US3514674A - Device for electromagnetically controlling the position off an armature - Google Patents
Device for electromagnetically controlling the position off an armature Download PDFInfo
- Publication number
- US3514674A US3514674A US637155A US3514674DA US3514674A US 3514674 A US3514674 A US 3514674A US 637155 A US637155 A US 637155A US 3514674D A US3514674D A US 3514674DA US 3514674 A US3514674 A US 3514674A
- Authority
- US
- United States
- Prior art keywords
- closing
- core member
- current
- stationary
- interrupting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011162 core material Substances 0.000 description 87
- 230000005291 magnetic effect Effects 0.000 description 52
- 230000004907 flux Effects 0.000 description 17
- 239000000463 material Substances 0.000 description 17
- 239000003990 capacitor Substances 0.000 description 16
- 230000005294 ferromagnetic effect Effects 0.000 description 8
- 239000000696 magnetic material Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H51/00—Electromagnetic relays
- H01H51/22—Polarised relays
- H01H51/2209—Polarised relays with rectilinearly movable armature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F7/1607—Armatures entering the winding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/18—Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
- H01F7/1872—Bistable or bidirectional current devices
Definitions
- the disclosed operating device for moving, for example, a movable contact of a current interrupter from its closed position to its open position and vice versa comprises a pair of stationary magnetic cores of permanent magnet material disposed in spaced relation to opposed internal Walls of a magnetic housing and a movable armature movably disposed between the stationary cores to move the movable contact.
- Each stationary core is surrounded by an exciting coil having a parallel combination of currentlimiting resistor and a semi-conductor diode.
- a closing switch is closed to discharge a charge with one polarity on one of two capacitors into both coils through the respective resistor and diode combinations.
- the particular stationary core by which the armature is to be attracted is completely magnetized because of conduction of the associated diode while the other core magnetized oppositely. to the particular core is substantially completely demagnetized by means of the action of the associated limiting resistor with the result that the armature is moved to contact the movable contact with the associated stationary contact. Therefore, the armature and hence the movable contact is maintained at its moved position even after deenergization of the coils. In the interrupting operation, a process reversed from that above described is effected.
- This invention relates in general to an operating device and more particularly to such a device utilizing an electromagnet to move an element to be operated from one to the other of a pair of its positions and vice versa and to maintain the element at its moved position until it is desired to return back to its original position.
- the conventional type of operating devices referred to is very disadvantageous in View of the economical standpoint in that means should be provided for maintaining elements to be operated in their operated state.
- an operating device associated with a current interrupter and employing an electromagnet has been commonly required to include a mechanical mechanism for anchoring the interrupter to its operated position, in addition to the electromagnet.
- a mechanically anchoring mechanism has not been used but the operating coil involved has been forced to have a current continuously flowing therethrough.
- a general object of the invention to provide a new and improved operating device for moving an element to be operated from one to the other of its two positions and vice versa, simple in construction, compact, light in weight and inexpensive in which a movable part reduces in weight as well as the operative speed characteristics are greatly improved.
- an operating device for moving an element to be operated from one to the other of a pair of its position and vice versa, comprising at least one United States Patent 0 operating electromagnet controlled by an exciting coil to move the element, characterized by a stationary magnetic core member of permanent magnet material disposed in a magnetic circuit around the electromagnet, and means for controlling energization of the exciting coil to alternately magnetize and demagnetize the magnetic core member thereby to move the element and to maintain it at its moved position after deenergization of the exciting coil.
- a current limiter may advantageously be connected in series to the exciting coil to decrease a flow of current through the exciting coil upon demagnetizing the operating electromagnet as compared with that upon magnetizing the latter thereby to perform the magnetizing and demagnetizing operations by the common exciting coil.
- the operating device may comprise a housing made of a magnetic material, a pair of stationary magnetic core members of permanent magnet material rigidly secured in spaced relationship on the opposed internal wall surfaces of said housing, a movable armature member of magnetic material movably disposed between said pair of stationary magnetic core member and including a control rod controlling the position of said element to be operated, one exciting coil surrounding each of said stationary magnetic core members, a current limiter means connected in series circuit relationship to each of said exciting coils, and means for simultaneously energizing both of said exciting coils through said current limiters, said current limiter means being operative not to limit a flow of a current zfiowing through one exciting coil associated 'with the particular stationary magnetic core member by which said movable armature member is now to be attracted thereby to permit that stationary core member to be magnetized but to limit a current flowing through the other exciting coil to such a magnitude that the remaining stationary magnetic core member is substantially demagnetized.
