorides, it is to be understood that other halides of titanium and chromium may also be utilized in accordance with the principles of the inven-. tion by selection of the appropriate apparatus, reactants, flow rates and temperatures. Accordingly, the detailed description given hereinafter is to be taken as exemplary.
Controlled mixtures of titanium trichloride (TiCl,) and chromium dichloride (CrCl may be obtained by flowing titanium tetrachloride (TiCL) in a stream of inert gas such as argon or helium over heated chromium and titanium metals contained in the compartments 8 and 9 within the chamber 7. The following reactions are believed to occur:
The metals are preferably maintained at a temperature between 750 C. and 900 C.
The preferred manner of controlling the relative concentration of chlorides obtained from the chamber 7 is by regulating the amount of titanium tetrachloride gas (TiCL) entering each compartment. This may be accomplished by varying the size and number of holes in the divider plate 12, and by regulating the composition of the metals in each chamber, by which is meant that the same metal, chromium or titanium, is placed in both chambers, that chromium is placed in one chamber and titanium in the other, or that a mixture of titanium and chromium is placed in one chamber and either titanium or chromium is placed in the other. Thus, for example, to deposit an alloy of nearly equal concentration of titanium and chromium, titanium is placed in one compartment 8 and chromium in the other compartment 9. The incoming gaseous titanium tetrachloride from inlet 2, carried in a stream of argon for example, is divided by the plate 12, one part flowing through compartment 8 and the other part flowing through compartment 9. Leaving the individual compartments after severally passing through the metals therewithin, the gases reunite in a common gas stream 13 at the base of the reactor. This control of the ratio of titanium chloride to chromium chloride in the reactant gas stream allows control of the composition of the alloy deposited upon the substrate.
Hydrogen gas in excess of the stoichiometric amount, which passes from inlet 3 downward through the reactor along the outside walls of the chloride generating chamber 7, then mixes into the stream of chlorides in the proximity of the heated substrate 4 to reduce the chlorides and produce pure titanium and chromium according to the following equation:
1350 C. ZTiClg SCrC]; 6H: 2T1 30: 121101 The pure titanium and chromium then deposit in alloy form upon the substrate 4, the HCl gas and other spent gases exit through exhaust 6. The temperature of deposition, which is preferably maintained from about 1,250 C. to about l,375 C. by the substrate heater 14, which is heated by any suitable means (not shown) to the indicated temperature, also affects the ratio of metals in the deposit, higher temperatures favoring titanium reduction; lower temperatures favoring chromium reduction. Coatings formed by the utilization of the abovedescribed chloride source and deposition process are uniform in appearance and thickness.
The relative concentration of halides in the reactant gas stream may also be controlled by the use of a single compartment generating chamber containing alloys of titanium and chromium, as shown in FIG. 2. The composition of the alloy placed in the chamber determines the composition of the alloy deposited upon the substrate.
FIG. 2 depicts a single compartment halide generating chamber comprised of a quartz chamber 21 which contains an alloy of titanium and chromium 22, the rest of the apparatus being the same as shown in FIG. 1. A titanium halide in an inert carrier gas stream is admitted through inlet 23 and reduced by the metals in the alloy to form a stream of reactant gases which exits through outlet 24.
To deposit an alloy of nearly equal concentration of titanium and chromium by way of example, a titanium-chromium alloy 22 composed of 75% titanium and 25% chromium is placed in the chamber 21. The incoming gaseous titanium tetrachloride from inlet 23, carried in a stream of argon for example, is reduced by the titanium and chromium in the alloy to form a mixture of titanium trichloride and chromium dichloride which exits through outlet 24 leading to the deposition site.
In the use of the two compartment halide generating chamber as illustrated in FIG. 1, variation of the proportion of the titanium tetrachloride gas passed through each of the compartments and the selection of the metals placed in either compartment determine the composition of the alloy deposited upon the substrate 4. As described above, to deposit an alloy of nearly equal concentration of titanium and chromiurn, titanium is placed in one compartment and chromium in the other. Variation of the ratio of the amount of tetrachloride gas passed through the chromium compartment to the amount passed through the titanium compartment further varies the ratio of chromium to titanium in the alloy deposit. Alloys of high chromium metal concentration, for example 90 to 95% chromium and to 5% titanium, have been obtained by placing only chromium metal in the chloride generating chamber. (A high concentration of chromium results because chromium is more readily reduced by the hydrogen gas). Alloys of high titanium concentration have been produced by substituting a mixture of titanium and chromium metal in the chromium compartment 9, which is then reacted with the titanium tetrachloride. The alloys deposited utilizing this chloride source are about 95% titanium and 5% chromium, which is the result of the preferential formation of titanium chloride over chromium chloride in the gas phase, causing the chromium concentration in the alloy to be correspondingly low.
