US3512173A - Alphanumeric ink droplet recorder - Google Patents
Alphanumeric ink droplet recorder Download PDFInfo
- Publication number
- US3512173A US3512173A US694264A US3512173DA US3512173A US 3512173 A US3512173 A US 3512173A US 694264 A US694264 A US 694264A US 3512173D A US3512173D A US 3512173DA US 3512173 A US3512173 A US 3512173A
- Authority
- US
- United States
- Prior art keywords
- pulses
- droplets
- ink
- pulse
- character
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011159 matrix material Substances 0.000 description 17
- 230000006870 function Effects 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/07—Ink jet characterised by jet control
- B41J2/075—Ink jet characterised by jet control for many-valued deflection
- B41J2/08—Ink jet characterised by jet control for many-valued deflection charge-control type
- B41J2/085—Charge means, e.g. electrodes
Definitions
- FIG. 1 represents the recording apparatus in accordance with the principles of the present invention
- FIG. 2 is a block diagram of the circuit used in conjunction with the apparatus of FIG. 1;
- FIG. 3A and B represent the layout of the recorded characters
- FIG. 4A, B, C, and -D represent waveforms generated by the circuit of FIG. 2;
- FIG. 5 illustrates an optional compensating circuit which may be utilized.
- the apparatus includes a conduit 10 connected at one end to an ink reservoir 11 and terminating at its other end in a nozzle 12 having a mouth or orifice 14 through which ink is ejected.
- Ink 15 is forced into the nozzle under pressure generated from a pressure source 13 which exerts pressures generally of at least 10 psi. and above.
- the preferred pressures will vary depending largely upon the desired speed of printing and the size and shape of orifice 14.
- the nozzle 12 as shown is of generally conical cross-section converging to orifice 14 which may be circular, and, for example, may be about 0.0015 inch in diameter. Both the nozzle and the mouth thereof may be of other suitable symmetric or asymmetric design.
- the ink forced into the nozzle 12 is ejected from the orifice 14 under pressure generated from source 13.
- the pressure in the absence of controls to be described, is adequate to cause the ink to be ejected in a continuous stream. Due to the natural instability of a liquid stream, the stream inherently breaks up into droplets a short distance from the nozzle. The inherent breakup process is of a random nature in both rate and size of the droplets.
- nozzle 12 is vibrated at an ultrasonic rate which in the preferred embodiment is at a frequency vibration on the order of approximately 30 kc. However, other frequencies may also be utilized depending on the particular size and spacing of the droplets desired. Vibration may be effected by means of a piezoelectric crystal 17 positioned directly about the converging end of the nozzle. In a preferred embodiment, as illustrated, a mechanical structure 18, comprising a rigid plate member or the like, snugly surrounds the nozzle end.
- plate 18 Being connected directly to the nozzle, plate 18 causes vibration thereof at the transmitted frequency which is effective in uniformly controlling size and breakup rate of the ejecting ink stream to produce the uniform droplets 22.
- a charging electrode 23 Surrounding the stream at the vicinity where the droplets break off is a charging electrode 23 which may be cylindrical or other suitable geometric configuration.
- Information in the form of intelligence signals from a source 25 applies a potential to the electrode 23 creating an electric field between the electrode 23 and the electrically conductive droplet ink stream at the position of droplet formation.
- the field generated thereby induces a charge on the surface of the continuous ink stream.
- the charge on any portion of the ink stream surface is proportional to the electric field present at that surface which in turn is proportional to the voltage applied to electrode 23.
- the charge on its surface is proportional to the voltage applied to electrode 23. After the droplet has separated, its charge can no longer change, since it is now electrically insulated by the surrounding air.
- the charge on the individual droplet is nearly proportional to the voltage applied to electrode 23 at the time the droplet breaks from the stream.
- the voltage applied to the charging electrode 23 will be a DC voltage. which may be turned off or on or varied in amplitude in accordance with intelligence signals emanating from information source 25, which may be a pulse generating circuit for responding to character codes to record alphanumeric information. The details of a possible form that this circuit may take will be described hereinafter.