- FIG. 1 is a side elevational view, in cross section of an operating device constructed in accordance with one embodiment of the invention
- FIG. 2 is a schematic diagram of a circuit which may be used with the operating device illustrated in FIG. 1, and
- FIG. 3 is a graph useful in explaining the principles of the invention.
- An arrangement illustrated comprises a housing 10 of any suitable magnetic material, an apertured stationary magnetic core member, or attracting and holding element, 12 made of any suitable permanent magnet material and rigidly secured to one internal wall surface, in this case, an upper internal wall surface as viewed in FIG. 1 of the housing 10, a stationary magnetic core member, or attracting and holding element, 14 of the same material as the core member 12 and rigidly secured to the opposed or lower internal wall surface of the housing 10, and a movable armature member 16 of any suitable magnetic material movably disposed between the upper and lower stationary core members 12 and 14.
- the movable armature member 16 is provided on that side facing the upper core member 12 with a central control rod 18 loosely extending through aligned apertures formed in both the upper core member 12 and the upper wall of the housing and having mounted at the extremity an element to be operated, in the illustrated example, a movable contact member 20 of the associated current interrupter (not shown).
- the movable contact member 20 is adapted to engage and disengage from a stationary contact member 22 opposing to the same.
- the upper core member 12 may be called a closing stationary core member and the lower core member 14 may be called an interrupting stationary core member for the reasons as will be apparent hereinafter.
- an exciting coil 24 surrounding the upper or closing stationary core member 12 and another exciting coil 26 surrounding the lower or interrupting stationary core member 14 as shown in FIG. 1.
- a flange-shaped protrusion 28 made of the same magnetic material as the housing 10' extends from the lateral internal wall surface of the housing toward the movable armature member 16.
- the upper stationary core member 12, the top housing wall, the upper half of the lateral housing wall, the protrusion 28 and the movable armature member 16 form a magnetic circuit through which a magnetic flux due to the upper coil 24 flows with a permanent magnet composed of the core member 12 disposed in the magnetic circuit.
- the lower stationary core member 14, the bottom housing wall, the lower half of the lateral housing wall, the protrusion 28 and the movable armature member 16 form another magnetic circuit including a permanent magnet.
- solid curve designates an initial magnetization curve along which the material of the upper stationary magnetic core 12 may be first progressively magnetized in one direction, for example, in a positive direction and then gradually demagnetized until it is substantially completely demagnetized and dotted curve designates a similar curve for the material of the lower stationary magnetic core member 14 in the case the core is first magnetized in a negative direction.
- the residual magnetic flux density thereof may have any desired magnitude.
- a magnetic field having a strength of H is applied to the closing stationary magnetic core member 12 through suitable energization of the closing coil 24 then the core member will have a residual flux density of B while a magnetic field having a strength of '-H will result in the core member 12 being substantially completely demagnetized or having the null residual flux density. Therefore alternate switching of the stationary magnetic core member 12 between its magnetized and non-magnetized or demagnetized states permits the movable armature member 16 to be alternately attracted to and released from the stationary core member 12. This is true in the case of the interrupting stationary magnetic core member 14. It is, however, to be noted that the interrupting core member 14 should be put in its magnetized state quite reversed from the closing core member 12.
- the closing coil 24 is energized such that it establishes in the material of the closing stationary magnetic core member 12 a magnetic field (H having such magnitude and direction that the core member 12 has a residual magnetic flux density of B while at the same time the interrupting coil 26 is energized such that it establishes in the material of the interrupting stationary magnetic core member 14 a magneitc field (H having such magnitude and direction that the core mem- 4 her 14 has the null residual flux density (see FIG. 3).
- the movable armature member 16 is released from the interrupting core member 14 to be permitted to be attracted by the closing core 12 thereby to close the associated interrupter through contacting of the movable contact 20 directly connected to the control core rod 18 with the stationary contact 22.
- the movable armature member 16 is maintained in contact with the closing core member 12 to hold the interrupter close until the subsequent interrupting operation is performed.