The following examples further serve to illustrate typical applications of the basic principles of the invention to the simultaneous codeposition of chromium and titanium within a deposition unit of the type illustrated by FIG. 1.
EXAMPLE I To prepare an alloy deposit of the composition 45% titanium and 55% chromium metal, one compartment of the chloride generating chamber was appropriately filled with titanium, the other with chromium. A helium carrier gas stream containing 0.6 mole titanium tetrachloride was passed into the chloride generating chamber at the rate of 7 liters/min. The divider plate contained 10 holes on the titanium side and two holes on the chromium side, the holes being 40 mils in diameter. The ratio of titanium trichloride (TiCl,) to chromium dichloride (CrCl,) in the reactant gas mixture was 13 to l. The rate of flow of the reducing hydrogen stream was 7 liters/min. The resulting mixture of gases was reacted at the deposition site at the temperature of [370 C. The above conditions produced a deposition rate of l mg./cm.'/min.
EXAMPLE II To prepare an alloy deposit of the composition 93% chromium and 7% titanium metal, both compartments of the chloride generating chamber were appropriately filled with chromium. An argon carrier gas stream containing 1.4 mole titanium tetrachloride was passed into the chloride generating chamber at the rate of 5 liters/min. The ratio of titanium trichloride to chromium dichloride in the reactant gas mixture was about 2 to l. The rate of flow of the reducing hydrogen stream was 4 liters/min. The resulting mixture of gases was reacted at the deposition site at a temperature of l,350 C. The above conditions produced a deposition rate of ZmflcmF/min.
The graph in FIG. 3 expresses the composition of the coating deposit to be expected from any particular ratio of titanium trichloride to chromium dichloride in the reactant gas mixture over a range from near zero to about l9.
The coating method of the present invention also offers a practical solution to the problem of corrosion through the application of a corrosion resistant protective layer by chemical vapor deposition to a cheaper, stronger material such as low carbon steel. Application of these materials may be carried out following formation into the final desired shape.
For coating metals which have a high permeability to hydrogen, such as iron, hydrogen may be passed through the iron to form a coating by reaction of the outward difi'using hydrogen with a gaseous halide of one or more metals at the surface of the permeable substrate to be coated. The reaction thus occurs at the interface of the solid containing hydrogen and the gas phase containing the reducible metal halides. For coating the outside of objects such as tubes, the hydrogen is contained on the inside of the tube and the gaseous metal halides are maintained on the exterior of the tube. To coat the interior of the tube, gaseous metal halides are contained within the tube and the hydrogen is introduced from the exterior.
In another embodiment of this diffusion coating technique, a liquid or a fused salt solution containing a reducible metal halide is substituted for the gaseous metal halides. In this case the reaction occurs at the interface of the solid and the liquid containing the reducible metal halide.
Two advantages are obtained by utilizing the diffusion coating method: (1) the thickness of the metal coating is controlled inherently since the thicker portions of the coating tend to produce a slower rate of diffusion. Thus a leveling effect is produced. (2) According to the prevailing view, the state of absorbed hydrogen at the metal surface is atomic rather than molecular. Atomic hydrogen is a better reducing agent than molecular hydrogen by approximately 50 K- cal/mole, the energy necessary to separate the hydrogen atoms. This permits reaction at temperatures and rates which are impossible with molecular hydrogen. such as the reduction of titanium chloride at 700 to 800 C. However, applicant does not wish to be bound by the accuracy of the above stated prevailing view.
FIG. 4 illustrates suitable apparatus for practicing an embodiment of the difi'usion coating method described above, wherein the interior or exterior surface of a hydrogen permeable tube may be coated by the reaction of hydrogen and a gaseous metal halide by way of example. The coating reactor comprises a furnace 41 provided with heating coils 42 which maintain the furnace at the appropriate deposition temperature. lnlets 43 and 44 are located at the top of the reactor. The substrate to be coated consists of a tube 45 which is attached to inlet 44 within the chamber 46. Exhaust outlet 47 at the end of tube 45 and exhaust outlet 48 at the bottom of the chamber 46 are for the exit of the spent gasses. To coat the outside of the tube 45, hydrogen is introduced through inlet 44 and gaseous metal halides through inlet 43. To coat the inside of tube 45, gaseous metal halides are introduced through the inlet 44 and hydrogen through inlet 43.
