US3501561A - Formation of metallic strip material - Google Patents

Formation of metallic strip material Download PDF

Info

Publication number
US3501561A
US3501561A US687378A US3501561DA US3501561A US 3501561 A US3501561 A US 3501561A US 687378 A US687378 A US 687378A US 3501561D A US3501561D A US 3501561DA US 3501561 A US3501561 A US 3501561A
Authority
US
United States
Prior art keywords
strip
powder
nip
roll
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US687378A
Inventor
Derek Cyril Oxley
George Mchardy Sturgeon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
British Iron and Steel Research Association BISRA
Original Assignee
British Iron and Steel Research Association BISRA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Iron and Steel Research Association BISRA filed Critical British Iron and Steel Research Association BISRA
Application granted granted Critical
Publication of US3501561A publication Critical patent/US3501561A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/235Calendar

Description

March 17, 1970 c, OXLEY ET AL 3,501,561
FORMATION OF METALLIC STRIP MATERIAL Filed Dec. 1, 1967 2 Sheets-Sheet 1 IN VEN TOPS DEREK CYfi L UXLEY 6502 5 aid/near STHAPGEON ATTORNEYS March 17, 1970 D. C. OXLEY ET AL FORMATION OF METALLIC STRIP MATERIAL 2 Sheets-Sheet 2 Filed Dec. 1. 1967 INVENTORS DEREK CYR/L OXLEY 050 5 MCIL/HAOYSTZ/RGEON M I: I 1 I ATTORNEYS 3,501,561 FORMATION OF METALLIC STRIP MATERIAL Derek Cyril Oxley, Halfway, near Sheffield, and George McHardy Sturgeon, Dore, Sheflield, England, assignors to The British Iron and Steel Research Association Filed Dec. 1, 1967, Ser. No. 687,378 Claims priority, application Great Britain, Dec. 1, 1966, 53,849/ 66 Int. Cl. B22f 3/02, 3/20 US. Cl. 264111 7 Claims ABSTRACT OF THE DISCLOSURE In a method of forming metallic strip by the compaction of metal powder, which comprises compacting metal powder in the nip between two compacting rolls arranged with their axes parallel in a horizontal plane, to form a self-supporting strip which is withdrawn downwards from the nip, variation in the speed of rolling can be accommodated and production conditions rendered less critical by directing a plurality of liquid or gas jets arranged on either side of the strip into the roll nip.
This invention relates to the formation of metallic strip by the compaction of metal powders.
Metal powders can be formed into strip materials by supplying the powder to the nip of compacting rolls where the powder is subjected to sufficient pressure to form a self-supporting strip and then heat-treating and, if necessary, rolling the strip to obtain the desired mechanical properties. The rolls are suitably arranged with their axes in a horizontal plane with a powder container arranged above them so that the powder is fed into the roll nip by gravity and the compacted powder strip is withdrawn downwards from the nip. The rolling has to be carried out at more than a certain minimum speed which depends primarily on the composition and particle size of the powder and the thickness and density desired in the compacted powder strip, in order to avoid deterioration in strip quality and loss of powder. For example, when using 100 mesh (B.S.) water-atomised stainless steel powder to produce 0.060 inch thick strip having a density of 86% theoretical, the minimum rolling speed is approximately 18 ft. of strip per minute. If the speed is reduced below this figure the powder tends to fall out of the roll nip and strip quality deteriorates. This deterioration takes the form of irregularities in strip width and undesirably large variations in density across the width of the strip. If the rolling speed is reduced even further, conditions are obtained where no strip is produced and only loose powder falls away from the rolls.
We have found that for a given set of powder and strip parameters, strip having good properties can be produced at rolling speeds lower than the minimum rolling speed referred to above by setting up a resistance to powder flow through the roll nip by means of a plurality of liquid or gas jets arranged on each side of the strip and directed into the roll nip.