- This permits the movable armature 16 to be released from the upper core 12 and to contact the lower core 14 thereby to open the interrupter. Then the armature holds the interrupter in its open position after deenergization of the coils 24 and 26.
- the closing and interrupting coils 24 and 26 can be alternately driven into their predetermined energized states under which each coil alternately establishes in the material of the associated stationary magnetic core a magnetic field having respectively such magnitudes and directions that the core is magnetized and demagnetized respectively. Then with the coils driven in such energized states, the closing and interrupting operations are alternately performed and the associated current interrupter is alternately held in its closed and open positions after deenergization of the coils.
- the operating device illustrated in FIG. 1 can be effectively operated as above described by means of an electric circuit shown in FIG. 2.
- the closing coil 24 has one end connected to one terminal of any suitable source 30 of alternating current and the other end connected to the other terminal of the source through a current limiter network generally designated by the reference numeral 32, a series combination of normally open resettable switch 34 for use in the closing operation, a charging semiconductor diode 36 and a limiting resistor 38.
- the serially connected switch and diode 34 and 36 are electrically connected in parallel to a similar serial combination comprising a normally open, resettable switch 35 for use in the interrupting operation and a semiconductor diode 37 with both diodes poled reversely from each other.
- the current limited network 32 is shown as comprising a current limiting resistor R and a unidirectional conduction element or a semiconductor diode D connected in parallel to each other.
- the interrupting coil 26 has one end connected to the one terminal of the source 30 through a current limiter network 33 of the same construction as the network 32 and the other terminal connected to the other terminal of the source 30 through the abovementioned parallel combination of serially connected switches and diodes, and the resistor 38. Since the limiter network 32 and 33 are of the same construction the components of the network 33 are designated the same reference characters sufiixed with the numeral 2 rather than 1.
- a capacitor 40 is connected between a junction of the switch and diode 34 and 36 and the source 30 while another capacitor 41 is connected between a junction of the switch and diode 35 and 37 and the source 30. It is noted that the capacitors 40- and 41 are charged with opposite polarities from the source 30 respectively, as shown in FIG. 2.
- FIGS. 1 to 3 inclusive The closing operation will first be described in conjunction with FIGS. 1 to 3 inclusive.
- the closing stationary magnetic core member 12 has been substantially completely demagnetized while at the same time the interrupting stationary core member 14 has been in its magnetized state in which it has a residual magnetic flux density of B (see FIG. 3) as will be readily understood from the foregoing description.
- the capacitor 40 has been charged with one polarity while the capacitor 41 has been charged with opposite polarity from the source 30.
- the switch 34 for use in the closing operation can be enclosed to permit the charge on the capacitor 40 to discharge.
- the discharge current from the capacitor 40 flows into both the closing and interrupting coils 24 and 26.
- this discharge current flows forwardly with respect to the diode D of the current limiter network 32 of the coil 24 to cause it to short circuit the resistor R whereas the current flows reversely with respect to the diode D of the current limiter network 33 for the coil 26 to render it non-conducting whereby the resistor R of the network 33 remains serially connected to the coil 26.
- the closing coil 24 has flowing therethrough a current suflicient to produce in the material of the closing core member 12 a magnetic field having a magnitude of H for magnetizing the latter to saturation, but the interrupting coil 26 has flowing therethrough a current reduced in magnitude by the resistor R so as toestablish a magnetic field having a magnitude of H in the material of the interrupting core member 14.
- the resistor R should have a magnitude of resistance capable of establishing in the magnetic core material 14 a magnetic field having a magnitude of H in which the residual magnetic flux density of the core 14 just decreases from -B to Zero.
- the closing core member 12 has a residual flux density of B while at the same time the interrupting core member 14 completely demagnetized to have substantially a null residual flux density.
- This causes the movable armature member 16 to be released from the interrupitng core member 14 to be attracted by the closing core member 12 whereupon the movable contact 20 contacts the stationary contact 22 to close the current interrupter.
- the interrupter is held in its closed position after deenergization of the coils 24 and 26, through opening of the switch 34.
- the switch 35 for use in that operation is closed to permit the capacitor 41 to discharge.
- a discharge current from the capacitor 41 will flow through both the closing and interrupting coils 24 and 26.
