US3502672A - Hexahydropyrimidone derivatives - Google Patents

Hexahydropyrimidone derivatives Download PDF

Info

Publication number
US3502672A
US3502672A US570425A US3502672DA US3502672A US 3502672 A US3502672 A US 3502672A US 570425 A US570425 A US 570425A US 3502672D A US3502672D A US 3502672DA US 3502672 A US3502672 A US 3502672A
Authority
US
United States
Prior art keywords
parts
cloth
acid
weft
finishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US570425A
Other languages
English (en)
Inventor
Harro Petersen
Heinz Bille
Wilhelm Ruemens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Application granted granted Critical
Publication of US3502672A publication Critical patent/US3502672A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/06Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D239/08Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms directly attached in position 2
    • C07D239/10Oxygen or sulfur atoms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/423Amino-aldehyde resins

Definitions

  • the present invention relates to new hexahydropyrimidone derivatives which bear a hydroxymethyl group or an alkoxymethyl group on each of the nitrogen atoms, and to the use of these new substances as agents for finishing textile material consisting of or containing natural or regenerated cellulose.
  • fibrous material consisting of or containing natural or regenerated cellulose may be impregnated from an aqueous liquor with N-hydroxymethyl N-methylol) or N-alkoxymethyl compounds of aliphatic or cyclic ureas, for example urea, thiourea, ethylenurea, propylenurea, glyoxalmonoureine, urones, triazinones or melamine or the urethanes or mixtures of such compounds, dried, optionally subjected to a mechanical shaping treatment and heated to elevated temperatures in the presence of acids or compounds which split off acids. Crease resist, shrinkproof, embossed, schreiner and chintz finishes may be prepared by such a treatment.
  • Dry crease angles and wet crease angles of similar size are obtained, and the size could be adapted to all requirements were it not for the fact that the tensile strength of the treated material decreases as the dry crease angle is increased. According to recent knowledge, the best characteristics are obtained when a high wet crease angle and a medium high crease angle are imparted to the fibrous material with only slight fiber damage.
  • deferred curing or delayed curing Another prior art method of textile finishing is that known as deferred curing or delayed curing. This consists in impregnating the textile material to be finished with an aqueous solution of one or more finishing agents and one or more acid or potentially acid catalysts, carefully drying the material so that the finishing agent or agents do not react to any appreciable extent if at all, and only after a prolonged interval, which may amount to several months, is the material heated to a temperature at which the finishing agent reacts under the influence of the catalyst, several reactions being involved which for simplicity are usually described collectively as condensation, fixing or curing.
  • the method of delayed curing is usually employed to utilize the possibility of shaping the material to be finished in the period between drying and curing, but par- 3,502,672 Patented Mar. 24, 1970 ICC ticularly to prepare it for manufacture and to carry out the shaping. It is therefore used particularly for the production of articles of clothing which are known as permanent press finished; for this purpose fiat textile materials, particularly woven or knitted cloth, consisting of natural or regenerated cellulose or containing the same together with other fibrous materials, such as particularly polyethylene terephthalate or other linear polyesters, polyamides or polyacrylonitriles, are impregnated with a liquor containing the finishing agent and catalyst and also if desired agents for improving handle and other additives, and carefully dried; the dry material, containing mainly unreacted finishing agent and catalyst, is cut, sewn up into articles of clothing and brought into the desired shape for example by ironing, pressing or by means of shaping dummies.
  • the article of clothing if desired while on the heated steam, hot air or contact heat to such an extent that the finishing agent is cured. While subsequent washing is possible, the processors try to avoid this operation.
  • shaping means is then heated by saturated steam, super- Delayed curing is not confined to flat textile materials.
