US3511999A - Light responsive continuously tested tripping device for electric circuit breaker - Google Patents

Light responsive continuously tested tripping device for electric circuit breaker Download PDF

Info

Publication number
US3511999A
US3511999A US591625A US3511999DA US3511999A US 3511999 A US3511999 A US 3511999A US 591625 A US591625 A US 591625A US 3511999D A US3511999D A US 3511999DA US 3511999 A US3511999 A US 3511999A
Authority
US
United States
Prior art keywords
tripping
circuit
photo
electric
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US591625A
Other languages
English (en)
Inventor
Yves Pelenc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merlin Gerin SA
Original Assignee
Merlin Gerin SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merlin Gerin SA filed Critical Merlin Gerin SA
Application granted granted Critical
Publication of US3511999A publication Critical patent/US3511999A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3272Apparatus, systems or circuits therefor
    • G01R31/3274Details related to measuring, e.g. sensing, displaying or computing; Measuring of variables related to the contact pieces, e.g. wear, position or resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3275Fault detection or status indication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/42Driving mechanisms
    • H01H33/423Driving mechanisms making use of an electromagnetic wave communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0061Details of emergency protective circuit arrangements concerning transmission of signals
    • H02H1/0069Details of emergency protective circuit arrangements concerning transmission of signals by means of light or heat rays