- the discharge current flows forwardly with respect to the diode D of the current limiter network 33 for the interrupting coil 26 to conduct it to short circuit the associated resistor R while the current flows reversely with respect to the diode D to render it non-conducting whereby the associated resistor R remains serially connected to the closing coil 24.
- the interrupting coil 26 has flowing therethrough a current suflicient to produce in the material of the interrupting core member 14 a magnetic field having a magnitude of H for magnetizing the latter to saturation, but the closing coil 24 has flowing therethrough a current reduced by the resistor R to such a magnitude that a magnetic field having a magnitude of -H is produced in the material of the closing core member 12.
- the resistor R has a magnitude of resistance preselected to impart to the magnetic core material 12 a magnetic field having a magnitude of H in which the residual magnetic flux density of the core 12 just decreased from B to zero.
- the interrupting core member 14 has a residual flux density of -B,. while at the same time the closing core member 12 is demagnetized to have substantially a null residual flux density. This permits the movable armature member 16 to be separated from the closing core 12 to contact the interrupting core 14 thereby to disengage the movable contact 20 from the stationary contact 22 resulting in an interruption of the interrupter. As previously described, the interrupter is held in its open position after opening of the switch 35 and until the subsequent closing operation is performed.
- each of the closing and interrupting stationary core members 12 and 14 can be repeatedly magnetized and demagnetized.
- the magnetization and demagnetization of both cores causes the movable armature 16 to move in either of the directions thereby to perform the closing or interrupting operation of the associated current interrupter as well as maintaining the latter in its closed or open position until the subsequent interrupting or closing operation is performed.
- a movable armature attracted by the associated stationarymagnetic core is to be separated from the latter, it has been previously required to provide a pulling-apart or an interrupting coil, in addition to a closing coil.
- the invention comprises means for exerting on such a movable armature an opposing force in a direction opposite to the direction of attraction.
- a current flows through the closing coil in a direction reverse from in the closing operation. This flow of current through the coil in the reversed direction causes the residual magnetism in the stationary core to be balanced out by a magnetic flux due to the same, whereby the armature can be automatically separated from the stationary core by the action of the opposing force as above described.
- the current limiter network associated with the closing stationary core by which the armature was previously attracted is effective for limiting an interrupting current flowing through the closing coil to such a magnitude that a magnetic flux in that stationary core has an appropriately small value approximating zero without the core magnetized in the opposite direction. This is true in the case of the interrupting stationary core in the closing operation.
- the contacts S or S may be used in place of the diode D or D
- they should be arranged such that upon closing the switch 40, the contacts S are closed while the contacts S remain open whereas, upon closing the switch 41, the contacts S are closed while the contacts S remain open.
- a device for electromagnetically controlling the position of an armature comprising: a first magnetic circuit including a first ferromagnetic attracting and holding element, and a first exciting coil magnetically coupled to said first ferromagnetic attracting and holding element; a second magnetic circuit including a second ferromagnetic attracting and holding element, and a second exciting coil magnetically coupled to said second ferromagnetic attracting and holding element; a moveable armature disposed between said first and second ferromagnetic attracting and holding elements movable to a first position in response to encrgization of said first magnetic circuit and to a second position in response to energization of said second magnetic circuit; and electric circuit means connected to said first and second coils for alternatively sup-.
- first and second ferromagnetic attracting and holding elements comprise first and second magnetic core elements, respectively.
- said electric circuit means includes first and second current limiting circuits each connected in series with said first and second exciting coils, respectively; said first and second current limiting circuits each comprising a current limiting impedance element connected in parallel with a diode.
- said electric circuit means includes first and second current limiting circuits each connected in series with one of said first and second exciting coils, respectively; said first and second current limiting circuits each comprising a current limiting impedance element connected in parallel with a switch.