  • sewing cotton which is also impregnated with uncured finishing agent and catalyst.
  • finishishing agents having particular properties are suitable for delayed curing. Thus they should remain unchanged for long periods, for example up to eighteen months, in the air dry condition at room temperature in the presence of the cure catalyst. Moreover the final finish should not be damaged if the catalysts remain in the articles of clothing.
  • finishing methods have in common that the textile material to be finished is impregnated with a solution, preferably an aqueous solution, of the finishing agent and an acid catalyst and reacted with the finishing agent with the formation of acetal bonds between the cellulose molecules of the textile material and the finishing agent.
  • a solution preferably an aqueous solution
  • the textile material may be dried wholly or partly and if desired stored for some time and/or made up into articles of clothing in the impregnated but unreacted condition.
  • the said finishes are required to have good resistance to washing, high fastness to chlorine and good abrasion resistance. Good resistance to hydrolysis in acid medium is also required in many cases.
  • the finishing agent should not impair the light fastness of dyed material, for example with direct dyes or reactive dyes.
  • N,N'-dimethylolpropylenurea give excellent resistance to chlorine but the resistance to acid hydrolysis of these finishes is inadequate for many purposes and moreover they have a very unfavorable influence on the light fastness of dyeinga.
  • N,N' dimethylol-4,5-dihydroxyimidazolidone-2 on the other hand has no negative influence on the light fastnoss of dyeings, but it yields finishes which have inadequate resistance to chlorine.
  • Another object of the invention is to provide new compounds which are valuable as ingredients for surface coating materials, as resin tannins and as intermediates for white tanning agents.
  • Yet another object of the invention is to provide new textile finishing agents which ar particularly stable in the dry state at room temperature in the presence of acid cure catalysts.
  • a further object of the invention is textile finishes which are not damaged by catalyst residues,
  • a still further object of the invention is to provide textile finishes which do not impair the light fastncss of dyed material and which have good fastness to washing and to chlorine, good abrasion resistanc and also good resistance to hydrolysis in acid medium.
  • R R and R denote hydrogen atoms, alkyl radicals having up to eight, preferably up to four, carbon atoms, which may contain a hydroxyl or alkoxy group having one to four carbon atoms which is separated by at least two carbon atoms from the oxygen atom, or an allyl radical
  • R R and R denote hydrogen atoms or alkyl radicals having one to five, preferably one to four carbon atoms.
  • the new substances having the Formula I are obtainable by allowing a substance having the formula:
  • R R R and R have the meanings given above, to react in aqueous medium at a pH value of more than 9 and at a temperature of from 0 to 100 C. with twice the molar amount of formaldehyde and optionally reacting the resultant product with a saturated aliphatic monoalcohol or dialcohol having up to eight carbon atoms or a monoalkyl ether of the said dialcohol having one to four carbon atoms in the alkyl radical, or with allyl alcohol in the presence of acid reacting catalysts and optionally in the presence of solvents and/or diluents.
  • the substances having the Formula Il may be prepared for example by reaction of urea with an aldehyde having the formula and an aldehyde having the formula R CHO in the molar ratio 1:1:] in aqueous solution or in an alcohol having the formula R -OH and in the presence of a non-oxidizing mineral acid at temperatures of from to 120 C., R to R having the meanings given above.
  • the substances having the Formula II are reacted with formaldehyde at a pH value of more than 9, preferably in the range up to pH 12. Th best results are obtained in the pH range of 9.5 to 11.
  • the pH value required for the reaction may be set up in known manner with any adequately alkaline substances or buffer mixtures.
  • Alkali metal hydroxides particularly sodium hydroxide and potassium hydroxide, are preferred for economic reasons.
  • the reaction of substances having the Formula II is preferably carried out at a temperature of from 20 to 80 C.', reaction temperatures of from 40 to 70 C. have proved to be particularly suitable.
