US3512221A - Aluminum alloy wire - Google Patents

Aluminum alloy wire Download PDF

Info

Publication number
US3512221A
US3512221A US814183A US3512221DA US3512221A US 3512221 A US3512221 A US 3512221A US 814183 A US814183 A US 814183A US 3512221D A US3512221D A US 3512221DA US 3512221 A US3512221 A US 3512221A
Authority
US
United States
Prior art keywords
weight percent
wire
aluminum
present
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US814183A
Inventor
Roger J Schoerner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwire Co LLC
Original Assignee
Southwire Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwire Co LLC filed Critical Southwire Co LLC
Application granted granted Critical
Publication of US3512221A publication Critical patent/US3512221A/en
Anticipated expiration legal-status Critical
Assigned to SOUTHWIRE TECHNOLOGY, INC., A GEORGIA CORP. reassignment SOUTHWIRE TECHNOLOGY, INC., A GEORGIA CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SOUTHWIRE COMPANY, (A GA. CORP.)
Assigned to SOUTHWIRE COMPANY reassignment SOUTHWIRE COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SOUTHWIRE TECHNOLOGY, INC.
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0602Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a casting wheel and belt, e.g. Properzi-process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • H01B7/226Helicoidally wound metal wires or tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils

Definitions

  • the substantially evenly distributed iron al-uminate inclusions are obtained by continuously casting an alloy consisting essentially of less than about 99.70 weight percent aluminum, more than 0.30 weight percent iron, no more than 0.15 weight percent silicon and trace quantities of typical impurities to form a continuous aluminum alloy bar, hot-working the bar substantially immediately after casting in substantially that condition in which the bar is cast to form continuous rod which is subsequently drawn into wire without intermediate anneals and annealed after the final draw. After annealing, the wire has the aforementioned novel and unexpected properties of increased ultimate elongation, electrical conductivity of at least sixty-one percent (61%) of the International Annealed Copper Standard, and increased bendability and fatigue resistance.
  • This invention relates to an aluminum alloy wire suitable for use as an electrical conductor and more particularly concerns an aluminum alloy wire having an acceptable electrical conductivity and improved elongation, bendability and tensile strength.
  • an object of the present invention to provide an aluminum alloy wire of acceptable conductivity and improved physical properties such that the conductor may be used in new applications.
  • Another object of the present invention is to provide an aluminum alloy wire having novel properties of increased ultimate elongation and tensile strength, improved bendability and fatigue resistance and acceptable electrical conductivity.
  • the present aluminum alloy electrically conductive wire is prepared from an alloy comprising less than about 99.70 weight percent aluminum, more than about 0.30 weight percent iron, and no more than 0.15 weight percent silicon.
  • the aluminum content of the present alloy comprises from about 98.95 to less than about 99.45 weight percent with particularly superior results being achieved when from about 99.15 to about 99.40 weight percent aluminum is employed.
  • the iron content of the present alloy comprises about 0.45 weight percent to about 0.95 weight percent with particularly superior results being achieved when from about 0.50 weight percent to about 0.80 weight percent iron is employed.
  • no more than 0.07 weight percent silicon is employed in the present alloy. The ratio between the percentage iron and the percentage silicon must be 1.99:1 or greater.
  • the ratio between percentage iron and percentage silicon is 8:1 or greater.
  • the percentage of aluminum must be increased rather than increasing the percentage of silicon outside the ratio limitation previously specified. It has been found that properly processed wire having aluminum alloy constituents which fall within the above-specified ranges possesses acceptable electrical conductivity and improved tensile strength and ultimate elongation and in addition has a novel unexpected property of surprisingly increased bendability and fatigue resistance.
  • the present aluminum alloy is prepared by initially melting and alloying aluminum with the necessary amounts of iron or other constituents to provide the requisite alloy for processing. Normally, the content of silicon is maintained as low as possible without adding additional amounts to the melt. Typical impurities or trace elements are also present within the melt, but only in trace quantities such as less than 0.05 weight percent each with a total content of trace impurities generally not exceeding 0.15 weight percent. Of course, when adjusting the amounts of trace elements due consideration must be given to the conductivity of the final alloy since some trace elements affect conductivity more severely than others.
  • the typical trace elements include vanadium, copper, manganese, magnesium, zinc, boron and titanium. If the content of titanium is relatively high (but still quite low compared to the aluminum, iron and silicon content), small amounts of boron may be added to tie-up the excess titanium and keep it from reducing the conductivity of the wire.
  • Iron is the major constituent added to the melt to produce the alloy of the present invention. Normally, about 0.50 weight percent is added to the typical aluminum component used to prepare the present alloy. Of course, the scope of the present invention includes the addition of more or less iron together with the adjustment of the content of all alloying constituents.
  • the melted aluminum composition is continuously cast into a continuous bar.
  • the bar is then hot-worked in substantially that condition in which it is received from the casting machine.
  • a typical hot-working operation comprises rolling the bar in a rolling mill substantially immediately after being cast into a bar.
  • a continuous casting machine serves as a means for solidifying the molten aluminum alloy metal to provide a cast bar that is conveyed in substantially the condition in which it solidified from the continuous casting machine to the rolling mill, which serves as a means for hot-forming the cast bar into rod or another hot-formed product in a manner which imparts substantial movement to the cast bar along a plurality of angularly disposed axes.
  • the continuous casting machine is of conventional casting wheel type having a casting wheel with a casting groove partially closed by an endless belt supported by the casting Wheel and an' idler pulley.
  • the casting wheel and the endless belt cooperate to provide a mold into one end of which molten metal is poured to solidify and from the other end of which the cast bar is emitted in substantially that condition in which it is solidified.
  • the rolling mill is of conventional type having a plurality of roll stands arranged to hot-form the cast bar by a series of deformations.
  • the continuous casting machine and the rolling mill are positioned relative to each other so that the cast bar enters the rolling mill substantially. immediately after solidification and in substantially that condition in which it solidified.
  • the cast bar is at a hot-forming temperature Within the range of temperatures for hot-forming the cast bar at the initiation of hot-forming without heating between the casting machine and the rolling mill.
  • means for adjusting the temperature of the cast bar may be placed between the continuous casting machine and the rolling mill without departing from the inventive concept disclosed herein.
  • the roll stands each include a plurality of rolls which engage the cast bar.
  • the rolls of each roll stand may be two or more in number and arranged diametrically opposite from one another or arranged at equally spaced positions about the axis of movement of the cast ibar through the rolling mill.