- a device wherein said first and second exciting coils are connected in parallel; and wherein said electric circuit means includes first and second normally open switches, a first capacitor responsive to the closing of said first normally open switch to supply a first discharge current to both said exciting coils, a second capacitor responsive to the closing of said second normally open switch to supply a second discharge current to both said exciting coils in a direction opposite to that of said first discharge current, and current limiting means for successively limiting the flow of current through alternate exciting coils in accordance with the alternate closing and opening of said first and second normally open switches.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnets (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3170766A JPS4413461B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1966-05-18 | 1966-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3514674A true US3514674A (en) | 1970-05-26 |
Family
ID=12338526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US637155A Expired - Lifetime US3514674A (en) | 1966-05-18 | 1967-05-09 | Device for electromagnetically controlling the position off an armature |
Country Status (4)
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3634735A (en) * | 1969-04-03 | 1972-01-11 | Mikio Komatsu | Self-holding electromagnetically driven device |
US3864942A (en) * | 1971-12-20 | 1975-02-11 | Wildt Mellor Bromley Ltd | Pattern-selecting devices for knitting machines |
US3878412A (en) * | 1972-07-21 | 1975-04-15 | Kurpanek W H | Magneto-motive reciprocating device |
US4122423A (en) * | 1976-05-14 | 1978-10-24 | Le Material Magnetique | Permanent magnet magnetic control device having two control air gaps |
US4514710A (en) * | 1982-02-01 | 1985-04-30 | Conrad Richard A | Electromagnetic actuator |
US4533890A (en) * | 1984-12-24 | 1985-08-06 | General Motors Corporation | Permanent magnet bistable solenoid actuator |
US4641072A (en) * | 1981-11-16 | 1987-02-03 | Moog Inc. | Electro-mechanical actuator |
US4672343A (en) * | 1985-12-30 | 1987-06-09 | Nobuko Takei | Circuit protector |
US4751487A (en) * | 1987-03-16 | 1988-06-14 | Deltrol Corp. | Double acting permanent magnet latching solenoid |
US4908731A (en) * | 1987-03-03 | 1990-03-13 | Magnavox Government And Industrial Electronics Company | Electromagnetic valve actuator |
US5300908A (en) * | 1990-10-10 | 1994-04-05 | Brady Usa, Inc. | High speed solenoid |
USRE34870E (en) * | 1981-11-16 | 1995-03-07 | Moog Inc. | Electro-mechanical actuator |
US6265956B1 (en) | 1999-12-22 | 2001-07-24 | Magnet-Schultz Of America, Inc. | Permanent magnet latching solenoid |
US20080191821A1 (en) * | 2005-03-16 | 2008-08-14 | Siemens Aktiengesellschaft | Electrical Supply Circuit, Switch Activating Apparatus and Method for Operating a Switch Activating Apparatus |
US20090301197A1 (en) * | 2006-05-24 | 2009-12-10 | Airbus France | Device for non-destructive testing of a structure by vibratory analysis |
CN102459795A (zh) * | 2009-05-08 | 2012-05-16 | 费尔科有限责任公司 | 用于控制闭合器的移动的设备 |
US8272622B2 (en) | 2006-04-07 | 2012-09-25 | Artemis Intelligent Power Limited | Electromagnetic actuator |
US20120280154A1 (en) * | 2009-01-12 | 2012-11-08 | Mark Forrest Smith | Valve System |
US9308307B2 (en) | 2007-09-13 | 2016-04-12 | Fresenius Medical Care Holdings, Inc. | Manifold diaphragms |
US9354640B2 (en) | 2013-11-11 | 2016-05-31 | Fresenius Medical Care Holdings, Inc. | Smart actuator for valve |
US9358331B2 (en) | 2007-09-13 | 2016-06-07 | Fresenius Medical Care Holdings, Inc. | Portable dialysis machine with improved reservoir heating system |
US9415152B2 (en) | 2007-11-29 | 2016-08-16 | Fresenius Medical Care Holdings, Inc. | Disposable apparatus and kit for conducting dialysis |