  • the formaldehyde may be used in uncombined form, for example as commercial aqueous formaldehyde solution, or in the form of its polymers which easily decompose to monomer, such as paraforrnaldehyde.
  • the N-methylol groups formed by reaction with formaldehyde, and also any hydroxyl groups situated in 4- position, may if desired be etherified With alcohols of the abovementioned type.
  • alcohols of the abovementioned type examples include: methanol, ethanol, n-propanol, isopropanol, n-butanol, secondary butanol, branched amyl alcohols, octanols, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 2,3- butanediol, 1,6-hexanediol, methyl glycol (ethylene glycol monomethyl ether), butyl glycol (ethylene glycol monobutyl ether), 1,4-butanediol monomethyl ether and allyl alcohol.
  • Etherification is carried out in the presence of acid catalysts, preferably in the presence of medium strength to strong acids, such as hydrochloric acid, sulfuric acid or oxalic acid. It is especially recommended that as little water as possible is present.
  • the alcohol provided for the etherification may be used in excess and thus serves at the same time as a solvent, but other solvents and/or diluents which do not disturb the etherification reaction may be used.
  • the etherification reaction is preferably carried out at moderately elevated temperature at from 40 to C.
  • urea is reacted with an aldehyde having the formula: R -CHO (Ill) and an aldehyde having the formula:
  • reaction mixture in the molar ratio 1 l :l in an aqueous medium or in an alcohol R OH (V), R R R and R having the above meanings, at elevated temperature in the presence of acids, the reaction mixture is brought to a pH of more than 9 without isolating the substance having the Formula II (optionally after having removed the excess of alcohol), and then reacted as described above with twice the molar amount of formaldehyde and optionally with the above defined alcohols in the presence of acid catalysts.
  • the substances having the Formula I are valuable ingredients for surface coating materials, resin tannins, intermediates for white tanning agents and finishing agents for textile material consisting of or containing natural or regenerated cellulose.
  • R R and R each denotes a hydrogen atom, a low molecular weight alkyl radical or a low molecular weight hydroxyalkyl or alkoxyalkyl radical whose hydroxyl group or alkoxy group is separated from the oxygen atom by at least two carbon atoms (and which thus contain at least two carbon atoms), and R and R each denotes a low molecular weight alkyl radical.
  • the alkyl radicals may be linear or branched.
  • the substances having the Formula VI are suitable not only for the purposes mentioned above but also particularly as finishing agents for textile material consisting of or containing natural or regenerated cellulose.
  • N,N-dihydroxymethyl compounds of the said substances which are only partly etherified with low molecular weight alcohols are for example also suitable.
  • the new finishing agents are used in conventional manrer, preferably in the form of an aqueous impregnating liquor.
  • concentration of finishing agent depends on the intended effect. In general it is from 50 to 200 g./l.
  • the material to be treated is soaked in the usual way in the impregnating liquor. It is preferred to use 2. padding machine for the purpose.
  • the impregnated material is then freed from excess impregnating liquor in the usual way by squeezing.
  • the impregnated fibrous material may be dried and then heated in the presence of acid or potcntially acid catalysts to temperatures of up to 180 C., preferably to 160 C. Under these conditions, the reaction is usually over in one to six minutes.
  • the fibrous material may be mechanically shaped, for example by compression, crimping, ironing, calendering, embossing or pleating, during or after drying. After the N-hydroxymethyl and/or N-alkoxymethyl groups have reacted, the fibrous material has a great dry crease recovery angle; moreover the shape imparted to the fibrous material is washproof.
  • the treated material may be washed, rinsed and dried in the usual way.
  • This embodiment of the process makes it possible to finish fibrous material consisting of or containing cellulose in a simple and reliable way in a single operation in such a way that it has great to very great wet crease angles of or more and average dry crease angles of 110 or more.