- information source 25 which may be a pulse generating circuit for responding to character codes to record alphanumeric information.
- this circuit may take will be described hereinafter.
- each droplet after passing electrode 23 will either be charged or uncharged, depending on the voltage generated by the intelligence signal when that droplet separated from the stream.
- uncharged as used in the preceding paragraph means not charged in accordance with intelligence signals from source 25.
- all droplets emanating from the output side of charging electrode 23 will have a certain charge.
- a steady state is maintained on electrode 23 by applying a steady DC. potential thereto and a signal potential of controlled amplitude and width superimposed thereon. By this means, each droplet will bear charge.
- each of the ink droplets follow .their trajectory through a pair of divergent electrode plates 27 and 28 between which is applied a high voltage from a potential source 29.
- the field generated between the latter electrodes is effective to deviate or defleet from the trajectory either those droplets which have or have not been charged as a function of the appropriate intelligence pulse from source 25.
- the latter droplets are deflected by means of the existing field toward electrode 28 into an ink draining channel 30 formed by an interception plate 31, and a flared diverging lower extension 32 of electrode 28.
- the droplets which have been charged as a function of the appropriate intelligence pulse from source 25 are deflected toward electrode plate 27 to an extent dependent upon the charge they bear and onto the recording medium 40.
- This recording medium is moving out of the plane .of the drawing in FIG. 1 toward the viewer at a rate proportional to the, rate at which the intelligence signals are applied to charging electrode 23.
- the imposed intelligence signal must be accurately produced and transmitted so that each printing droplet strikes the paper in a position on the surface thereof which is a function of the output potential of source 29 and the charge on the printing drop- .let.
- the charged state of those droplets not subject to the signal pulse is not critical so long as it is sufficient to cause the droplets to be intercepted by channel 30 under the influence of the field applied between plates 27 and 28.-Those ink droplets intercepted by channel 30 are then funneled via a hose connection 35 to an ink reservoir 36.
- a pump 37 operated by a float control (not shown), for example, in reservoir 36 returns the surplus ink via conduit 3-8 and through check valve 39 to main reservoir 11.
- a representative signal DC potential applied at 25 is in the order of 200-400 volts.
- a typical ink stream velocity would be-30 ft./sec. and above produced with a nozzle orifice about .0015" in diameter and 30 pounds per square inch ink pressure. In this manner, it is possible with approximately 3000 volts applied between electrodes 27 and 28 to selectively divert individual droplets from the stream.
- the response time of the system is essentially equal to the reciprocal of the drop production rate, i.e., 33 ms. for a 30 kc. drop production rate.
- FIGS. 2, 3, 4, and 5 in describing the novel features of the intelligence source 25 hereinabove referred to in connection with FIG. 1
- an alphanumeric symbol or character may be printed utilizing the apparatus of FIG. 1 when the character pattern to be recorded is sub-divided into a 5 x 7 matrix, for example;
- FIG. 3A illustrates those sub-divisions of this matrix which are represented by a pulse to the charging electrode 23 in order to record this character.
- the ones in this matrix are representative of the presence of an appropriate pulse while the zerosare indicative of the absence of a pulse.
- these pulses are generated in a particular sequence corresponding to the numerical order shown in FIG. 3B where the numerals 1 through 35 represent a possible thirty-five pulses'which may be applied to the charging electrode 23 in succession.
- the characteristics of the pulses so applied and the arrangement of the electrode plates 27 and 28 are such that if the entire thirty-five pulses were applied to the charging electrode five substantially parallel vertical lines would be recorded on the recording medium 40 in the form of contiguous dots of ink droplets.
- FIG. 2 which shows the circuit which comprises intelligence source 25 in FIG. 1, and FIG. 4, which illustrates the waveforms generated within this circuit
- a conventional input/ output interface circuit 42 This interface circuit may contain proper storage for digital code representations of a desired character to be recorded and may interface with a variety of input sources such as a conventional keyboard, punch tape reader, telephone line, or other source of digital signals.