US9517296B2 (en) | 2007-09-13 | 2016-12-13 | Fresenius Medical Care Holdings, Inc. | Portable dialysis machine |
US9759710B2 (en) | 2008-09-12 | 2017-09-12 | Fresenius Medical Care Holdings, Inc. | Modular reservoir assembly for a hemodialysis and hemofiltration system |
US10022673B2 (en) | 2007-09-25 | 2018-07-17 | Fresenius Medical Care Holdings, Inc. | Manifolds for use in conducting dialysis |
US10539450B2 (en) | 2012-12-24 | 2020-01-21 | Fresenius Medical Care Holdings, Inc. | Load suspension and weighing system for a dialysis machine reservoir |
US10758868B2 (en) | 2008-10-30 | 2020-09-01 | Fresenius Medical Care Holdings, Inc. | Methods and systems for leak detection in a dialysis system |
US10758662B2 (en) | 2007-11-29 | 2020-09-01 | Fresenius Medical Care Holdings, Inc. | Priming system and method for dialysis systems |
US11525798B2 (en) | 2012-12-21 | 2022-12-13 | Fresenius Medical Care Holdings, Inc. | Method and system of monitoring electrolyte levels and composition using capacitance or induction |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2359293A2 (fr) * | 1976-07-20 | 1978-02-17 | Snecma | Obturateur a commande magnetique pour compresseur de fluide nocif |
CA1101967A (en) * | 1978-07-14 | 1981-05-26 | Bata Industries Limited | Control circuit for electromagnetic apparatus |
JP3179349B2 (ja) * | 1996-04-03 | 2001-06-25 | 三菱電機株式会社 | 開閉装置 |
JP4065692B2 (ja) * | 1999-10-28 | 2008-03-26 | 三菱電機株式会社 | 電磁反発駆動開閉装置 |
DE102011103169B4 (de) * | 2011-06-01 | 2017-03-02 | Gerhard Kirstein | Elektromagnetischer Antrieb, Antriebsanlage und deren Verwendung |
JP6252448B2 (ja) * | 2014-11-27 | 2017-12-27 | 三菱電機株式会社 | 開閉器および電力変換装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2317888A (en) * | 1940-12-10 | 1943-04-27 | Signal Engineering & Mfg Co | Operating circuit for electrical devices |
US2954512A (en) * | 1955-09-02 | 1960-09-27 | Universal Oil Prod Co | Electric switch circuit |
CA643832A (en) * | 1962-06-26 | A.A. Gilsing Johannes | Electro-magnetic multivibrator device | |
US3202886A (en) * | 1962-01-11 | 1965-08-24 | Bulova Watch Co Inc | Bistable solenoid |
US3445729A (en) * | 1967-02-10 | 1969-05-20 | Itt | Electrically polarized reed relay |
-
1966
- 1966-05-18 JP JP3170766A patent/JPS4413461B1/ja active Pending
-
1967
- 1967-05-09 US US637155A patent/US3514674A/en not_active Expired - Lifetime
- 1967-05-18 GB GB23173/67A patent/GB1182313A/en not_active Expired
- 1967-05-18 DE DE19671614159 patent/DE1614159A1/de active Pending
- 1967-05-18 DE DE6609827U patent/DE6609827U/de not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA643832A (en) * | 1962-06-26 | A.A. Gilsing Johannes | Electro-magnetic multivibrator device | |
US2317888A (en) * | 1940-12-10 | 1943-04-27 | Signal Engineering & Mfg Co | Operating circuit for electrical devices |
US2954512A (en) * | 1955-09-02 | 1960-09-27 | Universal Oil Prod Co | Electric switch circuit |
US3202886A (en) * | 1962-01-11 | 1965-08-24 | Bulova Watch Co Inc | Bistable solenoid |
US3445729A (en) * | 1967-02-10 | 1969-05-20 | Itt | Electrically polarized reed relay |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3634735A (en) * | 1969-04-03 | 1972-01-11 | Mikio Komatsu | Self-holding electromagnetically driven device |
US3864942A (en) * | 1971-12-20 | 1975-02-11 | Wildt Mellor Bromley Ltd | Pattern-selecting devices for knitting machines |
US3878412A (en) * | 1972-07-21 | 1975-04-15 | Kurpanek W H | Magneto-motive reciprocating device |
US4122423A (en) * | 1976-05-14 | 1978-10-24 | Le Material Magnetique | Permanent magnet magnetic control device having two control air gaps |
US4641072A (en) * | 1981-11-16 | 1987-02-03 | Moog Inc. | Electro-mechanical actuator |