The following example illustrates a typical application of the basic principles of the diffusion coating method of the invention within a deposition unit of the type illustrated by FIG. 4.
EXAMPLE Ill The reactor was first brought to an operating temperature of 1000 C. An argon carrier gas stream containing 1.7 atomic titanium trichloride (Ticl was admitted through inlet 44 and passed through a steel tube 45 having a wall thickness of 32 mils. Hydrogen gas was admitted through inlet 43 and allowed to purge the chamber 46 of atmospheric gases. Thereafter, the exhaust valve 48-was closed and the hydrogen gas was maintained in chamber46 at a pressure of 25 p.s.i. An operating time of 30 minutes produced a coating of titanium on the interior of the tube on the order of l mil in thickness.
FIG. 5 illustrates suitable apparatus for practicing another embodiment of the diffusion coating method of the invention, wherein a flat hydrogen-permeable sheet may be coated by the reaction of hydrogen and a reducible metal halide containcd in a fused salt solution. FIG. 5 depicts a flat iron plate 51 to be coated on its upper surface, mounted between a hydrogen chamber 52 provided with heating coils 53 and a fused salt chamber 54 also provided with heating coils 55. These coils are shown separate but they need not be. Hydrogen chamber 52 is further provided with an inlet 56 near the top of one side of said chamber and an outlet 57 near the bottom of the other side.
The following example illustrates a typical application of the basic principles of the diffusion coating method of the invention within a deposition unit of the type illustrated by FIG. 5.
EXAMPLE IV To coat a flat iron plate 5 mils thick, a mixture of 5 to atomic chromium trichloride (CrCl in a potassium chloride, lithium chloride liquid eutectic was maintained in the de chamber 54. l-Iydrogen gas was admitted through inlet 56 and allowed to purge the chamber 52 of atmospheric gases. Thereafter, the exhaust valve 57 was closed and the hydrogen gas maintained in chamber 52 at a pressure of 25 p.s.i. The apparatus was operated at 850 C. for 30 minutes to produce a crystalline deposit of chromium 0.5 mil thick on the upper surface of the flat iron plate.
Thus it may be seen that the invention supplied a method for the simultaneous production of titanium and chromium halides for the codeposition of titanium and chromium upon a substrate which advantageously provides a control of the composition of the gas stream containing said metal halides, and results in uniform mixtures of the two halide gas streams. A further advantage of the invention is the elimination of hydrogen chloride from the reactant mixture, thus favoring sition of titanium. The invention also provides a metho for controlling the rate of reaction and thickness of a chemically vapor deposited metal upon a substrate by the diffusion of hydrogen through the substrate, thereby forming uniform coatings.
It is to be understood that the above-described embodiments of the invention are merely illustrative of its principles. The apparatus shown and described may be modified to coat substrates of varying configurations using reducible metal halides contained in either a gaseous stream or a fused salt solution. Various other modifications may be devised by those skilled in the art to fit the character of the substrate to be coated without departing from the spirit and scope of the invention as defined by the appended claims.
What is claimed is:
1. In a method of forming an alloy deposit of chromium and titanium upon a heated substrate, the process of simultaneously reducing halides of chromium and titanium with hydrogen in a gaseous steam at a surface of said substrate, including the step of passing a mixture consisting essentially of an inert gas and a titanium halide gas through a heated chamber, said chamber containing chromium or an alloy of chromium and titanium, to produce the gaseous mixture of the halides of titanium and chromium.
2. The method of claim 1 wherein said gaseous mixture of halides comprises titanium trichloride and chromium dichloride.
3. A method according to claim 1 wherein said heated chamber comprises two compartments and one of said compartments contains titanium or a titanium-chromium alloy and the other compartment contains chromium or a chromiumtitanium alloy.
4. A method according to claim 3 wherein the amount of titanium halide gas entering each of said compartments is regulated by varying the size and number of holes in a divider plate located at the entrance to said two compartments.
5. The method of claim 3 wherein said titanium halide is titanium tetrachloride.
6. The method of claim 3 wherein one compartment of said heated chamber contains a mixture of titanium and chromium or an alloy of titanium and chromium and the other compartment contains titanium or a titanium-chromium.