  • the rolls of each roll stand of the rolling mill are rotated at a predetermined speed by a power means such as one or more electric motors and the casting wheel is rotated at a speed generally determined by its operating characteristics.
  • the rolling mill serves to hot-form the cast bar into a rod of a crosssectional area substantially less than that of the'cast bar as it enters the rolling mill.
  • This varying surface engagement of the cast bar in the roll stands functions to knead or shape the metal in the cast bar in such a manner that it is worked at each roll stand and also to simultaneously reduce and change the cross-sectional area of the cast bar into that of the rod.
  • the cast bar be received with sufiicient volume per unit for time at the roll stand for the cast bar to generally fill the space defined by the rolls of the roll stand so that the rolls will be eifective to work the metal in the cast bar.
  • the space defined by the rolls of each roll stand not be overfilled so that the cast bar will not be forced into the gaps between the rolls.
  • the rod be fed toward each roll stand at a volume per unit of time which is sufiicient to fill, but not overfill, the space defined by the rolls of the roll stand.
  • the cast bar As the cast bar is received from the continuous casting machine, it usually has one large flat surface corresponding to the surface of the endless band and inwardly tapered side surfaces corresponding to the shape of the groove in the casting wheel. As the cast bar is compressed by the rolls of the roll stands, the cast bar is deformed so that it generally takes the cross-sectional shape defined by the adjacent peripheries of the rolls of each roll stand. v
  • cast aluminum alloy rod of an infinite number of different lengths is prepared by simultaneous casting of the molten aluminum alloy and hot-forming or rolling the cast aluminumbar.
  • the unannealed rod i.e'., as rolled to ftemperyis oold drawn through a seriesof progressively constricted dies, without intermediateanne'als, to form a continuous wire of desired diameter.
  • the wire is then annealed or partially annealed to obtain a desired tensile strength and cooled.
  • the annealed alloy'wire has the properties of acceptable conductivity andimproveditensile strength together with unexpectedly improved percent ultimate elongation and surprisingly increased bendability and fatigue resistance as specified previouslyin this application.
  • the annealing operation may be continuous as in resistance annealing, induction annealing, convection annealing by "continuous furnaces or radiation annealing by continuous furnaces, or, preferably, may be batch annealed in a batch furnace.
  • temperatures of about 450 F. to about 1200 F. may be employed with annealing times of'about five minutes'to about 1/l0,000 of a minute.
  • continuc-us annealing temperatures. and'times may be adjusted to meet'jthe' requirementsoi the particular overall proc-, essing' operation so long as the desired tensilestrength is achieved.
  • a temperature ofapproximately 400? F. to about 750- F. isemployed with residence times of about thirty (30) minutes to about twenty-four (24) hours..
  • the time'sand temperatures may be 'variedto suitQtheovenall process so longfas the, desired tensiiestrengtlr-"is obtained.
  • the bar contains a dispersion of FeAl in a supersaturated solid solution matrix.
  • the supersaturated matrix may contain as much as 0.17 weight percent iron.
  • the bar is rolled in a hot-working operation immediately after casing, the FeAl particles are broken up and dispersed throughout the matrix inhibiting large cell formation.
  • the properties of the present aluminum alloy wire are significantly affected by the size of the FeAl particles in the matrix.
  • Coarse precipitates reduce the percent elongation and bendability of the wire by enhancing nucleation and thus, formation of large cells which, in turn, lowers the recrystallization temperature of the wire.
  • Fine precipitates improve the percent elongation and benda bility by reducing nucleation and increasing the recrystallization temperature.
  • Grossly coarse precipitates of FeAl cause the wire to become brittle and generally unusable.
  • Coarse precipitates have a particle size of above 2,000 angstrom units and fine precipitates have a particle size of below 2,000 angstrom units.
  • a typical alloy No. 12 AWG wire of the present invention has physical properties of 15,000 p.s.i. tensile strength, ultimate elongation of 20%, conductivity of 61% IACS,
  • Ranges of physical properties generally provided by No. 12 AWG wire prepared from the present alloy include tensile strengths of about 12,000 to about 22,000 p.s.i. ultimate elonga-' tions of about 40% to about conductivities of about 61% to about 63% and number of bends to break of about 45 to 10.
  • EXAMPLE 1 A comparison between prior EC aluminum alloy wire and the present aluminum alloy wire is provided by preparing a prior EC alloy with aluminum content of 99.73 weight percent, iron content of 0.18 weight percent, silicon content of 0.059 weight percent, and trace amounts of typical impurities.
  • the present alloy is prepared with aluminum content of 99.45 weight percent, iron content of 0.45 weight percent, silicon content of 0.056 weight percent, and trace amounts of typical impurities. Both alloys are continuously cast into continuous bars and hot-rolled into continuous rod in similar fashion. The alloys are then cold-drawn through successively constricted dies to yield #12 AWG continuous wire.
  • Sections of the wire are collected on seperate bobbins and batch furnace-annealed at various temperatures and for various lengths of time to yield sections of the prior EC alloy and the present alloy of varying tensile strengths.
  • Several samples of each section are tested in a device designed to measure the number of bends required to break each sample at a particular flexure Point. Through uniform force and tension, the device fatigues each sample through an arc of approximately 135.
  • the wire is bent across a pair of spaced opposed mandrels having a diameter equal to that of the wire. The mandrels are spaced apart a distance of about one and one-half times the diameter of the wire.
  • Example No. Percent Al Percent Fe Percent Si The six alloys are then cast into six continuous bars and hot-rolled into six continuous rods. The rods are cold-drawn through successively constricted dies to yield #12 gauge wire.
  • the wire produced from the alloys of Examples 2 and 4 are resistance annealed and the remainder of the examples are batch furnace annealed to yield the tensile strengths reported in Table IV. After annealing, each of the wires is tested for percent conductivity, tensile strength, percent ultimate elongation and average number of bends to break by standard testing procedures for each, except that the procedure specified in-Example 1 is -used..fo r determining average number of bends to break. These results are reported in the follow: ing table.
  • Example 2 falls outsi 'Q C th B SCOPG of the present invention in percentage j9t1 m2nst1ts.-.In a t o nill be noted for Example 2 that the percentage of ultimate elongation is somewhat lower than desirable and the average number of.bends .to break'thesainple isnlower'than the remaining examples.
  • An aluminum alloy is prepared with an aluminum content of 99.42 weight percent, iron content of 0.50 weight percent, silicon content of 0.055 weight percent and trace amounts of typical impurities.
  • the alloy is cast into a continuous bar which is hot-rolled to yield a continuous rod.
  • the rod is then cold-drawn through successively constricted dies to yield #12 AWG wire.
  • the wire is collected on a 30 inch bobbin until the collected wire weighs approximately 250 pounds.
  • the bobbin is then placed in a cold General Electric Bell Furnace and the temperature therein is raised to 480 F.
  • the temperature of the furnace is held at 480 F. for three hours after which the heat is terminated and the furnace cools to .400 F.