- The'output of the interface unit provides a parallel input to a conventional decoder circuit which decodes the digital code representation and generates a character pulse on one of a series of parallel outputs indicative of the code character received by the input/output interface 42.
- a character matrix 46 receives the character pulse from the decoder circuit 44 to generate in cooperation with a group of parallel AND gates, represented generally by the block 48, a sequence of preferably uniform amplitude pulses representative of-the coded character.
- the character matrix 46 may take various forms and, as an example only, mayvconsist of a conventional diode matrix having a number of character select input wires which correspond to the outputs of the decoder circuit 44. These wires are selectively coupled to read-out wires via diodes which are forward biased when their respective character select wire is energized. In the case of the character F, fourteen diodes are individually connected between the appropriate characterselect wire "and to the read-out wires corresponding to subdivisions 1 through 7,
- Each read-out wire provides one input to an AND gate in block 48.
- AND gate in block 48.
- Each of the AND gates in block 48 has two inputs, one from the particular read-out wire associated with it and another from a particular register in the conventional forty bit counter 50. This counter is driven by clock pulses from a conventional clock source 52. These pulses are shown in FIG. 4A as clock pulses 56. The sequence pulses in this serial stream is determined by the sequence of diodes coupling the particular character select wire to one of the thirty-five read-out wires.
- forty clock pulses can be efliciently used to generate one character pulse pattern during one recording cycle. While each recorded character consists of a predetermined pattern of sub-divisions of the matrix shown in FIG. 3A where a possible 35 sub-divisions exist, five additional stages are used in the forty bit counter 50. These permit allowance for a retrace time between successive vertical segments of the character to be recorded.
- a sawtooth generator 64 is utilized which necessitates a period at the end of the ramp portion of the sawtooth during which its amplitude returns to an initial level, this period being referred to commonly as a retrace interval.
- These stages corresponding to the retrace interval and spaced every seven stages in the bit counter 50 may be utilized to space sequences of seven pulses to the charging electrode 23. These stages are utilized by merely providing a stage in the counter 50 to register these time spaces without effecting any other portion of the circuit. In this manner, as the first seven pulses are counted by bit counter 50, seven count pulses are provided to a sequence of seven AND gates in block 48.
- the eighth count pulse is generated upon the receipt from clock 52 of the eighth clock pulse while no output pulses are generated from counter 50 to the AND gates 48.
- the bit counter 50 Upon receipt of the ninth clock pulse, the bit counter 50 generates another count pulse to the appropriate AND gate in block 48 and the next vertical segment of the character will be recorded.
- the outputs of the thirty-five AND gates represented by block 48 are coupled in parallel to the input of an OR gate arrangement 58 which provides a serial stream of uniform amplitude pulses in a particular pattern corresponding to the coded character received at the interface 42. It is understood that the output pulse from any stage of counter 50 is present at that stage until the next clock pulse arrives. Therefore, the duration of the pulse is equal to the time between clock pulses 56.
- the input waveforms to the linear AND gate 62 for the example character F are represented in FIG. 4B and C.
- the linear gate will respond to these input waveforms to selectively gate through portions of the sawtooth waveform whichcoincide with the pulses originating at the output of OR gate 58.
- This out-put from the linear AND gate is represented by the waveform of FIG. 4D.
- the waveform consists of a first pulse 66 which actually is composed of seven pulses of equal duration. These are designated by the broken lines in this figure. If the time duration of the ramp portion of the sawtooth is equal to period t then the individual pulses making up this pulse 66 are equal to t/rt where n is equal to seven in the situation of a 5 x 7 matrix.
- the remaining pulses in the waveform of FIG. 4D have an equal duration of t/ n. It will be noted that all the pulses of FIG. 4D have a linearly varying amplitude. This varying amplitude permits the imparting of differing charges to successive ink droplets passing through the charging electrode 23. The charge on the successive ink droplets will permit the droplets to be very evenly deflected by the electrode plates 27 and 28 so as to form a contiguous vertical line in the case of pulse 66 in the waveform of FIG. 4D.