Definitions

  • This invention relates to photo-electric control devices for tripping a high-voltage circuit-breaker.
  • the flash at earth potential is turned on or ignited when the breaker is to be tripped or opened for instance in case of a major fault in the power circuit, and the light beam emitted by the flash is conducted by a light guide to the high-voltage region of the circuit breaker to trigger a photo-electric cell, which controls in turn an electromagnetic tripping device such as a relay, for example by means of a controlled rectifier, such as an SCR.
  • each breaking element generally has its own tripping device, and it is obvious that it is necessary to avoid the tripping of only a single breaking element in the case of a major fault on the power circuit, such as a short circuit. This condition has given rise to the design of testing devices capable of detecting the proper operating state of the tripping circuit of all breaking elements.
  • FIG. 1 shows the diagram of a photo-electric tripping device for one pole of a high-voltage circuit-breaker comprising a single breaking point
  • FIG. 2 shows a part of a photo-electric tripping device for a circuit breaker having per pole two breaking elements which are electrically connected in series.
  • the parts of the tripping device shown inside the rectangle T are located in a control panel disposed on the ground and at or near earth potential.
  • the parts at the potential of the high-voltage line L of the power system in which the circuit breaker is installed are shown inside the rectangle P.
  • a source of electrical energy 10 may be connected to the terminals of the filament of a flash tube 11 (forming the flash or light source) through the contacts of a fault relay 12 and through a gate circuit 13.
  • the gate circuit 13 is shown diagrammatically and may comprise essentially an SCR, or any other suitable known switching device which does not form part of the invention.
  • the gate circuit 13 is controlled by a photo-electric cell 14 capable of gating on the gate when it is illuminated under the conditions mentioned further below, and of gating off, that is to say, of interrupting the circuit connecting the source 10 to the light source 11, in the case that the device 14 is not illuminated.
  • the flash 11 may direct a light beam through a light guide 15 onto a photo-electric cell 16 located to the live part P of the circuit-breaker.
  • the opening of the moving contact of the breaking element is controlled by a suitable electromagnetic tripping device or control relay having a coil 18.
  • a source of electric energy is formed by a capacitor 19, supplied directly by the high-voltage line L through a current transformer 20 and a rectifier bridge 21.
  • SCRs 22, 23 in anti-parallel connection serve to limit the voltage at the terminals of the bridge 21, when the line current is too high, and resistors 24, 25, connected to the control electrodes of the diodes 22, 23, energize the same.
  • the capacitor 19 is connected to the coil 18 through an SCR 26 or another controlled valve means or solid state switch whose control electrode may be excited if the cell 16 is illuminated and triggered; this cell is connected on the other side to one terminal of the capacitor 19 through a resistor 27.
  • a lamp or other light source 28 is connected in series with a current limiting resistor 29, and the whole assembly is connected in parallel to the main terminals of the SCR 26.
  • a capacitor 30 of lower capacity than the capacitor 19 is connected between the cathode of the SCR 26 on the one hand, and
  • the latter can illuminate the cell 14 through a second light guide 31 bridging the space between the parts under high voltage and those at earth potential, and which may possibly be the same as, or be combined with, the first guide 15 to form a single unit.
  • Lenses 32, 33 and 34 enable the beams passing through the guides 15 and 31 to be focussed.
  • the breaking elements of the circuit-breaker are equipped with a device according to the drawing, but certain parts shown in the rectangle T may be common to different breaking elements of one or more poles, as explained with reference to FIG. 2.
  • the rectangles P and P show the high potential regions of two breaking points of the same pole of a circuit breaker.
  • the single flash 11 illuminates through two guides 15, 15 two cells 16, 16' of two breaking points 17, 17' mounted in series on the line L.
  • the gate circuit 13 is common to the two breaking points and is controlled by the two cells 14, 14'. In all cases, the absence of energizing by illumination of a single cell 14 has the result that no flash 11 can function.
  • FIG. 1 The arrangement of FIG. 1 as shown functions as follows:
  • the conductor L With the main contacts 17 of the breaker point of a breaker pole being closed, the conductor L carries a current which charges the capacitor 19 across the transformer 20 and the bridge 21. If the circuit of the coil 18 is not broken and if the SCR 26 is not short-circuited, a normal OFF-state voltage appears at the main terminals of the latter and the detecting lamp 28 lights up. The cell 14 is therefore illuminated and unblocks the flash 11 by enabling the gate circuit 13. I
  • the monitoring or testing system is capable of detecting the most frequent fault of an SCR, namely its short-circuiting. In fact, in this case, no voltage can appear at the terminals of the light source 28, so that the cell 14 is not triggered and cannot enable the gate circuit 13 which now blocks the flash 11.
  • the optical transmission is effected by means of tubes made of glass or Plexiglas which may be Water-tight, filled with an inert gas and having an inner diameter of the order to 10 to 20 millimeters.
  • the light source 28 illuminates the cell 14 so that the flash 11 may be energized and send a light beam onto the cell 16 of the pole, causing the turning ON of the SCR 26 and the discharge of the capacitor 19 across the coil 18.
  • the breaker contacts 17 open and the fault on the high voltage circuit is eliminated.
  • the lamp 28 which remains generally illuminated has a low light output. It has been found that this type of lamp needs a certain time for reaching its full light output after a voltage has been applied thereto.
  • the capacitor 30* has been provided which enables the application of an overvoltage to the lamp 28 for a few moments after it has been energized.
  • the cell 14 now is sufficiently illuminated at the closure of the circuitbreaker to enable the ultra-rapid tripping immediately after the closure of the circuit-breaker.
  • the described embodiments may be modified in many ways without departing from the principle of the invention.
  • the cell 16 may be combined with the SCR 26 by using a photothyristor.
  • a light responsive continuously tested tripping device for a breaking element of a circuit breaker comprising:
  • sensing means for continuously detecting the presence of a normal OFF-state voltage across said electronic switching means
  • sensing means further comprises a second light source energized by said normal voltage, said inhibiting means being controlled by second photo-electric means responsive to the light emitted by said second light source.
  • said inhibiting means comprise an electronic gate circuit gating said first light source and electrically controlled by the output voltage of said second photo-electric means.
  • the device of claim 2 further comprising means for applying a transient overvoltage to said second light source at the moment of appearance of said normal voltage.
  • a light responsive continuously tested tripping device for at least a pair of series connected breaking elements of a circuit breaker comprising:
  • first and second electronic switching means respectively controlled by said first and second photoelectric means and operatively connected respectively to said first and second control means to operate said control means in response to the triggering of said first and second photo-electric means by the light emitted by said first light emitting means
  • second and third light emitting means respectively 5 6 energized by the normal OFF-state voltages of said first and second electronic switching means, erences Clted (f1 tillilrdragtti fourthtiphoto-eletctit;J meags respoinsivg UNITED STATES PATENTS o e 1 res ec ve emi e sai secon an third ligfit emitfing and Y 3,2 9,154 9/196 M rm 4 (g) inhibiting means controlled by sald third and fourth photo-electric means so that said first light RALPH NILSON Pnmary Exammer emitting means can only be energized when both M.
  • said third and fourth photo-electric means are triggered by the light emitted respectively by said sec- 10 0nd and third light emitting means energized by 317 124 the normal OFF-state voltage of respectively said first and second electronic switching means.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Keying Circuit Devices (AREA)
  • Stroboscope Apparatuses (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electronic Switches (AREA)
US591625A 1965-11-04 1966-11-02 Light responsive continuously tested tripping device for electric circuit breaker Expired - Lifetime US3511999A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE671813A BE671813A (enrdf_load_stackoverflow) 1965-11-04 1965-11-04
BE19853 1965-11-04

Publications (1)

Publication Number Publication Date
US3511999A true US3511999A (en) 1970-05-12

Family

ID=25647028

Family Applications (1)

Application Number Title Priority Date Filing Date
US591625A Expired - Lifetime US3511999A (en) 1965-11-04 1966-11-02 Light responsive continuously tested tripping device for electric circuit breaker

Country Status (9)

Country Link
US (1) US3511999A (enrdf_load_stackoverflow)
JP (1) JPS44016747B1 (enrdf_load_stackoverflow)
BE (1) BE671813A (enrdf_load_stackoverflow)
CH (1) CH464323A (enrdf_load_stackoverflow)
DE (1) DE1488996A1 (enrdf_load_stackoverflow)
FR (1) FR1515983A (enrdf_load_stackoverflow)
GB (1) GB1157706A (enrdf_load_stackoverflow)
NL (1) NL6615502A (enrdf_load_stackoverflow)
SE (1) SE325077B (enrdf_load_stackoverflow)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054934A (en) * 1976-02-27 1977-10-18 Rte Corporation Solid state inverse overcurrent relay
US4359672A (en) * 1981-07-10 1982-11-16 Allen-Bradley Company Motor starter with optically coupled pushbutton station
US4808815A (en) * 1987-03-23 1989-02-28 Genrad, Inc. Apparatus for testing light-emitting devices using probe means having a preselected pattern arrangement
US20040173732A1 (en) * 2003-02-26 2004-09-09 Rogers David P. Color and intensity measuring module for test of light emitting components by automated test equipment