  • the level of, and the difference between, the wet and dry crease angles may be adapted to requiremerits in each case by varying the conditions of the process.
  • the substances having the Formula VI are also outstandingly suitable for the process of delayed cure. They are much more suitable for this purpose than N,N'-dimethylol 4,5-dihydroxyimidazolidone-Z which has hitherto been mainly used for the purpose.
  • the substances having the Formula VI are usually used alone as finishing agents for deferred cure; they may however also be used with other aminoplast-forming substances provided that these can also be subjected to delayed cure. Examples of such aminoplast-forming substances are N,N-dimethylolglyoxalmonoureine, N,N'dimethylol-5-hydroxypropylenurea and their ethcrs with low molecular weight alcohols.
  • the new finishing agents may be applied to the textile material in the amounts customarily used in the method of delayed cure. Amounts of 1 to 15% (calculated as pure active substance and with reference to the weight of the dry textile material) have proved to be very suitable: it is preferable to'apply the finishing agent in amounts of 3 to 6%.
  • the finishing agent is applied to the textile ma terial by conventional methods, for example by impregnation of the material being treated with an aqueous liquor by means of a padding machine.
  • the textile material is then dried so that the finishing agent does not cure prematurely; adequate protection against this is not to allow the drying temperature to rise above 100 C.
  • the material is usually dried to a water content of 2 to 15% by weight.
  • the textile material may be kept for many months and then made up for example into articles of clothing.
  • the textile material is heated, optionally after it has been made up and during or after it has been shaped. to a temperature of 120 to 200 C., preferably to C. Cure is completed after twenty to thirty minutes under these conditions.
  • Acid and potentially acid catalysts are generally known and commonly used for the purposes of crease resist finishing.
  • examples are inorganic and organic acids. such as sulfuric acid, hydrochloric acid, phosphoric acid, boric acid, formic acid, acetic acid, oxalic acid, tartaric acid, rnaleic acid and salts which have an acid reaction or form acids by the action of heat and/or by hydrolysis,
  • the reaction of the finishing agents to be used according to the invention is carried out in the presence of these catalysts. This may be effected by applying the catalysts, preferably in the form of aqueous solutions, to the material to be finished, before or after impregnation of the same. It is preferred however to add the catalysts direct to the impregnating bath con taining the finishing agent.
  • concentration of the catalysts is chosen in the conventional range for the particular finishing process being used.
  • catalyst concentrations of from 1 to 40 g./l. and amounts of catalysts (on the weight of finishing agent) of 4 to 60%, preferably 20 to 40%, whereas for finishing the fibers in the swollen condition, i.e. in the presence of considerable amounts of water. and at lower temperatures it may be necessary, as is well known, to use strongly acid catalysts in a concentration of up to 20 N.
  • Another advantage of the new finishing agents becomes evident in the joint use with catalysts in a bath. They have very much better hydrolysis resistance than the N,N'-dihydroxymethyl and N,N-dialkoxymethyl compounds hitherto used. The result of this is that finishing liquors which contain the new finishing agents with catalysts are substantially more insensitive to high catalyst contents and considerably more stable in storage than those which contain prior art finishing agents.
  • Nitrogenous and nitrogen-free hydroxymethyl or alkoxymethyl compounds for example those of urea.
  • melamine and other aminotriazines monocarbamic esters, dicarbamic esters and also polyethylene glycol formals and compounds containing epoxy groups, as for example glycol diglycidol ethers, such as have been used hitherto, may be used with the new finishing agents.
  • Water repellents are for example the known paraffin wax emulsions containing aluminum or zirconium, and also preparations containing silicones and perfluorinated aliphatic compounds.
  • softening agents are ethenoxylation products of high molecular weight fatty acids, fatty alcohols or fatty amides, high molecular Weight polyglycol ethers and esters thereof, high molecular weight fatty acids.