- amplitudes of the pulses for example, making up pulse 66 in waveform of FIG. 4D were of an unchanging amplitude within one pulse then a contiguous vertical line would not be possible since there would be a definite charge disparity between successive droplets or groups of successive droplets which would be deflected in equal amount resulting in the deposition of one or more droplets in a discrete position on a recording medium 40 lending a dotted appearance to any vertical line or segment thereof.
- FIG. 2 another conventional amplifier 68 is shown having its input coupled to the linear AND gate 62 to amplify the waveform of FIG. 4D. The output of this amplifier then passes through compensating network 67 to charging electrode 23.
- the compensating network 67 as more fully shown in FIG. 5 includes a resistor 70 connected between terminal 72 and 74.
- Terminal 72 is coupled to the output of amplifier 68 as shown in FIG. 2 while terminal 74 is coupled to the charging electrode 23 referred to previously in connection with FIG. 1.
- the side of resistor 70 which is coupled to terminal 74, is connected to a suitable reference potential, for example, ground potential, by way of a series circuit including resistor 76 and capacitor 78.
- Th specific values of resistors 70 and 76 and capacitor 78 depend on the parameters of the remaining parts of the recording system, such as droplet size, droplet formation rate, the geometry of the charging electrode 23, etc. These values therefore may be determined emperically and will vary with the parameters employed.
- the compensating circuit shown in FIG. 5 will attenuate the initial portion of the signals applied at terminal 72. Therefore, the effect of this compensating network on a pulse, such as pulse 66 in FIG. 4D, is to slightly reduce the highest amplitude portion of this pulse. In other words, this compensating network rounds off the amplitude of the initial portion of any pulse applied at input terminal 72 thereby compensating for the overshoot phenomenon previously mentioned in connection with the description of FIG. 1.
- this compensating circuit is not absolutely necessary and may be employed to enhance the copy quality in the final recording.
- an alphanumeric recording apparatus in which high quality character recording is possible utilizing the concept of imparting different charges to successive ink droplets to permit the deposition of these droplets onto the recording medium in a contiguous manner where the particular character includees vertical line segments as the character is being read.
- a 5 x 7 matrix has been described in connection with the present disclosure as an example only and that the concepts of this invention are equally applicable to any m by n matrix where m and n are integers.
- a recording apparatus for recording alphanumeric characters composed of combinations of predetermined -selected portions of an m by n matrix, where m and n are integers, comprising:
- nozzle dispensing means for dispensing ink from said reservoir towards a recording medium
- pulse train generating means for generating in response to a character code m sets of pulses, each set having a possible maximum, of n pulses said pulse train generating means including,
- sawtooth generator means for generating successive substantially linear ramp signals, one for each of said sets
- pulse means for generating m groups of a possible maximum of n uniform pulses each, each of said groups corresponding to one of said sets, the number and sequence of said uniform pulses being a function of a particular character
- linear gate means having an output terminal and responsive to said uniform pulses for generating output signals representative of portions of said ramp signals occurring coincidentally in time with said uniform pulses
- electrode means positioned relative to said uniformly sized droplets for imparting a charge thereto as a function of the instantaneous amplitude of a signal applied to said electrode means;
- (h) means for applying a direct current voltage to said deflecting plates to deflect the ink droplets in accordance with charges thereon.