Thus, our improved method of strip formation comprises compacting metal powder in the nip between two compacting rolls arranged with their axes parallel in a horizontal plane, to form a self-supporting strip which is withdrawn downwards from the nip, while directing a plurality of liquid or gas jets arranged on either side of the strip into the roll nip.
The main advantages of this procedure are that the production of sound strip is assisted at the low speeds used when starting and stopping the compaction mill and that the mill can be run at lower speeds when threading up a continuous rolling and sintering plant. The invention also nited States Patent permits larger roll gap settings to be used for a given rolling speed or, alternatively enables a more highly flowable powder to be used with a given roll gap at a given rolling speed.
Apparatus for carrying out our new process comprises (i) a pair of compacting rolls arranged with their axes parallel to each other in a horizontal plane, (ii) a powder container above the nip of the rolls for feeding powder into the nip, and (iii) two sets of nozzles, one set being arranged on each side of a vertical plane passing through the roll nip and each nozzle being arranged to direct a liquid or gas jet into the nip. Preferably the nozzles are arranged in two lines, one on each side of said vertical plane and parallel thereto. Instead of using a plurality of jets on each side of the emerging strip, a single fluid knife as supplied from a slotted manifold which extends across the width of the strip, may be provided on each side of the emerging strip, the two fluid knives being directed into the roll nip.
The apparatus may, and preferably does, additionally comprise side guides positioned at each end of the powder container and extending into the nip which serve to reduce or prevent sideways spread of the powder and thus to define the width of the strip produced. Such side guides take the form of suitably shaped plates. Instead of using such mechanical guides, the apparatus may be provided with a nozzle at each end of the powder container, each nozzle being arranged to direct a liquid or gas jet into the nip. The jets are suitably directed substantially normal to the horizontal plane containing the roll axes and their effect is to erode away and disperse powder which spreads sideways beyond the limits set by the distance between the jets so that a strip of substantially uniform width is obtained.
Further features and advantages of the invention will become apparent from the following description of a preferred method and apparatus for powder compaction, given by way of example only, with reference to the accompanying drawings in which:
FIGURE 1 is an end elevation of a powder compaction apparatus in use; and
FIGURE 2 is a perspective view of the underside of the compacting rolls of the apparatus shown in FIGURE 1, showing the disposition of the gas jets, the emerging strip being omitted for clarity.
FIGURE 3 is a perspective view similar to FIGURE 2 but showing a slotted manifold on each side of the roll nip for delivering the fluid stream in the form of a fluid knife into the nip.
Referring to the drawings, the apparatus comprises a pair of axially-parallel horizontal compacting rolls 10 and 11, the nip between the rolls being designated 12. The rolls are connected to a suitable drive mechanism (not shown). A powder container 13 is positioned above the rolls, the lower part of the container extending downwards almost into the nip 12 and being suitably shaped for this purpose. The container is open at the bottom and the powder falls through the open bottom and is compacted by the rolls as it enters the nip. The compacted strip 14 leaves the rolls in a downward direction indicated by arrow 15'.
The strip width is controlled by a side guide plate 17 at each end of the nip, each guide plate fitting closely alongside the end of each roll.