  • fatty alcohol sultonates, stearyl-N,N-ethylenurea and stearylamidomethyl pyridinium chloride.
  • leveling agents are water-soluble salts of acid esters of polybasic acids with adducts of ethylene oxide or propylene oxide to long chain alkenoxylatable base materials.
  • wetting agents are salts of alkylnaphthalenesulfonic acids, alkali metal salts of sulfonated dioctyl succinate and the adducts of alkylene oxides to fatty alcohols, alkylphenols, fatty amines and the like.
  • sizing agents are cellulose ethers, cellulose esters and alginates.
  • finishing agents to be used according to this invention give finishes having very high resistance to hydrolysis. Textile material finished in this way is therefore unusually resistant to hygienic treatment. Moreover the new agents prevent damage to the textile material by large amounts of catalyst and do not impair the light fastness of dyed material. The preferred agents moreover give finishes having excellent fastness to chlorine.
  • Textile material which has been finished according to this invention with substances having the Formula VI contains cellulose molecules (indicated by Cell in the formula) which are combined together according to the formula:
  • the textile material for treatment according to this invention may be any textile material, such as fibers, filaments, threads, yarns, knitted cloth, woven cloth, netting, nonwoven fabric and felt of natural or regenerated cellulose, such as cotton, rayon staple, rayon and linen and mixtures with each other or with other fibers, for example, of wool, silk, cellulose esters, linear polyamides, linear polyesters and acrylonitrile polymers.
  • the invention is illustrated by the following examples.
  • the parts and percentages specified in the examples are by weight. Parts by weight bear the same relation to parts by volume as the kilogram to the liter.
  • EXAMPLE 2 300 parts of urea, 560 parts of 30% aqueous formaldehyde solution and 360 parts of isobutyraldehycle are mixed in a stirred vessel and stirred for thirty minutes at 60 C. under reflux. parts of concentrated hydrochloric acid is then added with strong cooling. The temperature rises immediately to 80 to 85 C. The reaction solution is stirred for one hour at 80 C., cooled and adjusted to a pH value of 9.5 to 10 with caustic soda solution. Then 1000 parts of 30% aqueous formaldehyde solution is added to the reaction solution. The whole is stirred for two hours at 55 to 60 C., cooled and adjusted to pH 7 with dilute hydrochloric acid. An about 40% aqueous solution is obtained containing 1,3-dimethylol-4- hydroxy-S-dimethylhexahydropyrirnidone-2 as the main constituent.
  • EXAMPLE 3 The aqueous solution of 1,3-dimethylol-4-rnethoxy-5- dimethylhexahydropyrimidone-2 (obtained according to Example 1) is evaporated at 50 C. under subatmospheric pressure. The residue is dissolved in 500 parts of methanol while adding 10 parts of oxalic acid and stirred for one hour at 50 C. in a stirred vessel. The Whole is cooled to room temperature and neutralized with caustic soda solution. The deposited sodium oxalate is filtered 011. The filtrate is evaporated under subatmospheric pressure. 230 parts of 1,3-dimethoxymethyl-4-methoxy-5-dimethylhexahydropyrimidone-Z is obtained. This is equivalent to a yield of 93.5% of the theory. It has a boiling range of 137 to 142 C. (1.8 mm.).
  • EXAMPLE 4 A mixture of 300 parts of urea, 150 parts of paraformaldehyde, 360 parts of isobutyraldehyde and 1000 parts of methanol has 100 parts of concentrated hydroclaloric acid added to it and the Whole is heated for two hours under reflux at 60 to 65 C. in a stirred vessel and cooled to room temperature. Neutralization is efiected with caustic soda solution and the reaction solution is evaporated under subatmospheric pressure. The residue is methylolated with 1000 parts of 30% aqueous formaldehyde solution while adding 40 parts of 2 N aqueous caustic soda solution at 55 to 60 C. The reaction solution contains 1,3 dimethylol 4 methoxy-5-cli methylhexahydrOpyrimidone-2 as the main component.
  • the dimethylol compound thus obtained (after evaporation of the Water at subatmospheric pressure) may be converted with methanol in the presence of an acid catalyst, for example oxalic acid, into the dimethoxymethyl compound according to the description of Example 3.
  • an acid catalyst for example oxalic acid