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE350882B (enrdf_load_stackoverflow) * 1969-12-19 1972-11-06 Asea Ab
SE360227B (enrdf_load_stackoverflow) * 1972-02-01 1973-09-17 Asea Ab
CH575654A5 (enrdf_load_stackoverflow) * 1974-09-11 1976-05-14 Bbc Brown Boveri & Cie
DE2805925A1 (de) * 1978-02-13 1979-08-23 Ruhrtal Gmbh System fuer die ueberwachung und steuerung von hochspannungsschaltgeraeten
US4292628A (en) * 1978-08-28 1981-09-29 Chubb Industries Limited Fibre optic security system
DE3014421A1 (de) * 1980-04-15 1981-10-22 Kraftwerk Union AG, 4330 Mülheim Steuer- und ueberwachungseinrichtung fuer die beeinflussung sicherheitstechnisch relevanter anlagenteile in einem kraftwerk
DE3225829A1 (de) * 1982-03-31 1983-10-13 Sprecher & Schuh AG, 5001 Aarau, Aargau Schutzrelais-schaltung
DE3614206A1 (de) * 1986-03-21 1987-09-24 Bbc Brown Boveri & Cie Hochspannungsschalter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3209154A (en) * 1962-04-09 1965-09-28 Robert J Maring Light responsive system including load circuit with solid state switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3209154A (en) * 1962-04-09 1965-09-28 Robert J Maring Light responsive system including load circuit with solid state switch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054934A (en) * 1976-02-27 1977-10-18 Rte Corporation Solid state inverse overcurrent relay
US4359672A (en) * 1981-07-10 1982-11-16 Allen-Bradley Company Motor starter with optically coupled pushbutton station
US4808815A (en) * 1987-03-23 1989-02-28 Genrad, Inc. Apparatus for testing light-emitting devices using probe means having a preselected pattern arrangement
US20040173732A1 (en) * 2003-02-26 2004-09-09 Rogers David P. Color and intensity measuring module for test of light emitting components by automated test equipment
US7064832B2 (en) 2003-02-26 2006-06-20 Delaware Capital Formation, Inc. Color and intensity measuring module for test of light emitting components by automated test equipment

Also Published As

Publication number Publication date
NL6615502A (enrdf_load_stackoverflow) 1967-05-05
JPS44016747B1 (enrdf_load_stackoverflow) 1969-07-24
DE1488996A1 (de) 1969-04-03
GB1157706A (en) 1969-07-09
SE325077B (enrdf_load_stackoverflow) 1970-06-22
BE671813A (enrdf_load_stackoverflow) 1966-05-04
FR1515983A (fr) 1968-03-08
CH464323A (fr) 1968-10-31

Similar Documents

Publication Publication Date Title
US3402326A (en) Insulation fault control device with light sensitive elements
US3511999A (en) Light responsive continuously tested tripping device for electric circuit breaker
US3686531A (en) Fault locating system for electrical circuits
US3407337A (en) Leak detector for swimming pool lights and the like
US3737725A (en) Circuit overvoltage protector
DE2216238C2 (de) Einrichtung zum Schutz von gekapselten, mit Druckgas isolierten Schaltanlagen gegen Störlichtbögen
KR102422865B1 (ko) 본질 안전 전기 출력 전력 및 방폭형 조명기구를 제공하기 위한 모듈
US3633069A (en) Alternating current circuit-interrupting system comprising a rectifier shunt path
KR102095037B1 (ko) 양방향 직류 차단장치
US1996556A (en) System for operating glow relay tubes
US3214642A (en) Antipumping control system
US3758826A (en) Photoelectronic safety device
US2769120A (en) Control circuit
US3405322A (en) Load transient reflection suppressor with differential inductor means interposed in parallel line circuits between the source and load
SU649097A1 (ru) Устройство дл ограничени тока короткого замыкани в электроэнергетической установке
SU1220041A1 (ru) Устройство дл защиты от короткого замыкани электрической сети
RU2160952C2 (ru) Устройство быстродействующей защиты комплектных распределительных устройств от дуговых коротких замыканий
SU655014A1 (ru) Устройство дл защиты от перенапр жений
SU1269168A1 (ru) Устройство дл управлени и сигнализации неисправности в электрических цеп х
RU1789943C (ru) Указатель прохождени токов короткого замыкани
KR970010609B1 (ko) 주상 변압기의 과부하 검출 및 경보 장치
SU462227A1 (ru) Выходной элемент защиты
SU125271A1 (ru) Устройство дл автоматического повторного включени контактной линии электрической транспортной установки
SU1094108A1 (ru) Устройство дл зар да и разр да аккумул торной батареи
KR790002075Y1 (ko) 제 어 장 치