- a recording apparatus for recording alphanumeric characters composed of combinations of predetermined selected portions of an m by n matrix, where m and n are integers, comprising (a) an ink reservoir;
- charging electrode means positioned relative to said vibrating means for imparting to selective ones of said uniformly sized droplets a charge as a function of the instantaneous amplitude of a signal applied to said electrode means;
- a sawtooth generator means for generating at an output terminal successive substantially linear ramp signals, each ramp signal including a portion which is divisible into n subportions of equal time duration, where the duration of said portion is equal to time period t;
- pulse generating means for generating at an output terminal a sequence of pulses as a function of one of said predetermined characters, each of said pulses having a duration substantially equal to t/n;
- a recording apparatus for recording alphanumeric characters composed of combinations of predetermined selected portions of an m by 11 matrix, where m and n are integers, on a recording medium comprising:
- nozzle means coupled to said ink reservoir for causing ink from said reservoir to be directed toward said recording medium in the form of evenly spaced apart uniformly sized ink droplets;
- electrode means positioned relative to said uniformly sized droplets for imparting a charge thereto as a function of the instantaneous amplitude of a signal applied to said electrode means;
- Apparatus as defined in claim 4 wherein said means for applying a sequence of pulses to said electrode means includes:
- pulse train generating means for generating in response to a character code m sets of pulses, each set having a possible maximum, of n pulses said pulse train generating means comprising,
- sawtooth generator means for generating successive substantially linear ramp signals, one for each of said sets
- pulse means for generating m groups of a possible maximum of n uniform pulses each, each of said groups corresponding to one of said sets, the number and sequence of said uniform pulses being a function of a particular character
- linear gate means having an output terminal and responsive to said uniform pulses for generating output signals representative of portions of said ramp signals occurring coincidentally in time with said uniform pulses, and,
- Apparatus as defined in claim 4 wheerin said means for applying a sequence of pulses to said electrode means includes:
- a sawtooth generator means for generating at an output terminal successive substantially linear ramp signals, each ramp signal including a portion which is divisible into n subportions of equal time duration, where the duration of said portion is equal to time period t;
- pulse generating means for generating at an output terminal a sequence of pulses as a function of one of said predetermined characters, each of said pulses having a duration substantially equal to t/n;
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69426467A | 1967-12-28 | 1967-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3512173A true US3512173A (en) | 1970-05-12 |
Family
ID=24788098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US694264A Expired - Lifetime US3512173A (en) | 1967-12-28 | 1967-12-28 | Alphanumeric ink droplet recorder |
Country Status (4)
Country | Link |
---|---|
US (1) | US3512173A (enrdf_load_stackoverflow) |
BE (1) | BE725960A (enrdf_load_stackoverflow) |
FR (1) | FR1603645A (enrdf_load_stackoverflow) |
GB (1) | GB1227600A (enrdf_load_stackoverflow) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3604980A (en) * | 1970-05-25 | 1971-09-14 | Mead Corp | Drop-charging apparatus |
US3631511A (en) * | 1970-05-08 | 1971-12-28 | Dick Co Ab | Drop charge compensated ink drop video printer |