A tubular gas manifold 18 fitted with a number of short open-ended pipes 19 is disposed below each roll and each gas manifold is connected to a supply of gas (not shown) by gas hoses 20. The manifolds are positioned so that the gas jets from pipes 19 are directed into the roll nip on either side of the emerging strip. The gas jets tend to reduce powder flow through the roll gap and by suitable adjustment of the gas pressure, loose powder can be prevented from falling out of the gap. The gas employed will normally be compressed air.
In the embodiment shown in FIGURE 3 a slotted manifold 21 is provided on each side of the formed strip. Fluid in the form of a continuous fluid knife or sheet extending across the width of the formed strip issues from the elongated slot 22 of each manifold 21 and into the roll nip.
The use of gas rather than liquid jets is preferred because gases do not, of course, wet the strip as do liquids, and are generally more convenient.
Using the apparatus shown in the drawings we have produced good quality 0.060 inch thick strip from 100 mesh (B.S.) \vater-atornised stainless steel powder at rolling speeds of 5 ft. of strip per minute, at strip densiites of 86% theoretical with a density variation along the strip width of i2%. This strip was in all respects as good as the strip which is produced at rolling speeds over 18 ft./min. without the gas jets on either side of the strip.
In another test, using 7 /2 inch diameter compacting rolls with a roll gap setting of 0.015 inch, water-atomised stainless steel powder of size 30 mesh to dust, was compacted. It was possible to reduce the minimum rolling speed from 18 ft./min. to 2 ft./min. by having a pair of air jets on each side of the strip directed upwardly towards the sides of the strip. The nozzles of the air jets were 0.060 inch internal diameter, and the air pressure was 20 pounds per square inch.
The flow of powder into the roll gap will depend on the exact positions of the gas jets, the gas pressure used and the size of the jet nozzles. It will also depend on the powder density, particle shape, size distribution, roll gap setting and roll diameter. It is therefore impossible to specify, for example, particular gas pressures which may be used since these are dependent on many other factors.
We claim:
1. A method of forming a self-supporting metallic strip by roll compacting metal powder, comprising (a) feeding said metal powder into the roll gap and nip of a pair of rotating compacting rolls having parallel axis in a horizontal plane, and (b) directing a fluid jet stream located on each side of the formed strip and extending across the width of the formed strip on each side thereof into said nip of the rotating rolls to permit forming said metallic strip at a rolling speed below the minimum rolling speed at which powder tends to fall out of the roll nip in the absence of the jet stream, while preventing the falling of loose metal powder from said roll gap during said rolling.
2. The method of claim 1 wherein the fluid jet stream on each side of the formed strip is composed of a plurality of individual jet streams.
3. The method of claim 2 wherein the fluid jet stream on each side of the formed strip is in the form of an elongated continuous sheet.
4. The method of claim 1 wherein the fluid of the jet stream is a gas.
5. The method of claim 1 wherein the fluid of the jet stream is a liquid.
6. The method of claim 1 in which step (b) permits forming said metallic strip at a rate of about 5 ft. per minute.
7. The method of claim 1 in which step (b) permits forming said metallic strip at a rate of about 2 ft. per minute.
References Cited UNITED STATES PATENTS 3,162,708 12/1964 Lund et al. 264-111 3,235,954 2/1966 Fromson 264-111 FOREIGN PATENTS 251,285 5/ 1963 Australia.
ROBERT F. WHITE, Primary Examiner J. R. HALL, Assistant Examiner US. Cl. X.R. 18-2; l64277
US687378A 1966-12-01 1967-12-01 Formation of metallic strip material Expired - Lifetime US3501561A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB53849/66A GB1132730A (en) 1966-12-01 1966-12-01 Formation of metallic strip material