  • the furnace is then quick cooled and the bobbin is removed. Under testing, it is found that the alloy wire has a conductivity of 16.6% IACS, a tensile strength of 16,500 p.s.i., a percentage of ultimate elongation of and a number of bends to
  • Example 8 is repeated except the Bell Furnace temperature is raised to 500 F. and held for three hours prior to cooling.
  • the annealed alloy wire has a conductivity of 61.4% IACS, a tensile strength of 15,000 p.s.i., a percentage of ultimate elongation of 27%, and a number of bends to break-of 28.
  • Example 8 is repeated except the Bell Furnace temperature is raised to 600 F. and held for three hours prior to cooling.
  • the annealed alloy wire has a conductivity of 61.2% IACS, a tensile strength of 14,000 p.s.i., a percentage of elongation of 30%, and a number of bends to break of 43.
  • Y Y EXAMPLE 11 Example 8 is repeated except the Bell Furnace temperature is raised to 600 F. and held 1 /2 hours prior to cooling.
  • the annealed alloy has a conductivity of 61.5% IACS, a tensile strength of 16,000 p.s.i., a percentageofelongation of 22%,and a number ofv bends vto break of 23.
  • EXAMPLE 12 The alloy of Example 8 is cast into a continuous bar which is hot-rolled to yield a continuous f temper rod of inch diameter. The rod is then cold-drawn through successively constricted dies to yield #14 AWG wire. The wire is then redrawn on a Synchro Model BG-16 wire drawing machine which includes a Synchro Resistoneal continuous in line annealer. The wire is drawn to #28 AWG at a finishing speed of 3,300 feet per minute and the in line annealer is operated at 52 volts with transformer tap setting at No. 8. The annealed alloy wire has a conductivity of 62% IAS, a tensile strength of 15,450 p.s.i., and a percentage of ultimate elongation of;2 5%.
  • the annealed alloy wire has a. conductivityof 62% IACS,.a tensile strength of 16,300 p.s.i., and a percentage of ultimate elongation of. 20%. f.
  • RodA solid product that is long in-relationto its cross-section.
  • Rod normally has a cross-section of between three inches and 0.375 inches.
  • WireA solid wrought product that is long in relation to its cross-section, which is square or rectangunlar with sharp or rounded corners or edges, or is round, a regular hexagon or a regular octagon, and whose diameter or greatest perpendicular distance between parallel faces is between 0.374 inches and 0.0031 inches.
  • Aluminum alloy rod or wire having a minimum conductivity of sixty-one percent IACS and a diameter or greatest perpendicular distance between'parallel faces of between 3.00 inches and 0.0031 inches consisting essentially of from about 0.55t0 about 0.95 weight percent iron; no more than about 0.15 weight percent silicon; less than 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, manganese, magnesium, zinc, boron, and titanium; and from about 98.95 to less than 99.45 weight percent aluminum, said alloy containing no more than 0.15 total weight percent trace elements and having an iron to silicon ratio of 8:1 or greater.
  • Aluminum alloy rod of claim 1 consisting essentially of from about 0.80 to about 0.95 weight percent iron; from about 0.07 to about 0.15 weight percent silicon; and from about 98.95 to about 99.13 Weight percent aluminum.
  • Aluminum alloy wire of claim 1 consisting essentially of from about 0.80 to about 0.95 weight percent iron; from about 0.07 to about 0.15 weight percent silicon; and from about 98.95 to about 99.13 weight percent aluminum.
  • Aluminum alloy wire of claim 1 consisting essentially of from about 0.55 to about 0.80 weight percent iron; from about 0.01 to about 0.07 weight percent silicon; and from about 99.15 to about 99.40 weight percent aluminum.
  • Aluminum alloy rod of claim 1 consisting essentially of from about 0.55 to about 0.80 weight percent iron; from about 0.01 to about 0.07 weight percent silicon; and from about 99.15 to about 99.40 weight percent aluminum.
  • Aluminum alloy wire of claim 1 consisting essen-' tially of from about 0.55 to less than 0.60 weight'percent iron; from about 0.01 to about 0.15 weight percent silicon; and from about 99.10 to about 99.44 weight percent aluminum.
  • Aluminum alloy rod of claim 1 consisting essentially of from about 0.55 to less than 0.60 weight percent iron; from about 0.01 to about 0.15 weight percent silicon; and from about 99.10 to about 99.44 weight percent aluminum.
  • Aluminum alloy rod or wire having a minimum conductivity of sixty-one percent IACS and a diameter or greatest perpendicular distance between parallel faces of between 3.00 inches and 0.0031 inches and containing substantially evenly distributed iron aluminate inclusions in a concentration produced by the presence of about 0.45 to about 0.95 weight percent iron in an alloy mass consisting essentially of about 98.95 to less than 99.45 weight percent aluminum; no more than about 0.15 weight per cent silicon; and less than 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, maganese, magnesium, zinc, boron, and titanium, said iron aluminate inclusions having a particle size of less than 2,000 angstrom units.
  • Aluminum alloy rod of claim 8 wherein iron is present in a concentration of about 0.55 to about 0.95 weight percent; silicon is present in a concentration of about 0.01 to about 0.15 weight percent; and aluminum is present in a concentration of about 98.95 to about 99.44 weight percent.
  • Aluminum alloy wire of claim 8 wherein iron is present in a concentration of about 0.55 to about 0.95 weight percent; silicon is present in a concentration of about 0.01 to about 0.15 weight percent; and aluminum is present in a concentration of about 98.95 to about 99.44 weight percent.
  • Aluminum alloy rod of claim 8 wherein iron is present in a concentration of about 0.80 to about 0.95 weight percent; silicon is present in a concentration of about 0.07 to about 0.15 weight percent; and aluminum is present in a concentration of about 98.95 to about 99.13 weight percent.
  • Aluminum alloy wire of claim 8 wherein iron is present in a concentration of about 0.80 to about 0.95 weight percent; silicon is present in a concentration of about 0.07 to about 0.15 weight percent; and aluminum is present in a concentration of about 98.95 to about 99.13 weight percent.
  • Aluminum alloy wire of claim 8 wherein iron is present in a concentration of about 0.50 to about 0.80 weight percent; silicon is present in a concentration of about 0.01 to about 0.07 weight percent; aluminum is present in a concentration of about 99.15 to about 99.40 weight percent.
  • Aluminum alloy rod of claim 8 wherein iron is present in a concentration of about 0.50 to about 0.80 weight percent; silicon is present in a concentration of about 0.01 to about 0.07 weight percent; aluminum is present in a concentration of about 99.15 to about 99.40 weight percent.
  • Aluminum alloy wire of claim 8 wherein iron is present in a concentration of about 0.45 to less than 0.60 weight percent; silicon is present in a concentration of about 0.01 to about 0.15 weight percent; and aluminum is present in a concentration of about 99.10 to about 99.54 weight percent.
  • Aluminum alloy rod of claim 8 wherein iron is present in a concentration of about 0.45 to less than 0.60 weight percent; silicon is present in a concentration of about 0.01 to about 0.15 weight percent; and aluminum is present in a concentration of about 99.10 to about 99.54 weight percent.
  • Aluminum alloy wire of claim 8 wherein iron is present in a concentration of about 0 .55 to less than 0.60 weight percent; silicon is present in a concentration of about 0.01 to about 0.15 weight percent; and aluminum is present in a concentration of about 99.10 to about 99.44 weight percent.
  • Aluminum alloy rod of claim 8 wherein iron is present in a concentration of about 0.55 to less than 0.60 weight percent; silicon is present in a concentration of about 0.01 to about 0.15 weight percent; and aluminum is present in a concentration of about 99.10 to about 99.44 weight percent.