Claims (5)

  1. 2. The method of claim 1 wherein said gaseous mixture of halides comprises titanium trichloride and chromium dichloride.
  2. 3. A method according to claim 1 wherein said heated chamber comprises two compartments and one of said compartments contains titanium or a titanium-chromium alloy and the other compartment contains chromium or a chromium-titanium alloy.
  3. 4. A method according to claim 3 wherein the amount of titanium halide gas entering each of said compartments is regulated by varying the size and number of holes in a divider plate located at the entrance to said two compartments.
  4. 5. The method of claim 3 wherein said titanium halide is titanium tetrachloride.
  5. 6. The method of claim 3 wherein one compartment of said heated chamber contains a mixture of titanium and chromium or an alloy of titanium and chromium and the other compartment contains titanium or a titanium-chromium.
US817591*A 1969-01-13 1969-01-13 Process for the vapor deposition of metals Expired - Lifetime US3617359A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81759169A 1969-01-13 1969-01-13

Publications (1)

Publication Number Publication Date
US3617359A true US3617359A (en) 1971-11-02

Family

ID=25223421

Family Applications (1)

Application Number Title Priority Date Filing Date
US817591*A Expired - Lifetime US3617359A (en) 1969-01-13 1969-01-13 Process for the vapor deposition of metals

Country Status (1)

Country Link
US (1) US3617359A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996400A (en) * 1973-04-25 1976-12-07 Centre Stephanois De Recherches Mecaniques Hydromecanique Et Frottement Method for surface coating ferrous alloy parts
US4343836A (en) * 1979-07-26 1982-08-10 United States Of America As Represented By The United States Department Of Energy One-directional uniformly coated fibers, method of preparation, and uses therefor
FR2577944A1 (en) * 1985-02-22 1986-08-29 Procedyne Corp HARD SURFACE COATINGS OF METALS IN FLUIDIZED BEDS
US4699082A (en) * 1983-02-25 1987-10-13 Liburdi Engineering Limited Apparatus for chemical vapor deposition
US5575902A (en) * 1994-01-04 1996-11-19 Chevron Chemical Company Cracking processes
US5593571A (en) * 1993-01-04 1997-01-14 Chevron Chemical Company Treating oxidized steels in low-sulfur reforming processes
US5723707A (en) * 1993-01-04 1998-03-03 Chevron Chemical Company Dehydrogenation processes, equipment and catalyst loads therefor
US5849969A (en) * 1993-01-04 1998-12-15 Chevron Chemical Company Hydrodealkylation processes
US5989733A (en) * 1996-07-23 1999-11-23 Howmet Research Corporation Active element modified platinum aluminide diffusion coating and CVD coating method
US6258256B1 (en) * 1994-01-04 2001-07-10 Chevron Phillips Chemical Company Lp Cracking processes
US6274113B1 (en) 1994-01-04 2001-08-14 Chevron Phillips Chemical Company Lp Increasing production in hydrocarbon conversion processes
US6419986B1 (en) 1997-01-10 2002-07-16 Chevron Phillips Chemical Company Ip Method for removing reactive metal from a reactor system
US6548030B2 (en) 1991-03-08 2003-04-15 Chevron Phillips Chemical Company Lp Apparatus for hydrocarbon processing
USRE38532E1 (en) 1993-01-04 2004-06-08 Chevron Phillips Chemical Company Lp Hydrodealkylation processes
US20050097991A1 (en) * 2003-09-19 2005-05-12 Angel Sanjurjo Methods and apparatuses for producing metallic compositions via reduction of metal halides
US20080050608A1 (en) * 2006-08-25 2008-02-28 Mcfaul Surry D Metal coating process and product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2885310A (en) * 1954-09-13 1959-05-05 Ohmite Mfg Company Method and apparatus for making film resistors
US2887407A (en) * 1957-08-05 1959-05-19 Manufacturers Chemical Corp Preparation of diffusion coatings on metals
US3188230A (en) * 1961-03-16 1965-06-08 Alloyd Corp Vapor deposition process and device
US3190771A (en) * 1962-01-11 1965-06-22 Electra Mfg Company Filament for vacuum deposition apparatus and method of making it
US3252823A (en) * 1961-10-17 1966-05-24 Du Pont Process for aluminum reduction of metal halides in preparing alloys and coatings
US3265521A (en) * 1963-01-02 1966-08-09 Gen Electric Method of forming a composite member with a metallic coating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2885310A (en) * 1954-09-13 1959-05-05 Ohmite Mfg Company Method and apparatus for making film resistors
US2887407A (en) * 1957-08-05 1959-05-19 Manufacturers Chemical Corp Preparation of diffusion coatings on metals
US3188230A (en) * 1961-03-16 1965-06-08 Alloyd Corp Vapor deposition process and device
US3252823A (en) * 1961-10-17 1966-05-24 Du Pont Process for aluminum reduction of metal halides in preparing alloys and coatings
US3190771A (en) * 1962-01-11 1965-06-22 Electra Mfg Company Filament for vacuum deposition apparatus and method of making it
US3265521A (en) * 1963-01-02 1966-08-09 Gen Electric Method of forming a composite member with a metallic coating