  • EXAMPLE 5 300 parts of the anhydrous reaction product obtained according to Example 2 has 1000 parts of methanol and 20 parts of oxalic acid added to it and the whole is stirred for one hour at 50 C. in a stirred vessel under reflux. The reaction mixture is cooled to room temperature and neutralized with concentrated caustic soda solution, and the sodium oxalate is filtered off and the filtrate evaporated under subatmospheric pressure in a water jet vacuum. 310 parts of 1,3-dimethoxymethyl-4- methoxy-5- dimethylhexahydropyrimidone-Z is obtained as a crude product which may be purified by distillation in a high 10 vacuum. The boiling point of the pure product is from 137 to 143 C. (2 mm.).
  • EXAMPLE 6 288 parts of 4-methoxy-6-methylhexahydropyrimidone- 2 is mixed with 400 parts of 30% aqueous formaldehyde solution, 25 parts of caustic soda solution is added and the Whole is stirred for three hours at 55 to 60 C. in a stirred vessel at a pH value of from 9.5 to 10, cooled to room temperature and adjusted to a pH value of 7 with dilute hydrochloric acid. 1,3-dimethylol-4methoxy- 6-methylhexahydropyrimidone-Z is obtained in an about 55% aqueous solution.
  • EXAMPLE 7 To prepare 1,3-dimethoxymethyl-4-rnethoxy-6-methylhexahydropyrirnidone-2, the aqueous reaction solution obtained according to Example 6 is evaporated under subatmospheric pressure. The residue obtained has 1000 parts of methanol and 25 parts of oxalic acid added to it and the mixture is heated for two hours at 50 C. under reflux in a stirred vessel. The product is cooled, neutralized with caustic soda solution, deposited sodium oxalate is filtered off and the filtrate is evaporated in a water jet vacuum. 425 parts of crude product is obtained which may be purified by high vacuum distillation. 1.3-dimethoxymethyl 4 methoxy 6 methylhexahydropyrimidone-2 has a boiling point of to 137 C. (0.5 mm.).
  • EXAMPLE 8 A reaction mixture of 200 parts of 4-rnethoxy-5-dimethyl-6-isopropylhexahydropyrimidone-Z, 200 parts of 30% aqueous formaldehyde solution and 500 parts of methanol has 25 parts of 2 N caustic soda solution added to it and it is then heated at 60 C. for three hours while stirring at a pH value of 10.5. The 4-methoxy-5-dimethyl 6 isopropylhexadhydropyrimidone-2 dissolves after about ten minutes at 60 C. The reaction solution obtained is neutralized with dilute hydrochloric acid and N-omo II CH; C
  • the cloth After the cloth has been impregnated it is dried to a residual moisture content of 6% on a tenter at 120 C. and rolled up. The roll of cloth is tightly wrapped in a sheet of polyethylene and kept for twenty hours at room temperature. The catalyst is then removed by treatment with cold water and then the cloth is washed with an aqueous solution of l g./l. of soap and 5 g./l. of sodium carbonate at 60 C. and dried.
  • the cloth has the following technological data: dry crease angle according to DIN 53,890 (DCA): warp and weft 248; wet crease angle according to Tootal (WCA): warp and weft 300.
  • DCA warp and weft 236
  • WCA warp and weft 290 tensile strength 50 200 mm.
  • TS weft 24 kg.
  • finish effects are resistant not only to several chlorine washes and washing machine washes at the boil, but also to acid hygienic treatment.
  • Reactive Green 2 are finished under the above conditions with N,N'-dimethylo1-4-methoxy-5,S-dimethylhexahydropyrirnidone-Z.
  • Reactive Red 17 is III-IV in unfinished condition and the cloth dyed with Cl.
  • Reactive Green 2 is VI-VII. After the finishing treatment the light fastness of the dyed cloths is unchanged.
  • EXAMPLE 10 An optically bleached mercerized cotton cloth weighing about 125 g./ sq. m. is impregnated at room temperature with an aqueous impregnation liquor having the following composition:
  • Liquor take-up is The cloth is dried at a temperature of from to C. in the usual way and heated at 155 C. on a tenter.
  • the cloth has the following technological data:
  • DCA warp and weft 280.
  • WCA warp and weft 260.
  • DCA warp and weft 250.
  • WCA warp and weft 250.
  • TS weft 20 kg.
  • finish effects are resistant not only to several chlorine washes and washing machine washes at the boil but also to acid hygienic treatment.
  • Reactive Yellow 8 are finished under the above conditions with N,N'-dimethoxymethyl-4-methoxy-5,S-dimethylhexahydropyrimidone-2.
  • Reactive Blue 10 in the unfinished condition is VI-VII and the cloth dyed with Cl.
  • a finish produced under the same conditions with N,N'- dimethylolhexahydropyrimidone-2 causes a decrease in light fastness to V in the case of cloth dyed with C1.