Description

United States PatentO US. Cl. 29-1835 20 Claims ABSTRACT OF THE DISCLOSURE An aluminum alloy wire having an electrical conductivity of at least sixty-one percent (61%) based on the International Annealed Copper Standard and unexpected properties of increased ultimate elongation, bendability and fatigue resistance when compared to conventional aluminum alloy wire of the same tensile strength. The aluminum alloy wire contains substantially evenly distributed iron al-uminate inclusions in a concentration produced by the addition of more than about 0.30 weight percent iron to an alloy mass containing less than about 99.70 weight percent aluminum, no more than 0.15 weight percent silicon, and trace quantities of conventional impurities normally found within a commercial aluminum alloy. The substantially evenly distributed iron al-uminate inclusions are obtained by continuously casting an alloy consisting essentially of less than about 99.70 weight percent aluminum, more than 0.30 weight percent iron, no more than 0.15 weight percent silicon and trace quantities of typical impurities to form a continuous aluminum alloy bar, hot-working the bar substantially immediately after casting in substantially that condition in which the bar is cast to form continuous rod which is subsequently drawn into wire without intermediate anneals and annealed after the final draw. After annealing, the wire has the aforementioned novel and unexpected properties of increased ultimate elongation, electrical conductivity of at least sixty-one percent (61%) of the International Annealed Copper Standard, and increased bendability and fatigue resistance.
CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of copending application Ser. No. 779,376 filed Nov. 27, 196 8, which in turn, is a continuation-in-part of copending application Ser. No. 730,933 filed May 21, 1968, both now abandoned.
This invention relates to an aluminum alloy wire suitable for use as an electrical conductor and more particularly concerns an aluminum alloy wire having an acceptable electrical conductivity and improved elongation, bendability and tensile strength.
The use of various aluminum alloy wires (conventionally referred to as EC wire) as conductors of electricity is well established in the art. Such alloys characteristically have conductivities of at least sixty-one percent of the International Annealed Copper Standard (hereinafter sometimes referred to as IACS) and chemical constituents consisting of a substantial amount of pure aluminum and small amounts of conventional impurities such as silicon, vanadium, iron, copper, manganese, magnesium, zinc, boron and titanium. The physical properties of prior aluminum alloy wire have proven less than desirable in many applications. Generally desirable percent elongations have been obtained only at less than desirable tensile strengths and desirable tensile strengths have been obice tainable only at less than desirable percent elongations. In addition, the bendability and fatigue resistance of prior aluminum alloy wires has been so low that the prior wire has been generally unsuitable for many otherwise desirable applications.
Thus, it becomes apparent that a need has arisen within the industry for an aluminum alloy electrically conductive wire which has both improved percent elongation and improved tensile strength, and also possesses an ability to withstand numerous bends at one point and to resist fatiguing during use of the conductor; Therefore, it is an object of the present invention to provide an aluminum alloy wire of acceptable conductivity and improved physical properties such that the conductor may be used in new applications. Another object of the present invention is to provide an aluminum alloy wire having novel properties of increased ultimate elongation and tensile strength, improved bendability and fatigue resistance and acceptable electrical conductivity. These and other objects, features and advantages of the present invention will become apparent to those skilled in the art from a consideration of the following detailed description of the invention.
In accordance with this invention, the present aluminum alloy electrically conductive wire is prepared from an alloy comprising less than about 99.70 weight percent aluminum, more than about 0.30 weight percent iron, and no more than 0.15 weight percent silicon. Preferably, the aluminum content of the present alloy comprises from about 98.95 to less than about 99.45 weight percent with particularly superior results being achieved when from about 99.15 to about 99.40 weight percent aluminum is employed. Preferably, the iron content of the present alloy comprises about 0.45 weight percent to about 0.95 weight percent with particularly superior results being achieved when from about 0.50 weight percent to about 0.80 weight percent iron is employed. Preferably, no more than 0.07 weight percent silicon is employed in the present alloy. The ratio between the percentage iron and the percentage silicon must be 1.99:1 or greater. Prefera-bly, the ratio between percentage iron and percentage silicon is 8:1 or greater. Thus, if the present aluminum alloy contains an amount of iron within the low area of the present range for iron content, the percentage of aluminum must be increased rather than increasing the percentage of silicon outside the ratio limitation previously specified. It has been found that properly processed wire having aluminum alloy constituents which fall within the above-specified ranges possesses acceptable electrical conductivity and improved tensile strength and ultimate elongation and in addition has a novel unexpected property of surprisingly increased bendability and fatigue resistance.
The present aluminum alloy is prepared by initially melting and alloying aluminum with the necessary amounts of iron or other constituents to provide the requisite alloy for processing. Normally, the content of silicon is maintained as low as possible without adding additional amounts to the melt. Typical impurities or trace elements are also present within the melt, but only in trace quantities such as less than 0.05 weight percent each with a total content of trace impurities generally not exceeding 0.15 weight percent. Of course, when adjusting the amounts of trace elements due consideration must be given to the conductivity of the final alloy since some trace elements affect conductivity more severely than others. The typical trace elements include vanadium, copper, manganese, magnesium, zinc, boron and titanium. If the content of titanium is relatively high (but still quite low compared to the aluminum, iron and silicon content), small amounts of boron may be added to tie-up the excess titanium and keep it from reducing the conductivity of the wire.
Iron is the major constituent added to the melt to produce the alloy of the present invention. Normally, about 0.50 weight percent is added to the typical aluminum component used to prepare the present alloy. Of course, the scope of the present invention includes the addition of more or less iron together with the adjustment of the content of all alloying constituents.
After alloying, the melted aluminum composition is continuously cast into a continuous bar. The bar is then hot-worked in substantially that condition in which it is received from the casting machine. A typical hot-working operation comprises rolling the bar in a rolling mill substantially immediately after being cast into a bar.
One example of a continuous casting and rolling operation capable of producing continuous rod as specified in this application is as follows:
A continuous casting machine serves as a means for solidifying the molten aluminum alloy metal to provide a cast bar that is conveyed in substantially the condition in which it solidified from the continuous casting machine to the rolling mill, which serves as a means for hot-forming the cast bar into rod or another hot-formed product in a manner which imparts substantial movement to the cast bar along a plurality of angularly disposed axes.
The continuous casting machine is of conventional casting wheel type having a casting wheel with a casting groove partially closed by an endless belt supported by the casting Wheel and an' idler pulley. The casting wheel and the endless belt cooperate to provide a mold into one end of which molten metal is poured to solidify and from the other end of which the cast bar is emitted in substantially that condition in which it is solidified.
The rolling mill is of conventional type having a plurality of roll stands arranged to hot-form the cast bar by a series of deformations. The continuous casting machine and the rolling mill are positioned relative to each other so that the cast bar enters the rolling mill substantially. immediately after solidification and in substantially that condition in which it solidified. In this condition, the cast bar is at a hot-forming temperature Within the range of temperatures for hot-forming the cast bar at the initiation of hot-forming without heating between the casting machine and the rolling mill. In the event that it is desired to closely control the hot-forming temperature of the cast bar within the conventional range of hotforming temperatures, means for adjusting the temperature of the cast bar may be placed between the continuous casting machine and the rolling mill without departing from the inventive concept disclosed herein.
The roll stands each include a plurality of rolls which engage the cast bar. The rolls of each roll stand may be two or more in number and arranged diametrically opposite from one another or arranged at equally spaced positions about the axis of movement of the cast ibar through the rolling mill. The rolls of each roll stand of the rolling mill are rotated at a predetermined speed by a power means such as one or more electric motors and the casting wheel is rotated at a speed generally determined by its operating characteristics. The rolling mill serves to hot-form the cast bar into a rod of a crosssectional area substantially less than that of the'cast bar as it enters the rolling mill. I v
i The peripheral surfaces of the rolls of adjacent roll stands in the rolling millchange in configuration; that is, the cast bar is engaged by the rolls of successive roll stands with surfaces of varying configuration, and from different directions. This varying surface engagement of the cast bar in the roll stands functions to knead or shape the metal in the cast bar in such a manner that it is worked at each roll stand and also to simultaneously reduce and change the cross-sectional area of the cast bar into that of the rod.
