US3507123A - Fender for dock wall - Google Patents
Fender for dock wall Download PDFInfo
- Publication number
- US3507123A US3507123A US706884A US3507123DA US3507123A US 3507123 A US3507123 A US 3507123A US 706884 A US706884 A US 706884A US 3507123D A US3507123D A US 3507123DA US 3507123 A US3507123 A US 3507123A
- Authority
- US
- United States
- Prior art keywords
- fender
- reaction
- mooring
- hull
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/36—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
- F16F1/42—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by the mode of stressing
- F16F1/422—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by the mode of stressing the stressing resulting in flexion of the spring
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/20—Equipment for shipping on coasts, in harbours or on other fixed marine structures, e.g. bollards
- E02B3/26—Fenders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2236/00—Mode of stressing of basic spring or damper elements or devices incorporating such elements
- F16F2236/02—Mode of stressing of basic spring or damper elements or devices incorporating such elements the stressing resulting in flexion of the spring
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/30—Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways
Definitions
- FIG. 2 *April 21, 1970 Nuus/ao MIURA 3,507,123'- FENDER FOR ⁇ DOCK WALL Filed Feb. 20, 196B FIG. .1. FIG. 2;
- a flexible hollow tubular fender for a dock wall having a base and a top buffer, and an intermediate resilient block which is ho-llow and has lateral sides which are each of a non-uniform cross-section.
- the present invention relates to a fender to be fitted to a quay or dock wall for the purpose of absorbing the dynamic energy of a ship on being moored in a port ⁇ so that it can be safely moored without damaging the hull or the quay wall structure.
- the contact area between the rubber elements and the hull is small. This results in the development of a large compression stress in the contact area between the outside plating of the hull and the fender, which causes hull damage and may lead to an accident.
- the compression stress developed on the part of the surface of the hull in direct contact with the conventional fender is equal to about 60-150 metric tons per square meter, whereas the critical loading Strength of the outside plating of the hull is about 30u40 metric tons per square meter.
- the outside plating of the hull is often subjected to damage.
- the present practice now used as a countermeasure for this condition is to provide combined wooden boards over the rubber fender to avoid direct contact of the outside plating of the hull with the rubber fender, or to provide driving -piles and erecting a concrete wall on the heads thereof.
- the magnitude of the reaction depends to a large extent on the sectional area of the members constituting the mooring structures. The smaller the reaction, the more economical will be the structure required.
- the structural designing of mooring facilities can most reasonably be made in consideration of the magnitudes of the mooring speeds and their frequency distribution.
- the mooring speed which has been taken as a design factor will not always be the one met in practice, and a-ship will more often approach the quay at a considerably lower speed than that. It would be appropriate for designing to assume the reaction due to a higher mooring speed of less frequency as a short-term load, and provide acertain margin for the allowable stress of structural members for this load, while designing an allowable stress under a long-term load for the reaction due to a lower mooring speed of more frequent occurrence.
- Such a designing method would give economical sections of the structural'members, but the actual designing in practice is influenced by the characteristics of a fender. For instance, take the case of a circular fender in which the relation between the ymagnitude of applied force of reaction and the involved strain gives a linear variation. In such a fender there is a desirable tendency that the applied force of reaction is small in the range of small energy absorption and the force of reaction increases with an increase in the absorbed energy.
- this type of fender has drawbacks in that the total energy absorption is too small and a firm fitting is difficult to attain.
- FIGURE l shows a side elevation of a fender according to this present invention
- FIGURE 2 shows a side view of said fender
- FIGURE 3 shows an enlarged cross-section of FIG. 1 along the line III-III;
- FIGURE 4 shows an enlarged section of FIG. 1 along the line IV-IV;
- FIGURE 5 shows a comparison of characteristic curves to illustrate the relation between the load and the deflection against the fenders.
- FIGURE 6 shows a modified form of the fender in which outer faces of the fender are concave instead of fiat.
- the main body or principal part 1 of the fender is an approximately rectangular tube with an approximately elliptical bore 2 running longitudinally through its center and is preferably of rubber or other resilient material.
- the base 3 of said main body or principal part 1 has a core plate 4 of iron or other material embedded therein. It would be desirable to extend the base 3 outside of the Wall of the main body so that said fender base may be easy to fix to the ⁇ quay wall as by bolts 12.
- the transverse beams 7 are inserted to be higher than the longitudinal beams 6.