  • EXAMPLE 11 A bleached and mercerized cotton poplin cloth weighing g./sq. m. is impregnated by padding with a solution having the following composition:
  • the cloth After the cloth has been impregnated it is dried at 110 C. on a tenter to 7% residual moisture and rolled up. The roll of cloth is tightly enclosed in polyethylene sheeting and left for eighteen hours at room temperature. Catalyst is then washed out with cold water and the cloth is washed with an aqueous solution of 15 g./l. of soap and 5 g./l. of sodium carbonate at 60 C. and dried.
  • the cloth has the following technological data:
  • DCA warp and weft 240.
  • WCA warp and weft 310.
  • DCA warp and weft 230.
  • WCA warp and weft 310.
  • a cloth which has been dyed with Cl. Reactive Blue 10 is finished under the above conditions with N,N'-dimethylol-4-hydroxy 5,5 dimethylhexabydropyrirnidone 2. Prior to finishing it has a light fastness of VI-VII', after finishing the light fastness is unchanged.
  • a cloth finished with N,N'-dimethylolhexahydropyrimidone-2 exhibits a decrease in light fastness to V.
  • EXAMPLE 12 A bleached and mercerized cotton poplin cloth weighing g./sq. m. is impregnated by padding with a solution of the following composition:
  • the cloth After the cloth has been impregnated it is rolled up, unrolled after one to three hours to relieve longitudinal tension in the cloth produced by swelling, and then rolled up again.
  • the fabric is left in a roll while it slowly rotates for sixteen hours and then the catalyst is washed out as described in Example 1 and the cloth rinsed and dried.
  • the cloth has the following technological data:
  • DCA warp and weft 190
  • WCA warp and weft 305.
  • DCA warp and weft 185
  • WCA warp and weft 302
  • TS weft 42 g.
  • Cotton trouser material weighing 180 g./sq.m. is impregnated on a padding machine with an aqeous liquor containing 80 g./l. of N,N'-dimethylol-4-methoxy-5,5- diniethylhexahydroprimidone-2 and 35 g./l. of magnesium chloride.
  • the cloth is squeezed out to 80% liquor retention and dried on a tenter at 100 C. to a residual moisture content of 4%.
  • the cloth is made up into mens trousers.
  • the trousers are smoothed on a pressing machine at 125 to 135 C and shaped and then the finishing agent present in the textile material cured in a condensation reactor at 160 to 185 C. for a period of fifteen to sixteen minutes.
  • the trousers obtained have good wash-and-wear behavior (Monsanto rating: 4 to 5) and good stability of the creases and seams after several machine washes at 80 C.
  • EXAMPLE 14 An optically bleached mercerized cotton cloth weighing about 125 g./sq. m. is impregnated at room temperature with an aqueous impregnation liquor having the following composition:
  • Liquor retention is 75%.
  • the cloth is dried in the usual way at a temperature of from 80 to 100 C., heated for five minutes on a tenter at 150 C. and washed as described in Example 9.
  • the cloth has the following technological data:
  • DCA warp and weft 245
  • WCA warp and weft 250.
  • DCA warp and weft 245
  • the cloth has the following technological data:
  • DCA warp and weft 260
  • WCA warp and weft 250.
  • DCA warp and weft 255
  • WCA warp and weft 250
  • TS weft 25 kg.
  • EXAMPLE 16 A bleached and mercerized cotton poplin cloth weighing g./sq. m. is impregnated by padding with a solution haivng the following composition:
  • the cloth is dried on a tenter at 120 C. to a residual moisture content of 6% and rolled up.
  • the roll of cloth is wrapped tightly in polyethylene sheeting and kept at room temperature for twenty hours.
  • the catalyst is then removed by treatment with cold water and the cloth is washed at 60 C. with an aqueous solution of l g./l. of soap and 5 g./l. of sodium carbonate, and dried.
  • the cloth has the following technological data:
  • R, R and R denote hydrogen atoms, alkyl radicals having up to three carbon atoms, or alkoxyalkyl radicals having up to three carbon atoms in the alkyl portion and up to three carbon atoms in the alkoxy portion, whose alkoxy groups are separated from the oxygen atom by at least two carbon atoms, and R R and R 15 16 denate hydrogen atoms or alkyl radicals having one to R are hydrogen atoms and R R and R are methyl five carbon atoms. groups.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Coloring (AREA)
US570425A 1965-08-17 1966-08-05 Hexahydropyrimidone derivatives Expired - Lifetime US3502672A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DEB0083286 1965-08-17
DEB0083321 1965-08-18
DEB0087183 1966-05-18