As each roll stand engages the cast bar, it is desirable that the cast bar be received with sufiicient volume per unit for time at the roll stand for the cast bar to generally fill the space defined by the rolls of the roll stand so that the rolls will be eifective to work the metal in the cast bar. However, it is also desirable that the space defined by the rolls of each roll stand not be overfilled so that the cast bar will not be forced into the gaps between the rolls. Thus, it is desirable that the rod be fed toward each roll stand at a volume per unit of time which is sufiicient to fill, but not overfill, the space defined by the rolls of the roll stand.
As the cast bar is received from the continuous casting machine, it usually has one large flat surface corresponding to the surface of the endless band and inwardly tapered side surfaces corresponding to the shape of the groove in the casting wheel. As the cast bar is compressed by the rolls of the roll stands, the cast bar is deformed so that it generally takes the cross-sectional shape defined by the adjacent peripheries of the rolls of each roll stand. v
Thus, it will be understood that with this apparatus, cast aluminum alloy rod of an infinite number of different lengths is prepared by simultaneous casting of the molten aluminum alloy and hot-forming or rolling the cast aluminumbar. I
Thecontinuous rod produced by the casting and rolling operation'is then processed in a reduction operation designed to producecontinuous wire of various gauges. The unannealed rod (i.e'., as rolled to ftemperyis oold drawn through a seriesof progressively constricted dies, without intermediateanne'als, to form a continuous wire of desired diameter. At the conclusion of this drawing operation, the alloy wire'will have an excessively high tensile strength and an unacceptably low ultimateelongation, plus a conductivity below that which is industry acceptedas the minimum for an electrical; conductor, i.e., sixty-one percent of IACS. The wire is then annealed or partially annealed to obtain a desired tensile strength and cooled. At the conclusion of the annealing operation, it is found that the annealed alloy'wire has the properties of acceptable conductivity andimproveditensile strength together with unexpectedly improved percent ultimate elongation and surprisingly increased bendability and fatigue resistance as specified previouslyin this application. The annealing operationm ay be continuous as in resistance annealing, induction annealing, convection annealing by "continuous furnaces or radiation annealing by continuous furnaces, or, preferably, may be batch annealed in a batch furnace. When continuously annealing, temperatures of about 450 F. to about 1200 F. may be employed with annealing times of'about five minutes'to about 1/l0,000 of a minute. Generally, however, continuc-us annealing temperatures. and'times may be adjusted to meet'jthe' requirementsoi the particular overall proc-, essing' operation so long as the desired tensilestrength is achieved. In a batch annealing operation, a temperature ofapproximately 400? F. to about 750- F. isemployed with residence times of about thirty (30) minutes to about twenty-four (24) hours..As mentioned withrespect to continuous annealing-,Qinbatch annealing the time'sand temperatures may be 'variedto suitQtheovenall process so longfas the, desired tensiiestrengtlr-"is obtained. Simply by way of example', it hasbeen found that the following tensile strengths; in-the presentljaluminum wire are achieved'w ith' the l isted batch annealing temperature and tim es. I r i i 'TABLE'I' 1 I Tern erature i- Tensilestreugth 4? F.) Time (hrs.')
12,0o0+14,oo0 "650 s upon-15,900- 5-50 A --3 15,00047000; 520 s out of solution as iron aluminate intermetallic compound (FeAl Thus, after casting, the bar contains a dispersion of FeAl in a supersaturated solid solution matrix. The supersaturated matrix may contain as much as 0.17 weight percent iron. As" the bar is rolled in a hot-working operation immediately after casing, the FeAl particles are broken up and dispersed throughout the matrix inhibiting large cell formation. When the rod is then drawn to its final gauge size without intermediate anneals and then aged in a final annealing operation, the tensile strength, elongation and bendability are increased due to the small cell size and the additionalpinning of dislocations bypreferential precipitation of FeAl on the dislocation sites. Therefore, new dislocation sources must be activated under the applied stress of the drawing operation and this causes both the strength and the elongation to be further improved.
The properties of the present aluminum alloy wire are significantly affected by the size of the FeAl particles in the matrix. Coarse precipitates reduce the percent elongation and bendability of the wire by enhancing nucleation and thus, formation of large cells which, in turn, lowers the recrystallization temperature of the wire. Fine precipitates improve the percent elongation and benda bility by reducing nucleation and increasing the recrystallization temperature. Grossly coarse precipitates of FeAl cause the wire to become brittle and generally unusable. Coarse precipitates have a particle size of above 2,000 angstrom units and fine precipitates have a particle size of below 2,000 angstrom units.
A typical alloy No. 12 AWG wire of the present invention has physical properties of 15,000 p.s.i. tensile strength, ultimate elongation of 20%, conductivity of 61% IACS,
, and bendability of 20 bends to break. Ranges of physical properties generally provided by No. 12 AWG wire prepared from the present alloy include tensile strengths of about 12,000 to about 22,000 p.s.i. ultimate elonga-' tions of about 40% to about conductivities of about 61% to about 63% and number of bends to break of about 45 to 10.
v A more complete understanding of the invention will be obtained from the following examples.
EXAMPLE 1 A comparison between prior EC aluminum alloy wire and the present aluminum alloy wire is provided by preparing a prior EC alloy with aluminum content of 99.73 weight percent, iron content of 0.18 weight percent, silicon content of 0.059 weight percent, and trace amounts of typical impurities. The present alloyis prepared with aluminum content of 99.45 weight percent, iron content of 0.45 weight percent, silicon content of 0.056 weight percent, and trace amounts of typical impurities. Both alloys are continuously cast into continuous bars and hot-rolled into continuous rod in similar fashion. The alloys are then cold-drawn through successively constricted dies to yield #12 AWG continuous wire. Sections of the wire are collected on seperate bobbins and batch furnace-annealed at various temperatures and for various lengths of time to yield sections of the prior EC alloy and the present alloy of varying tensile strengths. Several samples of each section are tested in a device designed to measure the number of bends required to break each sample at a particular flexure Point. Through uniform force and tension, the device fatigues each sample through an arc of approximately 135. The wire is bent across a pair of spaced opposed mandrels having a diameter equal to that of the wire. The mandrels are spaced apart a distance of about one and one-half times the diameter of the wire. One bend is recorded after the wire is deflected from a vertical disposition to one extreme of the arc, returned back to vertical, deflected to the opposite extreme of the arc, and returned back to the original vertical disposition. The speed of deflection, force and TABLE II-A EC alloy Present alloy Tensile strength No. of bends Tensile to break Average No. of strength bends to break As shown in Table IIA, the present alloy has a surprlsingly improved property of bendability over conventional EC alloy.
Several samples of the present alloy #12 AWG wire and EC alloy #12 AWG wire, processed as previously specified, are then tested for percent ultimate elongation by standard testing procedures. At the instant of breakage, the increase in length of the wire is measured. The percent ultimate elongation is then figured by dividing the initial length of the wire sample into the increase in length of the wire sample. The tensile strength of the wire sample is recorded as the pounds per square inch of cross-sectional diameter required to break the wire during the percent ultimate elongation test. The results are as follows:
TABLE IIB Tensile strength Percent ultimate elongation Percent ultimate elongation Tensile strength As shown in Table II-B, the present alloy has a surprislngly improved property of percent ultimate elongatlon over conventional EC alloy.
EXAMPLES 2 THROUGH 7 Six aluminum alloys are prepared with varying amounts of ma or constituents. Those alloys are reported in the following table:
TABLE III Example No. Percent Al Percent Fe Percent Si The six alloys are then cast into six continuous bars and hot-rolled into six continuous rods. The rods are cold-drawn through successively constricted dies to yield #12 gauge wire. The wire produced from the alloys of Examples 2 and 4 are resistance annealed and the remainder of the examples are batch furnace annealed to yield the tensile strengths reported in Table IV. After annealing, each of the wires is tested for percent conductivity, tensile strength, percent ultimate elongation and average number of bends to break by standard testing procedures for each, except that the procedure specified in-Example 1 is -used..fo r determining average number of bends to break. These results are reported in the follow: ing table.
'" C'onductivityin Percent---=----Averago i p H percent Tens le ultimate N0. of bends ExampleNo IACS- 1, strength. elongation to break se results, it may be seen that Example 2 falls outsi 'Q C th B SCOPG of the present invention in percentage j9t1 m2nst1ts.-.In a t o nill be noted for Example 2 that the percentage of ultimate elongation is somewhat lower than desirable and the average number of.bends .to break'thesainple isnlower'than the remaining examples.
AMPLE s13;
An aluminum alloy is prepared with an aluminum content of 99.42 weight percent, iron content of 0.50 weight percent, silicon content of 0.055 weight percent and trace amounts of typical impurities. The alloy is cast into a continuous bar which is hot-rolled to yield a continuous rod. The rod is then cold-drawn through successively constricted dies to yield #12 AWG wire. The wire is collected on a 30 inch bobbin until the collected wire weighs approximately 250 pounds. The bobbin is then placed in a cold General Electric Bell Furnace and the temperature therein is raised to 480 F. The temperature of the furnace is held at 480 F. for three hours after which the heat is terminated and the furnace cools to .400 F. The furnace is then quick cooled and the bobbin is removed. Under testing, it is found that the alloy wire has a conductivity of 16.6% IACS, a tensile strength of 16,500 p.s.i., a percentage of ultimate elongation of and a number of bends to break of 18.