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996400A (en) * 1973-04-25 1976-12-07 Centre Stephanois De Recherches Mecaniques Hydromecanique Et Frottement Method for surface coating ferrous alloy parts
US4343836A (en) * 1979-07-26 1982-08-10 United States Of America As Represented By The United States Department Of Energy One-directional uniformly coated fibers, method of preparation, and uses therefor
US4699082A (en) * 1983-02-25 1987-10-13 Liburdi Engineering Limited Apparatus for chemical vapor deposition
FR2577944A1 (en) * 1985-02-22 1986-08-29 Procedyne Corp HARD SURFACE COATINGS OF METALS IN FLUIDIZED BEDS
US6548030B2 (en) 1991-03-08 2003-04-15 Chevron Phillips Chemical Company Lp Apparatus for hydrocarbon processing
USRE38532E1 (en) 1993-01-04 2004-06-08 Chevron Phillips Chemical Company Lp Hydrodealkylation processes
US5593571A (en) * 1993-01-04 1997-01-14 Chevron Chemical Company Treating oxidized steels in low-sulfur reforming processes
US5723707A (en) * 1993-01-04 1998-03-03 Chevron Chemical Company Dehydrogenation processes, equipment and catalyst loads therefor
US5849969A (en) * 1993-01-04 1998-12-15 Chevron Chemical Company Hydrodealkylation processes
US5866743A (en) * 1993-01-04 1999-02-02 Chevron Chemical Company Hydrodealkylation processes
US6258256B1 (en) * 1994-01-04 2001-07-10 Chevron Phillips Chemical Company Lp Cracking processes
US6274113B1 (en) 1994-01-04 2001-08-14 Chevron Phillips Chemical Company Lp Increasing production in hydrocarbon conversion processes
US5575902A (en) * 1994-01-04 1996-11-19 Chevron Chemical Company Cracking processes
US6291014B1 (en) 1996-07-23 2001-09-18 Howmet Research Corporation Active element modified platinum aluminide diffusion coating and CVD coating method
US5989733A (en) * 1996-07-23 1999-11-23 Howmet Research Corporation Active element modified platinum aluminide diffusion coating and CVD coating method
US6419986B1 (en) 1997-01-10 2002-07-16 Chevron Phillips Chemical Company Ip Method for removing reactive metal from a reactor system
US6551660B2 (en) 1997-01-10 2003-04-22 Chevron Phillips Chemical Company Lp Method for removing reactive metal from a reactor system
US20050097991A1 (en) * 2003-09-19 2005-05-12 Angel Sanjurjo Methods and apparatuses for producing metallic compositions via reduction of metal halides
US7559969B2 (en) * 2003-09-19 2009-07-14 Sri International Methods and apparatuses for producing metallic compositions via reduction of metal halides
US20080050608A1 (en) * 2006-08-25 2008-02-28 Mcfaul Surry D Metal coating process and product

Similar Documents

Publication Publication Date Title
US3617359A (en) Process for the vapor deposition of metals
US4623400A (en) Hard surface coatings for metals in fluidized beds
US4803127A (en) Vapor deposition of metal compound coating utilizing metal sub-halides and coated metal article
US3188230A (en) Vapor deposition process and device
Carlsson et al. Chemical vapor deposition
US4699082A (en) Apparatus for chemical vapor deposition
JP3875491B2 (en) Chemical properties of precursors for chemical vapor deposition of ruthenium or ruthenium oxide.
US3771976A (en) Metal carbonitride-coated article and method of producing same
US3368914A (en) Process for adherently depositing a metal carbide on a metal substrate
US3540920A (en) Process of simultaneously vapor depositing silicides of chromium and titanium
GB2256876A (en) Aluminium gas diffusion coating using heated aluminium particles
US4698244A (en) Deposition of titanium aluminides
US2887407A (en) Preparation of diffusion coatings on metals
US2689807A (en) Method of coating refractory metal articles
US3343979A (en) Method for depositing a tungsten-rhenium metal alloy on a substrate
US2604395A (en) Method of producing metallic bodies
US3061463A (en) Metallic diffusion
US3516850A (en) Process for metal coating a hydrogen permeable material
US3018194A (en) Metal plating process
US5230847A (en) Method of forming refractory metal free standing shapes
US4890574A (en) Internal reactor for chemical vapor deposition
US2815299A (en) Method of producing an adherent molybdenum coating on a metal substrate
US3637422A (en) Dispersion-hardened tungsten alloy
EP0117542A2 (en) Chemical vapor deposition of metal compound coatings utilizing metal sub-halides
US3471321A (en) Vapor coating aluminum on ironcontaining substrate