USRE34870E (en) * | 1981-11-16 | 1995-03-07 | Moog Inc. | Electro-mechanical actuator |
US4514710A (en) * | 1982-02-01 | 1985-04-30 | Conrad Richard A | Electromagnetic actuator |
US4533890A (en) * | 1984-12-24 | 1985-08-06 | General Motors Corporation | Permanent magnet bistable solenoid actuator |
US4672343A (en) * | 1985-12-30 | 1987-06-09 | Nobuko Takei | Circuit protector |
US4908731A (en) * | 1987-03-03 | 1990-03-13 | Magnavox Government And Industrial Electronics Company | Electromagnetic valve actuator |
US4751487A (en) * | 1987-03-16 | 1988-06-14 | Deltrol Corp. | Double acting permanent magnet latching solenoid |
US5300908A (en) * | 1990-10-10 | 1994-04-05 | Brady Usa, Inc. | High speed solenoid |
US6265956B1 (en) | 1999-12-22 | 2001-07-24 | Magnet-Schultz Of America, Inc. | Permanent magnet latching solenoid |
US7612977B2 (en) * | 2005-03-16 | 2009-11-03 | Siemens Aktiengesellschaft | Electrical supply circuit, switch activating apparatus and method for operating a switch activating apparatus |
US20080191821A1 (en) * | 2005-03-16 | 2008-08-14 | Siemens Aktiengesellschaft | Electrical Supply Circuit, Switch Activating Apparatus and Method for Operating a Switch Activating Apparatus |
US8272622B2 (en) | 2006-04-07 | 2012-09-25 | Artemis Intelligent Power Limited | Electromagnetic actuator |
US20090301197A1 (en) * | 2006-05-24 | 2009-12-10 | Airbus France | Device for non-destructive testing of a structure by vibratory analysis |
US9308307B2 (en) | 2007-09-13 | 2016-04-12 | Fresenius Medical Care Holdings, Inc. | Manifold diaphragms |
US11071811B2 (en) | 2007-09-13 | 2021-07-27 | Fresenius Medical Care Holdings, Inc. | Portable dialysis machine |
US10857281B2 (en) | 2007-09-13 | 2020-12-08 | Fresenius Medical Care Holdings, Inc. | Disposable kits adapted for use in a dialysis machine |
US10596310B2 (en) | 2007-09-13 | 2020-03-24 | Fresenius Medical Care Holdings, Inc. | Portable dialysis machine |
US9358331B2 (en) | 2007-09-13 | 2016-06-07 | Fresenius Medical Care Holdings, Inc. | Portable dialysis machine with improved reservoir heating system |
US11318248B2 (en) | 2007-09-13 | 2022-05-03 | Fresenius Medical Care Holdings, Inc. | Methods for heating a reservoir unit in a dialysis system |
US10383993B2 (en) | 2007-09-13 | 2019-08-20 | Fresenius Medical Care Holdings, Inc. | Pump shoe for use in a pumping system of a dialysis machine |
US9517296B2 (en) | 2007-09-13 | 2016-12-13 | Fresenius Medical Care Holdings, Inc. | Portable dialysis machine |
US10258731B2 (en) | 2007-09-13 | 2019-04-16 | Fresenius Medical Care Holdings, Inc. | Manifold diaphragms |
US11224841B2 (en) | 2007-09-25 | 2022-01-18 | Fresenius Medical Care Holdings, Inc. | Integrated disposable component system for use in dialysis systems |
US10022673B2 (en) | 2007-09-25 | 2018-07-17 | Fresenius Medical Care Holdings, Inc. | Manifolds for use in conducting dialysis |
US9415152B2 (en) | 2007-11-29 | 2016-08-16 | Fresenius Medical Care Holdings, Inc. | Disposable apparatus and kit for conducting dialysis |
US10758661B2 (en) | 2007-11-29 | 2020-09-01 | Fresenius Medical Care Holdings, Inc. | Disposable apparatus and kit for conducting dialysis |
US10034973B2 (en) | 2007-11-29 | 2018-07-31 | Fresenius Medical Care Holdings, Inc. | Disposable apparatus and kit for conducting dialysis |
US11439738B2 (en) | 2007-11-29 | 2022-09-13 | Fresenius Medical Care Holdings, Inc. | Methods and Systems for fluid balancing in a dialysis system |
US10758662B2 (en) | 2007-11-29 | 2020-09-01 | Fresenius Medical Care Holdings, Inc. | Priming system and method for dialysis systems |
US9759710B2 (en) | 2008-09-12 | 2017-09-12 | Fresenius Medical Care Holdings, Inc. | Modular reservoir assembly for a hemodialysis and hemofiltration system |