US3761953A (en) * | 1972-10-24 | 1973-09-25 | Mead Corp | Ink supply system for a jet ink printer |
US3789422A (en) * | 1972-09-21 | 1974-01-29 | Ibm | Ink drop coupling capacitance compensation |
DE2338017A1 (de) * | 1972-07-28 | 1974-02-14 | Ibm | Tintenrueckfuehrvorrichtung an einem tintenstrahldrucker |
US3813676A (en) * | 1972-10-05 | 1974-05-28 | Ibm | Non-sequential symbol generation system for fluid jet printer |
US3893623A (en) * | 1967-12-28 | 1975-07-08 | Ibm | Fluid jet deflection by modulation and coanda selection |
US3946398A (en) * | 1970-06-29 | 1976-03-23 | Silonics, Inc. | Method and apparatus for recording with writing fluids and drop projection means therefor |
US3972052A (en) * | 1972-10-24 | 1976-07-27 | Oki Electric Industry Company, Ltd. | Compensation apparatus for high speed dot printer |
US4007464A (en) * | 1975-01-23 | 1977-02-08 | International Business Machines Corporation | Ink jet nozzle |
US4007684A (en) * | 1973-09-26 | 1977-02-15 | Nippon Telegraph And Telephone Public Corporation | Ink liquid warmer for ink jet system printer |
US4050077A (en) * | 1973-05-30 | 1977-09-20 | Hitachi, Ltd. | Liquid droplet supplying system |
US4413267A (en) * | 1981-12-18 | 1983-11-01 | Centronics Data Computer Corp. | Ink supply system for ink jet printing apparatus |
US4435719A (en) | 1982-03-30 | 1984-03-06 | Snaper Alvin A | Fluidic matrix printer |
US4555710A (en) * | 1981-12-20 | 1985-11-26 | Ricoh Company, Ltd. | Charge-controlled ink-jet printing method and apparatus |
US4877745A (en) * | 1986-11-17 | 1989-10-31 | Abbott Laboratories | Apparatus and process for reagent fluid dispensing and printing |
US4929966A (en) * | 1989-01-03 | 1990-05-29 | Eastman Kodak Company | Continuous ink jet printer with a gravity drain, catcher return system |
US5316970A (en) * | 1990-08-23 | 1994-05-31 | International Business Machines Corporation | Generation of ionized air for semiconductor chips |
US5927547A (en) * | 1996-05-31 | 1999-07-27 | Packard Instrument Company | System for dispensing microvolume quantities of liquids |
US6203759B1 (en) | 1996-05-31 | 2001-03-20 | Packard Instrument Company | Microvolume liquid handling system |
US20020167638A1 (en) * | 2001-05-10 | 2002-11-14 | Young-Sang Byun | Method of forming a liquid crystal layer using an ink jet system |
US6521187B1 (en) | 1996-05-31 | 2003-02-18 | Packard Instrument Company | Dispensing liquid drops onto porous brittle substrates |
US6537817B1 (en) | 1993-05-31 | 2003-03-25 | Packard Instrument Company | Piezoelectric-drop-on-demand technology |
US6589791B1 (en) | 1999-05-20 | 2003-07-08 | Cartesian Technologies, Inc. | State-variable control system |
US20040072364A1 (en) * | 1998-01-09 | 2004-04-15 | Tisone Thomas C. | Method for high-speed dot array dispensing |
US20040219688A1 (en) * | 1998-01-09 | 2004-11-04 | Carl Churchill | Method and apparatus for high-speed microfluidic dispensing using text file control |
US20050056713A1 (en) * | 2003-07-31 | 2005-03-17 | Tisone Thomas C. | Methods and systems for dispensing sub-microfluidic drops |
US20060160688A1 (en) * | 2005-01-17 | 2006-07-20 | Kak Namkoong | Handheld centrifuge |
US20080158327A1 (en) * | 2007-01-03 | 2008-07-03 | Robert P. Siegel | Portable system for large area printing |
US20130314462A1 (en) * | 2012-05-22 | 2013-11-28 | Hitachi Industrial Equipment Systems Co., Ltd. | Inkjet recording apparatus |
US8920752B2 (en) | 2007-01-19 | 2014-12-30 | Biodot, Inc. | Systems and methods for high speed array printing and hybridization |
US9068566B2 (en) | 2011-01-21 | 2015-06-30 | Biodot, Inc. | Piezoelectric dispenser with a longitudinal transducer and replaceable capillary tube |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3298030A (en) * | 1965-07-12 | 1967-01-10 | Clevite Corp | Electrically operated character printer |