Publications (1)

Publication Number Publication Date
US3502672A true US3502672A (en) 1970-03-24

Family

ID=27209323

Family Applications (2)

Application Number Title Priority Date Filing Date
US570425A Expired - Lifetime US3502672A (en) 1965-08-17 1966-08-05 Hexahydropyrimidone derivatives
US842060*A Expired - Lifetime US3518043A (en) 1965-08-17 1969-05-21 Hexahydropyrimidone derivatives and a method of finishing textile material

Family Applications After (1)

Application Number Title Priority Date Filing Date
US842060*A Expired - Lifetime US3518043A (en) 1965-08-17 1969-05-21 Hexahydropyrimidone derivatives and a method of finishing textile material

Country Status (7)

Country Link
US (2) US3502672A (es)
BE (1) BE685623A (es)
CH (2) CH476150A (es)
DE (3) DE1545610A1 (es)
GB (1) GB1092497A (es)
NL (2) NL6611583A (es)
SE (1) SE330874B (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262121A (en) * 1978-07-14 1981-04-14 Basf Aktiengesellschaft Hexahydropyrimid-4-yl ethers and their preparation
US4295847A (en) * 1980-01-25 1981-10-20 Basf Aktiengesellschaft Finishing process for textiles
US4625029A (en) * 1983-07-14 1986-11-25 Sun Chemical Corporation Novel cyclic ureas

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755228A (en) * 1971-04-20 1973-08-28 Celanese Corp Etherified crotonylidenediurea resins in emulsion textile printpastes
DE2639754C3 (de) * 1976-09-03 1980-07-24 Chemische Fabrik Pfersee Gmbh, 8900 Augsburg Verfahren zur Herstellung von härtbaren Kondensationsprodukten und deren Verwendung
AU528807B2 (en) 1979-03-07 1983-05-12 Technographics Inc. Decoration of textiles by transfer under heat and pressure
DE3425131A1 (de) * 1984-07-07 1986-01-16 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von haertbaren veretherten aminoplastharzen und deren verwendung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2370839A (en) * 1942-11-02 1945-03-06 Du Pont Condensation products and processes for their production
US2950553A (en) * 1957-01-16 1960-08-30 Rohm & Haas Method of producing wrinkle resistant garments and other manufactured articles of cotton-containing fabrics
GB931560A (en) * 1958-10-31 1963-07-17 Sun Chemical Corp Pyrimidones and pyrimidthiones

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262121A (en) * 1978-07-14 1981-04-14 Basf Aktiengesellschaft Hexahydropyrimid-4-yl ethers and their preparation
US4295847A (en) * 1980-01-25 1981-10-20 Basf Aktiengesellschaft Finishing process for textiles
US4625029A (en) * 1983-07-14 1986-11-25 Sun Chemical Corporation Novel cyclic ureas

Also Published As

Publication number Publication date
NL6611583A (es) 1967-02-20
CH476150A (de) 1969-09-15
CH1071266A4 (es) 1969-03-31
DE1469269A1 (de) 1968-12-19
DE1594907A1 (de) 1969-04-03
NL137114B (es)
GB1092497A (en) 1967-11-29
CH1071265D (es)
SE330874B (es) 1970-12-07
US3518043A (en) 1970-06-30
DE1545610A1 (de) 1969-08-07
BE685623A (es) 1967-02-17

Similar Documents

Publication Publication Date Title
US4285690A (en) Novel reactants for crosslinking textile fabrics
US2731364A (en) Process for improving cellulose textile materials and product thereof
US4284758A (en) Glyoxal/cyclic urea condensates
US4332586A (en) Novel reactants for crosslinking textile fabrics
US2785947A (en) Process for producing durable mechanical effects on cellulose fabrics by applying acetals and products resulting therefrom
US3597147A (en) Modification of cellulosic textile materials with pyrimidones
US3220869A (en) Process for improving textile fabrics
US3852829A (en) Composition and method for producing wrinkle-free permanently pressed cellulosic textile materials
US3488701A (en) Use of n-methylol-n'-substituted-4,5-dihydroxy - 2-imidazolidinones as textile finishing agents
US3502672A (en) Hexahydropyrimidone derivatives
US3052570A (en) Textile finishing resin, wrinkle resistant cellulose textile, processes of making resin and treated textile
US3521993A (en) Soil releasing textiles
US4295847A (en) Finishing process for textiles
US3983269A (en) Durable press composition and process
IL23476A (en) Aldehyde fixation on polymeric material
US3862224A (en) Production of textile finishes
US3079279A (en) Blends of imidazolidinones and aminoplasts and method for finishing cellulose containing textile material
US3914229A (en) Novel N-hydroxymethyl compounds, compositions containing such compounds and cellulose-containing textile materials treated therewith
US2680057A (en) Cyclopropyl quaternary ammonium compounds and process of applying to textiles
US3801546A (en) Manufacture of textile finishing agents comprising condensing urea and hcho followed by condensation with glyoxal
US3984367A (en) Durable press composition and process
US3930087A (en) Crease resistant cellulosic textile material
US3676053A (en) Method of modifying fibrous materials
US3920390A (en) Manufacture of finishing agents for cellulosic textiles
US3378397A (en) Highly alkylolated textile finishing composition and process for treating textile fabric therewith