EXAMPLE 9 Example 8 is repeated except the Bell Furnace temperature is raised to 500 F. and held for three hours prior to cooling. The annealed alloy wire has a conductivity of 61.4% IACS, a tensile strength of 15,000 p.s.i., a percentage of ultimate elongation of 27%, and a number of bends to break-of 28.
EXAMPLE 10 Example 8 is repeated except the Bell Furnace temperature is raised to 600 F. and held for three hours prior to cooling. The annealed alloy wire has a conductivity of 61.2% IACS, a tensile strength of 14,000 p.s.i., a percentage of elongation of 30%, and a number of bends to break of 43. Y Y EXAMPLE 11 Example 8 is repeated except the Bell Furnace temperature is raised to 600 F. and held 1 /2 hours prior to cooling. The annealed alloy has a conductivity of 61.5% IACS, a tensile strength of 16,000 p.s.i., a percentageofelongation of 22%,and a number ofv bends vto break of 23.
EXAMPLE 12 The alloy of Example 8 is cast into a continuous bar which is hot-rolled to yield a continuous f temper rod of inch diameter. The rod is then cold-drawn through successively constricted dies to yield #14 AWG wire. The wire is then redrawn on a Synchro Model BG-16 wire drawing machine which includes a Synchro Resistoneal continuous in line annealer. The wire is drawn to #28 AWG at a finishing speed of 3,300 feet per minute and the in line annealer is operated at 52 volts with transformer tap setting at No. 8. The annealed alloy wire has a conductivity of 62% IAS, a tensile strength of 15,450 p.s.i., and a percentage of ultimate elongation of;2 5%. Since the wire gauge is so small, the-number of bendsto break is extremelylargeu" H v I EXAMPLE 13 The alloy of Example 8 iscast intoa continuous bar which is-hot-rolled to yield a continuous .f temper rodQf .%inch .diameter.. The rodis I then, cold -drawnipn .a SynchroStyle No. .FX13 wire drawing-machine which includes a. continuous in line annealer. .The rod is drawn to #12 AWG wire ata finishing speed of 2,000 ,fet per minutev and the in line anneale rvoltage. at prehea ter;# 1 is 35 volts, at preheater #Zis 35 volts, andat the annealer is 22 volts. The three transformertaps are. set at #5. The annealed alloy wirehas a. conductivityof 62% IACS,.a tensile strength of 16,300 p.s.i., and a percentage of ultimate elongation of. 20%. f.
For the purpose of.clarity, the following terminology used in this application is explainedas follows: I v
RodA solid product that is long in-relationto its cross-section. Rod normally has a cross-section of between three inches and 0.375 inches. I
WireA solid wrought product that is long in relation to its cross-section, which is square or rectangunlar with sharp or rounded corners or edges, or is round, a regular hexagon or a regular octagon, and whose diameter or greatest perpendicular distance between parallel faces is between 0.374 inches and 0.0031 inches.
While this invention has been described in detail with particular reference to preferred embodiments thereof, it will be understood that variations and modifications can be effected within the spirit and scopeof the invention as described hereinbefore and as defined in the appended claims.
I claim:
1. Aluminum alloy rod or wire having a minimum conductivity of sixty-one percent IACS and a diameter or greatest perpendicular distance between'parallel faces of between 3.00 inches and 0.0031 inches consisting essentially of from about 0.55t0 about 0.95 weight percent iron; no more than about 0.15 weight percent silicon; less than 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, manganese, magnesium, zinc, boron, and titanium; and from about 98.95 to less than 99.45 weight percent aluminum, said alloy containing no more than 0.15 total weight percent trace elements and having an iron to silicon ratio of 8:1 or greater.
2. Aluminum alloy rod of claim 1 consisting essentially of from about 0.80 to about 0.95 weight percent iron; from about 0.07 to about 0.15 weight percent silicon; and from about 98.95 to about 99.13 Weight percent aluminum.
3. Aluminum alloy wire of claim 1 consisting essentially of from about 0.80 to about 0.95 weight percent iron; from about 0.07 to about 0.15 weight percent silicon; and from about 98.95 to about 99.13 weight percent aluminum.
4. Aluminum alloy wire of claim 1 consisting essentially of from about 0.55 to about 0.80 weight percent iron; from about 0.01 to about 0.07 weight percent silicon; and from about 99.15 to about 99.40 weight percent aluminum.
5. Aluminum alloy rod of claim 1 consisting essentially of from about 0.55 to about 0.80 weight percent iron; from about 0.01 to about 0.07 weight percent silicon; and from about 99.15 to about 99.40 weight percent aluminum. a
6. Aluminum alloy wire of claim 1 consisting essen-' tially of from about 0.55 to less than 0.60 weight'percent iron; from about 0.01 to about 0.15 weight percent silicon; and from about 99.10 to about 99.44 weight percent aluminum.
7. Aluminum alloy rod of claim 1 consisting essentially of from about 0.55 to less than 0.60 weight percent iron; from about 0.01 to about 0.15 weight percent silicon; and from about 99.10 to about 99.44 weight percent aluminum.
8. Aluminum alloy rod or wire having a minimum conductivity of sixty-one percent IACS and a diameter or greatest perpendicular distance between parallel faces of between 3.00 inches and 0.0031 inches and containing substantially evenly distributed iron aluminate inclusions in a concentration produced by the presence of about 0.45 to about 0.95 weight percent iron in an alloy mass consisting essentially of about 98.95 to less than 99.45 weight percent aluminum; no more than about 0.15 weight per cent silicon; and less than 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, maganese, magnesium, zinc, boron, and titanium, said iron aluminate inclusions having a particle size of less than 2,000 angstrom units.
9. Aluminum alloy rod of claim 8 wherein iron is present in a concentration of about 0.55 to about 0.95 weight percent; silicon is present in a concentration of about 0.01 to about 0.15 weight percent; and aluminum is present in a concentration of about 98.95 to about 99.44 weight percent.
10. Aluminum alloy wire of claim 8 wherein iron is present in a concentration of about 0.55 to about 0.95 weight percent; silicon is present in a concentration of about 0.01 to about 0.15 weight percent; and aluminum is present in a concentration of about 98.95 to about 99.44 weight percent.
11. Aluminum alloy rod of claim 8 wherein iron is present in a concentration of about 0.80 to about 0.95 weight percent; silicon is present in a concentration of about 0.07 to about 0.15 weight percent; and aluminum is present in a concentration of about 98.95 to about 99.13 weight percent.
12. Aluminum alloy wire of claim 8 wherein iron is present in a concentration of about 0.80 to about 0.95 weight percent; silicon is present in a concentration of about 0.07 to about 0.15 weight percent; and aluminum is present in a concentration of about 98.95 to about 99.13 weight percent.
13. Aluminum alloy wire of claim 8 wherein iron is present in a concentration of about 0.50 to about 0.80 weight percent; silicon is present in a concentration of about 0.01 to about 0.07 weight percent; aluminum is present in a concentration of about 99.15 to about 99.40 weight percent.
14. Aluminum alloy rod of claim 8 wherein iron is present in a concentration of about 0.50 to about 0.80 weight percent; silicon is present in a concentration of about 0.01 to about 0.07 weight percent; aluminum is present in a concentration of about 99.15 to about 99.40 weight percent.
15. Aluminum alloy wire of claim 8 wherein iron is present in a concentration of about 0.45 to less than 0.60 weight percent; silicon is present in a concentration of about 0.01 to about 0.15 weight percent; and aluminum is present in a concentration of about 99.10 to about 99.54 weight percent.
16. Aluminum alloy rod of claim 8 wherein iron is present in a concentration of about 0.45 to less than 0.60 weight percent; silicon is present in a concentration of about 0.01 to about 0.15 weight percent; and aluminum is present in a concentration of about 99.10 to about 99.54 weight percent.
17. Aluminum alloy wire of claim 8 wherein iron is present in a concentration of about 0 .55 to less than 0.60 weight percent; silicon is present in a concentration of about 0.01 to about 0.15 weight percent; and aluminum is present in a concentration of about 99.10 to about 99.44 weight percent.
18. Aluminum alloy rod of claim 8 wherein iron is present in a concentration of about 0.55 to less than 0.60 weight percent; silicon is present in a concentration of about 0.01 to about 0.15 weight percent; and aluminum is present in a concentration of about 99.10 to about 99.44 weight percent.
19. Aluminum alloy rod or wire of claim 1 wherein the silicon content is from 0.01 to 0.15 weight percent, the individual trace element content is from 0.0001 to 0.05, weight percent and the total trace element content is from 0.004 to 0.15 weight percent.
20. Aluminum alloy rod or wire of claim 8 wherein the silicon content is from 0.01 to 0.15 weight percent, the individual trace element content is from 0.0001 to 0.05, and the total trace element content is from 0.004 to 0.15 weight percent.
References Cited UNITED STATES PATENTS 11/ 1962 Snyder. 8/1968 Bylund.
OTHER REFERENCES RICHARD O. DEAN, Primary Examiner US. Cl. X.R.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 512 ,221 Dated May 19 197D Invent0r(s) Roger J. Schoerner It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Under "References Cited" add:
2,252,421 8/1941 Stroup 75-138 2 ,545 866 3/1951 Whitzel et. a1. 29-193 3,241,953 3/1966 Pryor, et. a1. 75-138 3,278, 300 10/1966 Kioke 75-138 OTHER REFERENCES Bell Laboratories Record, "Aluminum Conductor Cable An Alternative to Copper", November, 1967.
Transactions of the American Society for Metals, "The Effect of Single Addition Metals on the Recrystallization, Electrical Conductivity and Rupture Strength of Pure Aluminum" 1949 Volume 41, Pages 443 to 459 SIGNED W SEALED JAN 5 I971 ISEAL) A test:
ward M. Flemhu, Ir.
FORM PO-IOSO [1069) USCOMM DC Boy's-p69 Q u s covsnnuzm Pnmrmc ornc: I!" o-au-au
US814183A 1969-04-07 1969-04-07 Aluminum alloy wire Expired - Lifetime US3512221A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81418369A 1969-04-07 1969-04-07