- the beams of core plate 8 to be embedded in said buffer 5 are intended to prevent a deflection of core plate 8 and to distribute the applied load in that area. Therefore said pieces of wood 9 may be covered with rubber.
- the side faces of the portion of the fender between the base 3 and the buifer 5, and the outside fender face is flat and perpendicular to the base, and the inside surface thereof is warped outward and provides a supporting structure 10, 10.
- FIGURE 6 shows a modied form of the'fender in which the principal part 1 is a substantially rectangular parallelopiped having a central bore 14 with internal flat Walls 16 andv with two opposite outside faces 15 which are concave symmetrically inward about a transverse axis midway between the base and the buffer, and are substantially of semi-elliptical contour.
- this fender develops a deformation at first in its thinnest center portion 13 of the supporting rubber structure, just as would be developed in a circular' fender, with the relation between the reaction and energy absorption being similar to that in a circular fender.
- the fender of this present invention combines the performances of both the known circular and the V-shaped fenders. That is, the reaction force vs. energy absorption relation of the fender of this present invention is that of a circular fender in the initial stage with 0-50% applied strain and that of a V-shaped fender in the later stage with 50-100% applied strain.
- a dock fender for absorbing the impact of a moor- A ing ship, a principal part substantially of the shap ⁇ e of a rectangular parallelopiped and being provided with a central interior hollow space, a base at one end of said p'rincipal part formed integrally with said principal part, a buffer portion at ythe opposite end of said principal part formed integrally with said principal part, said principal part, said base and said buffer portion being formedof resilient material, the lateral portions of said principal part extending between said base and said buffer portion, having two inner opposite faces and two outer opposite faces and being of a non-uniform cross-section symmetrically about the plane midway between said base and said biiifer portion, either two opposite faces comprising respectively arcs of an elliptical bore the long axis of which extends between said base and said buffer portion and the other two opposite faces being flat, and a reinforcing plate enbedded in said buffer portion.
- a fender according to claim 1 wherein said reinforcing plate has an outwardly projecting grid-form consolidation of longitudinal beams and transverse beams, said grid-form consolidation being provided with protecting members.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Child & Adolescent Psychology (AREA)
- Vibration Dampers (AREA)
- Building Environments (AREA)
- Bridges Or Land Bridges (AREA)
- Road Paving Structures (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5693867 | 1967-09-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3507123A true US3507123A (en) | 1970-04-21 |
Family
ID=13041454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US706884A Expired - Lifetime US3507123A (en) | 1967-09-06 | 1968-02-20 | Fender for dock wall |
Country Status (5)
Country | Link |
---|---|
US (1) | US3507123A (enrdf_load_stackoverflow) |
DE (1) | DE1784679C2 (enrdf_load_stackoverflow) |
FR (1) | FR1579784A (enrdf_load_stackoverflow) |
GB (1) | GB1189737A (enrdf_load_stackoverflow) |
NL (1) | NL159453B (enrdf_load_stackoverflow) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3600896A (en) * | 1968-10-29 | 1971-08-24 | Bridgestone Tire Co Ltd | Marine fender assembly |