-
1967
- 1967-12-28 US US694264A patent/US3512173A/en not_active Expired - Lifetime
-
1968
- 1968-12-19 GB GB1227600D patent/GB1227600A/en not_active Expired
- 1968-12-23 BE BE725960D patent/BE725960A/xx unknown
- 1968-12-23 FR FR1603645D patent/FR1603645A/fr not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3298030A (en) * | 1965-07-12 | 1967-01-10 | Clevite Corp | Electrically operated character printer |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3893623A (en) * | 1967-12-28 | 1975-07-08 | Ibm | Fluid jet deflection by modulation and coanda selection |
US3631511A (en) * | 1970-05-08 | 1971-12-28 | Dick Co Ab | Drop charge compensated ink drop video printer |
US3604980A (en) * | 1970-05-25 | 1971-09-14 | Mead Corp | Drop-charging apparatus |
US3946398A (en) * | 1970-06-29 | 1976-03-23 | Silonics, Inc. | Method and apparatus for recording with writing fluids and drop projection means therefor |
DE2338017A1 (de) * | 1972-07-28 | 1974-02-14 | Ibm | Tintenrueckfuehrvorrichtung an einem tintenstrahldrucker |
US3789422A (en) * | 1972-09-21 | 1974-01-29 | Ibm | Ink drop coupling capacitance compensation |
US3813676A (en) * | 1972-10-05 | 1974-05-28 | Ibm | Non-sequential symbol generation system for fluid jet printer |
US3761953A (en) * | 1972-10-24 | 1973-09-25 | Mead Corp | Ink supply system for a jet ink printer |
US3972052A (en) * | 1972-10-24 | 1976-07-27 | Oki Electric Industry Company, Ltd. | Compensation apparatus for high speed dot printer |
US4050077A (en) * | 1973-05-30 | 1977-09-20 | Hitachi, Ltd. | Liquid droplet supplying system |
US4007684A (en) * | 1973-09-26 | 1977-02-15 | Nippon Telegraph And Telephone Public Corporation | Ink liquid warmer for ink jet system printer |
US4007464A (en) * | 1975-01-23 | 1977-02-08 | International Business Machines Corporation | Ink jet nozzle |
US4413267A (en) * | 1981-12-18 | 1983-11-01 | Centronics Data Computer Corp. | Ink supply system for ink jet printing apparatus |
US4555710A (en) * | 1981-12-20 | 1985-11-26 | Ricoh Company, Ltd. | Charge-controlled ink-jet printing method and apparatus |
US4435719A (en) | 1982-03-30 | 1984-03-06 | Snaper Alvin A | Fluidic matrix printer |
US4877745A (en) * | 1986-11-17 | 1989-10-31 | Abbott Laboratories | Apparatus and process for reagent fluid dispensing and printing |
US4929966A (en) * | 1989-01-03 | 1990-05-29 | Eastman Kodak Company | Continuous ink jet printer with a gravity drain, catcher return system |
US5316970A (en) * | 1990-08-23 | 1994-05-31 | International Business Machines Corporation | Generation of ionized air for semiconductor chips |
US5432670A (en) * | 1990-08-23 | 1995-07-11 | International Business Machines Corporation | Generation of ionized air for semiconductor chips |
US6537817B1 (en) | 1993-05-31 | 2003-03-25 | Packard Instrument Company | Piezoelectric-drop-on-demand technology |
US6079283A (en) * | 1996-05-31 | 2000-06-27 | Packard Instruments Comapny | Method for aspirating sample liquid into a dispenser tip and thereafter ejecting droplets therethrough |
US6592825B2 (en) | 1996-05-31 | 2003-07-15 | Packard Instrument Company, Inc. | Microvolume liquid handling system |
US6112605A (en) * | 1996-05-31 | 2000-09-05 | Packard Instrument Company | Method for dispensing and determining a microvolume of sample liquid |
US6203759B1 (en) | 1996-05-31 | 2001-03-20 | Packard Instrument Company | Microvolume liquid handling system |
US6422431B2 (en) | 1996-05-31 | 2002-07-23 | Packard Instrument Company, Inc. | Microvolume liquid handling system |
US6083762A (en) * | 1996-05-31 | 2000-07-04 | Packard Instruments Company | Microvolume liquid handling system |
US6521187B1 (en) | 1996-05-31 | 2003-02-18 | Packard Instrument Company | Dispensing liquid drops onto porous brittle substrates |