Publications (1)

Publication Number Publication Date
US3512221A true US3512221A (en) 1970-05-19

Family

ID=25214380

Family Applications (1)

Application Number Title Priority Date Filing Date
US814183A Expired - Lifetime US3512221A (en) 1969-04-07 1969-04-07 Aluminum alloy wire

Country Status (2)

Country Link
US (1) US3512221A (en)
YU (1) YU34437B (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763686A (en) * 1970-11-23 1973-10-09 Olin Corp Process for obtaining aluminum alloy conductor
US3771214A (en) * 1970-01-02 1973-11-13 Aluminum Co Of America Aluminum welding
DE2438177A1 (en) * 1973-08-09 1975-02-20 British Insulated Callenders ALUMINUM ALLOY CONDUCTOR WIRE
US3912358A (en) * 1973-06-19 1975-10-14 Roger D Miller Aluminum alloy compression type connectors for use with aluminum or copper conductors
US3960606A (en) * 1975-03-12 1976-06-01 Southwire Company Aluminum silicon alloy and method of preparation thereof
US3984619A (en) * 1974-01-28 1976-10-05 Bicc Limited Aluminium alloy conductor wire
JPS5136205B1 (en) * 1971-01-30 1976-10-07
US4028141A (en) * 1975-03-12 1977-06-07 Southwire Company Aluminum iron silicon alloy
JPS5274514A (en) * 1971-06-07 1977-06-22 Southwire Co Conductive alminium alloy
US4080223A (en) * 1975-06-23 1978-03-21 Southwire Company Aluminum-nickel-iron alloy electrical conductor
US4191319A (en) * 1976-03-15 1980-03-04 Southwire Company Galvanized tube welded seam repair metallizing process
US4192693A (en) * 1971-11-01 1980-03-11 Southwire Company Aluminum copper alloy electrical conductor and method
US4234359A (en) * 1978-01-19 1980-11-18 Southwire Company Method for manufacturing an aluminum alloy electrical conductor
US4397696A (en) * 1981-12-28 1983-08-09 Aluminum Company Of America Method for producing improved aluminum conductor from direct chill cast ingot
US4421304A (en) * 1981-12-12 1983-12-20 Southwire Company Apparatus for controlled temperature accumulator for elongated materials
US4431168A (en) * 1981-12-21 1984-02-14 Southwire Company Apparatus for improved heat treatment of elongated aluminum alloy materials
US20060289425A1 (en) * 2005-05-06 2006-12-28 Gabriele Serra Internal combustion engine provided with a heating device in a combustion chamber and a control method for the heating device
US20090104514A1 (en) * 2006-10-24 2009-04-23 Auto Kabel Managementgesellschaft Mbh Battery Lead
EP1688966B1 (en) * 2005-02-03 2014-03-26 Auto-Kabel Management GmbH Electrical flat cable for motor vehicles
CN103725927A (en) * 2013-12-26 2014-04-16 安徽欣意电缆有限公司 Al-Fe-Cu-Mg aluminum alloy and medium-voltage cable prepared from Al-Fe-Cu-Mg aluminum alloy
CN103757490A (en) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 Al-Fe-Cu-Zn aluminum alloy for automobile wire and wire harness thereof
CN103757485A (en) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 Al-Fe-Cu-Mg aluminum alloy and low-voltage cable manufactured by alloy
CN103757492A (en) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 Al-Fe-Cu-Mg series aluminum alloy for automobile wire and wiring harness
CN103757494A (en) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 Al-Fe-Cu-Mg-Ti aluminum alloy for an automobile wire, and a wiring harness thereof
CN103757489A (en) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 Al-Fe-Cu-Ti aluminum alloy for automotive wire and wiring harness thereof
RU2815427C1 (en) * 2022-12-12 2024-03-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)" Method for producing a conductor from an alloy of the al-fe system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3063832A (en) * 1960-07-05 1962-11-13 Anaconda Wire & Cable Co High conductivity tin-bearing aluminum alloy
US3397044A (en) * 1967-08-11 1968-08-13 Reynolds Metals Co Aluminum-iron articles and alloys