US3690280A (en) * | 1970-09-14 | 1972-09-12 | Seibu Gomukogaku Kogyo Kk | Fender for large ship |
US3694018A (en) * | 1970-07-22 | 1972-09-26 | Gen Motors Corp | Elastomeric impact energy dissipator |
US3708988A (en) * | 1969-09-18 | 1973-01-09 | Siebu Gomu Kagaku K K | Fender assembly |
US3763653A (en) * | 1971-09-08 | 1973-10-09 | Byron Jackson Inc | Cushioned dock fender structure and shear type cushion member |
US3784181A (en) * | 1972-05-05 | 1974-01-08 | Gen Tire & Rubber Co | Energy absorbing buckling box |
US3788082A (en) * | 1969-05-08 | 1974-01-29 | Seibu Gomu Kagaku Kk | Assembled fender unit |
US3823682A (en) * | 1972-07-24 | 1974-07-16 | S Jochimski | Boat fender and brake |
US3858925A (en) * | 1972-03-02 | 1975-01-07 | Dunlop Ltd | Elastomeric mountings |
FR2402036A1 (fr) * | 1977-08-30 | 1979-03-30 | Bridgestone Tire Co Ltd | Pare-chocs marin pour paroi de quai ou d'appontement |
US4258641A (en) * | 1977-11-17 | 1981-03-31 | Bridgestone Tire Company Limited | Marine fender |
US4285616A (en) * | 1979-07-23 | 1981-08-25 | Jonathan Evetts | Roll compression member |
US4751891A (en) * | 1986-11-17 | 1988-06-21 | Wilson John T | Bow protector |
US5217184A (en) * | 1991-05-18 | 1993-06-08 | Deutsche Aerospace Airbus Gmbh | Retaining wall for holding cargo in an aircraft cabin |
US6309140B1 (en) | 1999-09-28 | 2001-10-30 | Svedala Industries, Inc. | Fender system |
US6755402B2 (en) * | 2001-02-08 | 2004-06-29 | Lockheed Martin Corporation | Isorail elastomer isolator |
US20080156310A1 (en) * | 2006-12-28 | 2008-07-03 | Leven Industries | Oscillation transfer plate for dampening noise and vibration |
CN105299132A (zh) * | 2015-10-15 | 2016-02-03 | 中国电子工程设计院 | 一种微振动主动隔振装置安装连接件及其安装方法 |
CN106661853A (zh) * | 2014-06-17 | 2017-05-10 | 柴田工业株式会社 | 护舷材、护舷材的安装方法及护舷材的制造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5255836Y2 (enrdf_load_stackoverflow) * | 1972-06-23 | 1977-12-16 | ||
GB2046400B (en) * | 1979-04-10 | 1983-03-09 | Silentbloc | Flexible mountings |
AU538446B2 (en) * | 1980-10-27 | 1984-08-16 | Bridgestone Tire Co. Ltd. | Marine fender for fitting to quays |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB945456A (en) * | 1961-09-12 | 1964-01-02 | Tokyo Gomu Kabushiki Kaisha | Improvements in or relating to ship and pier fenders |
CA724048A (en) * | 1965-12-21 | W. H. Miner | Shock attenuating devices | |
GB1098276A (en) * | 1966-05-26 | 1968-01-10 | Seibu Gomu Kagaku Kk | Ship's fender |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1369440A (fr) * | 1963-06-28 | 1964-08-14 | Pneumatiques, Caoutchouc Manufacture Et Plastiques Kleber-Colombes | Défense d'accostage |
US3172268A (en) * | 1964-03-30 | 1965-03-09 | Lord Mfg Co | Dock fender |
-
1968
- 1968-02-20 US US706884A patent/US3507123A/en not_active Expired - Lifetime
- 1968-07-23 GB GB35202/68A patent/GB1189737A/en not_active Expired
- 1968-09-05 DE DE1784679A patent/DE1784679C2/de not_active Expired
- 1968-09-06 NL NL6812757.A patent/NL159453B/xx not_active IP Right Cessation
- 1968-09-06 FR FR1579784D patent/FR1579784A/fr not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA724048A (en) * | 1965-12-21 | W. H. Miner | Shock attenuating devices | |
GB945456A (en) * | 1961-09-12 | 1964-01-02 | Tokyo Gomu Kabushiki Kaisha | Improvements in or relating to ship and pier fenders |
GB1098276A (en) * | 1966-05-26 | 1968-01-10 | Seibu Gomu Kagaku Kk | Ship's fender |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3600896A (en) * | 1968-10-29 | 1971-08-24 | Bridgestone Tire Co Ltd | Marine fender assembly |
US3788082A (en) * | 1969-05-08 | 1974-01-29 | Seibu Gomu Kagaku Kk | Assembled fender unit |
US3708988A (en) * | 1969-09-18 | 1973-01-09 | Siebu Gomu Kagaku K K | Fender assembly |