US11169137B2 (en) | 2008-10-30 | 2021-11-09 | Fresenius Medical Care Holdings, Inc. | Modular reservoir assembly for a hemodialysis and hemofiltration system |
US10670577B2 (en) | 2008-10-30 | 2020-06-02 | Fresenius Medical Care Holdings, Inc. | Modular reservoir assembly for a hemodialysis and hemofiltration system |
US10758868B2 (en) | 2008-10-30 | 2020-09-01 | Fresenius Medical Care Holdings, Inc. | Methods and systems for leak detection in a dialysis system |
US20160319954A1 (en) * | 2009-01-12 | 2016-11-03 | Fresenius Medical Care Holdings, Inc. | Valve System |
US10808861B2 (en) * | 2009-01-12 | 2020-10-20 | Fresenius Medical Care Holdings, Inc. | Valve system |
US9360129B2 (en) * | 2009-01-12 | 2016-06-07 | Fresenius Medical Care Holdings, Inc. | Valve system |
US20120280154A1 (en) * | 2009-01-12 | 2012-11-08 | Mark Forrest Smith | Valve System |
US10197180B2 (en) * | 2009-01-12 | 2019-02-05 | Fresenius Medical Care Holdings, Inc. | Valve system |
CN102459795A (zh) * | 2009-05-08 | 2012-05-16 | 费尔科有限责任公司 | 用于控制闭合器的移动的设备 |
US20120240474A1 (en) * | 2009-05-08 | 2012-09-27 | Fireco Limited | Apparatus for controlling the movement of a closure |
US11525798B2 (en) | 2012-12-21 | 2022-12-13 | Fresenius Medical Care Holdings, Inc. | Method and system of monitoring electrolyte levels and composition using capacitance or induction |
US10539450B2 (en) | 2012-12-24 | 2020-01-21 | Fresenius Medical Care Holdings, Inc. | Load suspension and weighing system for a dialysis machine reservoir |
US11187572B2 (en) | 2012-12-24 | 2021-11-30 | Fresenius Medical Care Holdings, Inc. | Dialysis systems with a suspended reservoir |
US10817004B2 (en) | 2013-11-11 | 2020-10-27 | Fresenius Medical Care Holdings, Inc. | Valve system with a pressure sensing displacement member |
US10019020B2 (en) | 2013-11-11 | 2018-07-10 | Fresenius Medical Care Holdings, Inc. | Smart actuator for valve |
US9354640B2 (en) | 2013-11-11 | 2016-05-31 | Fresenius Medical Care Holdings, Inc. | Smart actuator for valve |
Also Published As
Publication number | Publication date |
---|---|
GB1182313A (en) | 1970-02-25 |
JPS4413461B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1969-06-17 |
DE6609827U (de) | 1972-10-12 |
DE1614159A1 (de) | 1970-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3514674A (en) | Device for electromagnetically controlling the position off an armature | |
US4306207A (en) | Self-sustaining solenoid | |
US3728654A (en) | Solenoid operated plunger device | |
US3419739A (en) | Electromechanical actuator | |
US4538129A (en) | Magnetic flux-shifting actuator | |
US2436354A (en) | Electromagnet with armature | |
US3504315A (en) | Electrical solenoid devices | |
US3332045A (en) | Permanent magnet and electromagnetic actuator | |
US3950718A (en) | Electromagnetic device | |
US4020433A (en) | Release type electromagnetic device | |
US3606595A (en) | Electromagnetic pump utilizing a permanent magnet | |
US3218523A (en) | Electromagnetic device having a permanent magnet armature | |
EP0198085A1 (en) | Electromagnetic actuator | |
US5554961A (en) | Energy efficient electromagnetic circuit | |
DE59700140D1 (de) | Bistabiler Kleinmagnet | |
US698027A (en) | Polarized magnet. | |
US2504996A (en) | Electromotive device | |
US2505904A (en) | Holding relay with permanent magnet | |
US3271707A (en) | Electromagnetic relay of the bistable type | |
US3774058A (en) | Force transducer | |
US3452253A (en) | Electromagnetic actuator having a pair of electromagnets with an armature movable between them | |
US3361948A (en) | Electromechanical bi-directional motion actuator device | |
US3740683A (en) | Electromagnetic turnoff system for permanent magnets | |
US3768051A (en) | Magneto-motive bistable switching devices | |
SE328938B (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) |