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3063832A (en) * 1960-07-05 1962-11-13 Anaconda Wire & Cable Co High conductivity tin-bearing aluminum alloy
US3397044A (en) * 1967-08-11 1968-08-13 Reynolds Metals Co Aluminum-iron articles and alloys

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771214A (en) * 1970-01-02 1973-11-13 Aluminum Co Of America Aluminum welding
US3763686A (en) * 1970-11-23 1973-10-09 Olin Corp Process for obtaining aluminum alloy conductor
JPS5136205B1 (en) * 1971-01-30 1976-10-07
JPS5527613B2 (en) * 1971-06-07 1980-07-22
JPS5274514A (en) * 1971-06-07 1977-06-22 Southwire Co Conductive alminium alloy
US4192693A (en) * 1971-11-01 1980-03-11 Southwire Company Aluminum copper alloy electrical conductor and method
US3912358A (en) * 1973-06-19 1975-10-14 Roger D Miller Aluminum alloy compression type connectors for use with aluminum or copper conductors
DE2438177A1 (en) * 1973-08-09 1975-02-20 British Insulated Callenders ALUMINUM ALLOY CONDUCTOR WIRE
US3984619A (en) * 1974-01-28 1976-10-05 Bicc Limited Aluminium alloy conductor wire
US3960606A (en) * 1975-03-12 1976-06-01 Southwire Company Aluminum silicon alloy and method of preparation thereof
US4028141A (en) * 1975-03-12 1977-06-07 Southwire Company Aluminum iron silicon alloy
US4080223A (en) * 1975-06-23 1978-03-21 Southwire Company Aluminum-nickel-iron alloy electrical conductor
US4191319A (en) * 1976-03-15 1980-03-04 Southwire Company Galvanized tube welded seam repair metallizing process
US4234359A (en) * 1978-01-19 1980-11-18 Southwire Company Method for manufacturing an aluminum alloy electrical conductor
US4421304A (en) * 1981-12-12 1983-12-20 Southwire Company Apparatus for controlled temperature accumulator for elongated materials
US4431168A (en) * 1981-12-21 1984-02-14 Southwire Company Apparatus for improved heat treatment of elongated aluminum alloy materials
US4397696A (en) * 1981-12-28 1983-08-09 Aluminum Company Of America Method for producing improved aluminum conductor from direct chill cast ingot
EP1688966B1 (en) * 2005-02-03 2014-03-26 Auto-Kabel Management GmbH Electrical flat cable for motor vehicles
US20060289425A1 (en) * 2005-05-06 2006-12-28 Gabriele Serra Internal combustion engine provided with a heating device in a combustion chamber and a control method for the heating device
US7528346B2 (en) * 2005-05-06 2009-05-05 Magneti Marelli Powertrain S.P.A. Internal combustion engine provided with a heating device in a combustion chamber and a control method for the heating device
US20090104514A1 (en) * 2006-10-24 2009-04-23 Auto Kabel Managementgesellschaft Mbh Battery Lead
US9177695B2 (en) 2006-10-24 2015-11-03 Auto Kabel Managementgesellschaft Mbh Battery lead
CN103725927A (en) * 2013-12-26 2014-04-16 安徽欣意电缆有限公司 Al-Fe-Cu-Mg aluminum alloy and medium-voltage cable prepared from Al-Fe-Cu-Mg aluminum alloy
CN103757490A (en) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 Al-Fe-Cu-Zn aluminum alloy for automobile wire and wire harness thereof
CN103757485A (en) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 Al-Fe-Cu-Mg aluminum alloy and low-voltage cable manufactured by alloy
CN103757492A (en) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 Al-Fe-Cu-Mg series aluminum alloy for automobile wire and wiring harness
CN103757494A (en) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 Al-Fe-Cu-Mg-Ti aluminum alloy for an automobile wire, and a wiring harness thereof
CN103757489A (en) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 Al-Fe-Cu-Ti aluminum alloy for automotive wire and wiring harness thereof
RU2815427C1 (en) * 2022-12-12 2024-03-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)" Method for producing a conductor from an alloy of the al-fe system

Also Published As

Publication number Publication date
YU266369A (en) 1978-12-31
YU34437B (en) 1979-07-10

Similar Documents

Publication Publication Date Title
US3512221A (en) Aluminum alloy wire
US4028141A (en) Aluminum iron silicon alloy
CA1037742A (en) High iron aluminum alloy
US3647939A (en) Reinforced composite aluminum alloy conductor cable
CA1055734A (en) Aluminum nickel alloy electrical conductor
US3807969A (en) Aluminum alloy electrical conductor
US3811846A (en) Aluminum alloy electrical conductor
US3670401A (en) Method of fabricating aluminum alloy rod
US3513252A (en) Insulated aluminum alloy magnet wire
US4140549A (en) Method of fabricating an aluminum alloy electrical conductor
US3964935A (en) Aluminum-cerium-iron electrical conductor and method for making same
US4305762A (en) Copper base alloy and method for obtaining same
US4082573A (en) High tensile strength aluminum alloy conductor and method of manufacture
US4080222A (en) Aluminum-iron-nickel alloy electrical conductor
US3958987A (en) Aluminum iron cobalt silicon alloy and method of preparation thereof
US4233066A (en) Electrical conductor of aluminium
US3830635A (en) Aluminum nickel alloy electrical conductor and method for making same
US4080223A (en) Aluminum-nickel-iron alloy electrical conductor
US3914009A (en) Electrical contact device and method of preparation thereof
US4216031A (en) Aluminum nickel base alloy electrical conductor and method therefor
US3807016A (en) Aluminum base alloy electrical conductor
US3513250A (en) Solid insulated conductor
US3513251A (en) Multifilament conductor
US3920411A (en) Aluminum alloy electrical conductor and method for making same
US3960606A (en) Aluminum silicon alloy and method of preparation thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOUTHWIRE TECHNOLOGY, INC., A GEORGIA CORP.,GEORGI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SOUTHWIRE COMPANY, (A GA. CORP.);REEL/FRAME:004765/0692

Effective date: 19870126

Owner name: SOUTHWIRE TECHNOLOGY, INC., CARROLLTON, GEORGIA, A

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SOUTHWIRE COMPANY, (A GA. CORP.);REEL/FRAME:004765/0692

Effective date: 19870126

AS Assignment

Owner name: SOUTHWIRE COMPANY, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SOUTHWIRE TECHNOLOGY, INC.;REEL/FRAME:005091/0198

Effective date: 19890210