Publications (1)

Publication Number Publication Date
US3501561A true US3501561A (en) 1970-03-17

Family

ID=10469179

Family Applications (1)

Application Number Title Priority Date Filing Date
US687378A Expired - Lifetime US3501561A (en) 1966-12-01 1967-12-01 Formation of metallic strip material

Country Status (5)

Country Link
US (1) US3501561A (en)
DE (1) DE1583733B1 (en)
FR (1) FR1548771A (en)
GB (1) GB1132730A (en)
SE (1) SE330754B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746071A (en) * 1965-04-01 1973-07-17 Iit Res Inst Method for treating materials
US4076520A (en) * 1975-06-05 1978-02-28 Midrex Corporation Method for continuous passivation of sponge iron material
US4580615A (en) * 1984-04-18 1986-04-08 Concast Service Union Ag Apparatus for closing the sides of a substantially rectangular mold chamber in a continuous casting installation
US4695239A (en) * 1985-11-14 1987-09-22 Senoplast Klepsch & Co. Thermoplastic sheet forming device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3702945A1 (en) * 1987-01-31 1988-08-11 Reifenhaeuser Masch DEVICE FOR SMOOTHING A PLASTIC LEATHER LEAVING FROM A SLOT NOZZLE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3162708A (en) * 1961-06-21 1964-12-22 Sherritt Gordon Mines Ltd Method for compacting metal powder
US3235954A (en) * 1964-07-23 1966-02-22 Howard A Fromson Method of producing a composite structure or laminate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE941401C (en) * 1951-07-05 1956-04-12 Administration Sequestre Des R Device for rolling strips made of iron or metal powders
GB906349A (en) * 1959-10-06 1962-09-19 British Iron Steel Research Improvements in or relating to heat-exchange apparatus
DE1215481B (en) * 1962-03-22 1966-04-28 Mannesmann Ag Device for laterally covering the nip of smooth cylindrical rollers for rolling metal powder
US3144681A (en) * 1962-05-14 1964-08-18 Sherritt Gordon Mines Ltd Apparatus for roll compacting metal and metal coated particles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3162708A (en) * 1961-06-21 1964-12-22 Sherritt Gordon Mines Ltd Method for compacting metal powder
US3235954A (en) * 1964-07-23 1966-02-22 Howard A Fromson Method of producing a composite structure or laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746071A (en) * 1965-04-01 1973-07-17 Iit Res Inst Method for treating materials
US4076520A (en) * 1975-06-05 1978-02-28 Midrex Corporation Method for continuous passivation of sponge iron material
US4580615A (en) * 1984-04-18 1986-04-08 Concast Service Union Ag Apparatus for closing the sides of a substantially rectangular mold chamber in a continuous casting installation
US4695239A (en) * 1985-11-14 1987-09-22 Senoplast Klepsch & Co. Thermoplastic sheet forming device

Also Published As

Publication number Publication date
DE1583733B1 (en) 1972-05-31
SE330754B (en) 1970-11-30
FR1548771A (en) 1968-12-06
GB1132730A (en) 1968-11-06

Similar Documents

Publication Publication Date Title
US4658882A (en) Machine for direct rolling of steel casting and producing steel product therefrom
US3670400A (en) Process and apparatus for fabricating a hot worked metal layer from atomized metal particles
US4321289A (en) Method of and apparatus for the cladding of steel sheet or strip with lower melting metals or alloys
CN106180192A (en) A kind of wire and rod continuous casting billet high speed direct sending directly rolls system and method
CN105014021B (en) The method and device of closed room temperature under a kind of reduction thin strap continuous casting
CN106180191A (en) A kind of wire and rod continuous casting billet is exempted to heat and is directly rolled system and method
US3501561A (en) Formation of metallic strip material
EP1068035B1 (en) Method for the continuous casting of a thin strip and device for carrying out said method
SU1151197A3 (en) Method of producing iron powder for press-moulding of articles and device for effecting same
US3281893A (en) Continuous production of strip and other metal products from molten metal
US3674390A (en) Production of metal strip from metal powder
US4705466A (en) Method and apparatus for producing rolled product from metal droplets
US2922223A (en) Method for the production of a nonfrilled metal strip from metal powder
JP4593044B2 (en) Device for processing sheet material using a pressurized water jet
DE3440237A1 (en) DEVICE FOR CONTINUOUSLY CASTING METALS, ESPECIALLY STEEL
EP0149027A2 (en) Process and apparatus for manufacturing spheroidal metal particles
US3246982A (en) Method of making a solid length of aluminous metal
US2987778A (en) Production of metal strip from metal powders
DE2421318C3 (en) Process and device for the powder metallurgical production of strips
JPH01271049A (en) Secondary cooling method in continuous casting
JPS58144107A (en) Method and apparatus for producing synthetic fiber
KR790001990B1 (en) Production of metal strip from powder
CN104438384B (en) Valve snail is rolled rear cooling device
CN207628888U (en) A kind of equipment for cold-rolling of steel plate processing
JPS60115302A (en) Edging equipment of thin slab