US5927547A (en) * | 1996-05-31 | 1999-07-27 | Packard Instrument Company | System for dispensing microvolume quantities of liquids |
US20040072364A1 (en) * | 1998-01-09 | 2004-04-15 | Tisone Thomas C. | Method for high-speed dot array dispensing |
US20040219688A1 (en) * | 1998-01-09 | 2004-11-04 | Carl Churchill | Method and apparatus for high-speed microfluidic dispensing using text file control |
US20030211620A1 (en) * | 1999-05-20 | 2003-11-13 | Labudde Edward V. | State-variable control system |
US6589791B1 (en) | 1999-05-20 | 2003-07-08 | Cartesian Technologies, Inc. | State-variable control system |
US7522253B2 (en) * | 2001-05-10 | 2009-04-21 | Lg Display Co., Ltd. | Method of forming a liquid crystal layer using an ink jet system |
US20020167638A1 (en) * | 2001-05-10 | 2002-11-14 | Young-Sang Byun | Method of forming a liquid crystal layer using an ink jet system |
US20050056713A1 (en) * | 2003-07-31 | 2005-03-17 | Tisone Thomas C. | Methods and systems for dispensing sub-microfluidic drops |
US7470547B2 (en) | 2003-07-31 | 2008-12-30 | Biodot, Inc. | Methods and systems for dispensing sub-microfluidic drops |
US20060160688A1 (en) * | 2005-01-17 | 2006-07-20 | Kak Namkoong | Handheld centrifuge |
US20080158327A1 (en) * | 2007-01-03 | 2008-07-03 | Robert P. Siegel | Portable system for large area printing |
US8920752B2 (en) | 2007-01-19 | 2014-12-30 | Biodot, Inc. | Systems and methods for high speed array printing and hybridization |
US9068566B2 (en) | 2011-01-21 | 2015-06-30 | Biodot, Inc. | Piezoelectric dispenser with a longitudinal transducer and replaceable capillary tube |
US20130314462A1 (en) * | 2012-05-22 | 2013-11-28 | Hitachi Industrial Equipment Systems Co., Ltd. | Inkjet recording apparatus |
US8919934B2 (en) * | 2012-05-22 | 2014-12-30 | Hitachi Industrial Equipment Services Co., Ltd. | Inkjet recording apparatus |
Also Published As
Publication number | Publication date |
---|---|
FR1603645A (enrdf_load_stackoverflow) | 1971-05-10 |
DE1816194B2 (de) | 1972-11-09 |
BE725960A (enrdf_load_stackoverflow) | 1969-06-23 |
GB1227600A (enrdf_load_stackoverflow) | 1971-04-07 |
DE1816194A1 (de) | 1969-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3512173A (en) | Alphanumeric ink droplet recorder | |
US3373437A (en) | Fluid droplet recorder with a plurality of jets | |
US3786517A (en) | Ink jet printer with ink system filter means | |
US4050077A (en) | Liquid droplet supplying system | |
US3465351A (en) | Ink drop writing apparatus | |
US3871004A (en) | Ink drop writing head | |
CA1204960A (en) | Ink jet printer | |
US4219822A (en) | Skewed ink jet printer with overlapping print lines | |
US3810194A (en) | Liquid jet printer having a droplet detecting device | |
US4085409A (en) | Method and apparatus for ink jet printing | |
US3136594A (en) | Method of and a machine for writing | |
US3898673A (en) | Phase control for ink jet printer | |
US3631511A (en) | Drop charge compensated ink drop video printer | |
US3972052A (en) | Compensation apparatus for high speed dot printer | |
US3787881A (en) | Apparatus and method for bar code printing | |
US4415909A (en) | Multiple nozzle ink jet print head | |
US4251823A (en) | Ink jet recording apparatus | |
US3562761A (en) | Drop phasing in ink drop writing apparatus | |
US3769631A (en) | Increasing throughput in ink jet printing by drop skipping and reducing ink jet merging and splatter using a stairstep generator | |
US3848258A (en) | Multi-jet ink printer | |
US3681778A (en) | Phasing of ink drop charging | |
GB1587867A (en) | Printing or other recording apparatus | |
US4393385A (en) | Controllable ink drop velocity type ink-jet printer | |
US3701476A (en) | Drop generator with rotatable transducer | |
US3827057A (en) | Selective charging magnitude compensation |