US3694018A (en) * | 1970-07-22 | 1972-09-26 | Gen Motors Corp | Elastomeric impact energy dissipator |
US3690280A (en) * | 1970-09-14 | 1972-09-12 | Seibu Gomukogaku Kogyo Kk | Fender for large ship |
US3763653A (en) * | 1971-09-08 | 1973-10-09 | Byron Jackson Inc | Cushioned dock fender structure and shear type cushion member |
US3858925A (en) * | 1972-03-02 | 1975-01-07 | Dunlop Ltd | Elastomeric mountings |
US3784181A (en) * | 1972-05-05 | 1974-01-08 | Gen Tire & Rubber Co | Energy absorbing buckling box |
US3823682A (en) * | 1972-07-24 | 1974-07-16 | S Jochimski | Boat fender and brake |
FR2402036A1 (fr) * | 1977-08-30 | 1979-03-30 | Bridgestone Tire Co Ltd | Pare-chocs marin pour paroi de quai ou d'appontement |
US4258641A (en) * | 1977-11-17 | 1981-03-31 | Bridgestone Tire Company Limited | Marine fender |
US4285616A (en) * | 1979-07-23 | 1981-08-25 | Jonathan Evetts | Roll compression member |
US4751891A (en) * | 1986-11-17 | 1988-06-21 | Wilson John T | Bow protector |
US5217184A (en) * | 1991-05-18 | 1993-06-08 | Deutsche Aerospace Airbus Gmbh | Retaining wall for holding cargo in an aircraft cabin |
US6309140B1 (en) | 1999-09-28 | 2001-10-30 | Svedala Industries, Inc. | Fender system |
US6551010B1 (en) | 1999-09-28 | 2003-04-22 | Metso Minerals Industries, Inc. | Energy absorbing impact system |
US6692191B2 (en) | 1999-09-28 | 2004-02-17 | Metso Minerals Industries, Inc. | Fender system |
US6755402B2 (en) * | 2001-02-08 | 2004-06-29 | Lockheed Martin Corporation | Isorail elastomer isolator |
US20080156310A1 (en) * | 2006-12-28 | 2008-07-03 | Leven Industries | Oscillation transfer plate for dampening noise and vibration |
US8141548B2 (en) * | 2006-12-28 | 2012-03-27 | Leven Industries | Oscillation transfer plate for dampening noise and vibration |
CN106661853A (zh) * | 2014-06-17 | 2017-05-10 | 柴田工业株式会社 | 护舷材、护舷材的安装方法及护舷材的制造方法 |
EP3159450A4 (en) * | 2014-06-17 | 2018-02-14 | Shibata Industrial Co., Ltd. | Fender, fender mounting method, and fender manufacturing method |
CN106661853B (zh) * | 2014-06-17 | 2019-10-29 | 柴田工业株式会社 | 护舷材、护舷材的安装方法及护舷材的制造方法 |
CN105299132A (zh) * | 2015-10-15 | 2016-02-03 | 中国电子工程设计院 | 一种微振动主动隔振装置安装连接件及其安装方法 |
CN105299132B (zh) * | 2015-10-15 | 2019-05-17 | 中国电子工程设计院 | 一种微振动主动隔振装置安装连接件及其安装方法 |
Also Published As
Publication number | Publication date |
---|---|
DE1784679C2 (de) | 1982-03-11 |
NL159453B (nl) | 1979-02-15 |
DE1784679A1 (de) | 1971-10-07 |
GB1189737A (en) | 1970-04-29 |
FR1579784A (enrdf_load_stackoverflow) | 1969-08-29 |
NL6812757A (enrdf_load_stackoverflow) | 1969-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3507123A (en) | Fender for dock wall | |
US3948500A (en) | Shock absorbers for mooring guards | |
US4453488A (en) | Connector for joining structural components | |
US4267792A (en) | Elastically deformable fender | |
US3600896A (en) | Marine fender assembly | |
US5458077A (en) | Marine fenders | |
US4258641A (en) | Marine fender | |
US3949697A (en) | Marine fender assembly having a multistage shock-absorbing performance | |
EP0135997B1 (en) | Marine fender | |
US4515502A (en) | Marine fenders | |
US3708988A (en) | Fender assembly | |
US3948501A (en) | Resilient mounting | |
GB1572736A (en) | Shock-absorbing device | |
GB1602265A (en) | Marine fender | |
US3788082A (en) | Assembled fender unit | |
US3508744A (en) | Fender | |
KR101121137B1 (ko) | 하이브리드 면진장치용 보호부재 및 이를 이용한 하이브리드 면진장치 | |
GB2032050A (en) | Cushioning fender structure | |
CN114808670A (zh) | 一种相对高度位置可自适应调整的桥墩防撞装置 | |
EP0125754B1 (en) | Marine fender | |
US4118019A (en) | Shock absorbing pad with keyed struts | |
KR100257718B1 (ko) | 방현재 | |
CN210031667U (zh) | 一种防波堤 | |
KR100989743B1 (ko) | 멀티 펜더를 이용한 선박의 안벽 계류 방법 | |
US4494474A (en) | Fender and life ladder in one |