US3496997A - Heat exchanger of tubular construction - Google Patents
Heat exchanger of tubular construction Download PDFInfo
- Publication number
- US3496997A US3496997A US754832A US3496997DA US3496997A US 3496997 A US3496997 A US 3496997A US 754832 A US754832 A US 754832A US 3496997D A US3496997D A US 3496997DA US 3496997 A US3496997 A US 3496997A
- Authority
- US
- United States
- Prior art keywords
- plates
- tube
- heat exchanger
- coils
- tube coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/02—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
- F28D7/024—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/04—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/007—Auxiliary supports for elements
- F28F9/013—Auxiliary supports for elements for tubes or tube-assemblies
- F28F9/0131—Auxiliary supports for elements for tubes or tube-assemblies formed by plates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/355—Heat exchange having separate flow passage for two distinct fluids
- Y10S165/40—Shell enclosed conduit assembly
- Y10S165/401—Shell enclosed conduit assembly including tube support or shell-side flow director
- Y10S165/405—Extending in a longitudinal direction
- Y10S165/414—Extending in a longitudinal direction for supporting coil tubes
Definitions
- the tube coil system is fed through and supported Within three radially disposed retaining plates.
- a plurality of plates are disposed between the retaining plates in supporting relation to the tube coils which pass therethrough. These latter plates are of less radial length than the retaining plates and are secured to only one coil of the tube coils passing therethrough.
- This invention relates to a tubular heat exchanger. More particularly, this invention relates to a tubular heat exchanger utilizing helically or spirally wound tubes for conveying a working medium.
- tube coils have been utilized to convey a working medium through an extended path within a heat exchange area.
- these tube coils have been mounted in various types of radial members for support as well as for the prevention of unequal stresses due to differential thermal expansion.
- the various tube coils of these known heat exchangers have frequently been subjected to adverse bending or localized buckling between the radial support members, especially, under severe service conditions, such as during operation at very high temperatures e.g. above 500 C., or under conditions providing a high heat transfer rate from the medium flowing over the tube coil to the medium flowing through the tube coil.
- the invention provides a tubular heat exchanger having a tube coil system consisting of at least one helically or spirally wound tube and at least three retaining plates disposed radially of the tube coil and secured to each other in supporting relation to the tube coil system, for example, as described in US. patent application, Ser. No. 626,453, filed Mar. 28, 1967, with at least one additional plate.
- This additional plate is disposed to lie approximately in the plane of the tube coil axis so as to receive and secure at least some of the turns of the tube coil.
- the plate is sized to be of a radial Width which is smaller by at least one radial pipe pitch than the radial width of the tube coil system.
- FIG. 1 illustrates an axialsection through a tubular heat exchanger according to the invention
- FIG. 2 illustrates a plan view of the tubular heat exchanger of FIG. 1.
- the heat exchanger includes a central core 30 within a housing 61 to which three one piece retaining plates 4, 5, 6 are fixed to extend radially outwards in planes containing the axis of the heat exchanger.
- a plurality, for example, ten, of helical coils 2 of progressively increasing coil diameter are mounted concentrically in the plates 4-6 to form the tubes of the tube coil system of the heat exchanger.
- the retaining plates 4-6 have holes to receive the coils 2 and the tubes are threaded through the holes by rotating the coils 2 about the common axis to produce a screwing action.
- the sector-shaped spaces between the retaining plates 4-6 have additional plates 60, for example, a total of fifteen, which are distributed around the circumference of the heat exchanger at diiferent angles with respect to the retaining plates 4-6 to form different sector angles between adjacent plates.
- Each of these additional plates 60' has holes therein through which the tubes of the coils 2 pass and each is secured to at least one of the coils 2, as by welding.
- the plates 60 are sized to be of a width smaller than the radial width of the tube coil system by at least one radial pipe pitch and of a length in the axial direction equal to that of the retaining plates 4-6.
- the plates 60 are located between the core 30 and housing 61 Without being rigidly joined thereto.
- the tube lengths between two retaining plates can become distorted in the event of large temperature differences between the primary and secondary media and in the event of a high heat transfer rate.
- the lengths of the tubes between the plates are unequal.
- the spacing of the plates are selected such that the free tube length between two adjacent plates cannot be excited into resonant oscillation.
- tube coils 2 of the heat exchanger are constructed in helical form.
- the tube coils can also be formed spirally or disposed on a conical envelope.
- the plates 60 are secured to the tube coils in a manner so that the plates 60 cannot move relative to the tube coils extending theret-hrough.
- resilient rods can be used to join each plate 60 to an adjacent retaining plate 4, 5, 6. Such resilient rods will accommodate the expansion movements of the tube coils due to temperature changes and, therefore, also permit corresponding motion of the plates 60.
- a heat exchanger comprising at least three retaining plates disposed in fixed spaced apart radial disposition to each other;
- a tube coil system including at least one wound tube coil having a plurality of coil turns passing through and secured in said retaining plates, said tube coil having an axis disposed in the axial plane of each of said retaining plates;
- At least one additional plate disposed radially of said tube coil axis, said additional plate receiving at least some of said coil turns of said tube coil in fixed relation and being of a radial width less than the radial width of said tube coil system by at least one radial tube coil pitch.
- a heat exchanger as set forth in claims 1, 2 or 3 which contains a plurality of said additional plates spaced between said retaining plates to form sectors of unequal angles between each pair of adjacent retaining plates.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
Feb. 24, 1970 M. WEBER 3,495,997
HEAT EXCHANGER 0F TUBULAR CONSTRUCTION Filed Aug. 25, 1968 Inventor WA x /EE/d United States Patent 3,496,997 HEAT EXCHANGER OF TUBULAR CONSTRUCTION Max Weber, Wiesendangen, Zurich, Switzerland, assignor to Sulzer Brothers, Ltd., Winterthur, Switzerland, a corporation of Switzerland Filed Aug. 23, 1968, Ser. No. 754,832 Claims priority, application Switzerland, Aug. 31, 1969, 12,215/ 67 Int. Cl. F28d 7/00 US. Cl. 165-163 7 Claims ABSTRACT OF THE DISCLOSURE The tube coil system is fed through and supported Within three radially disposed retaining plates. In addition, a plurality of plates are disposed between the retaining plates in supporting relation to the tube coils which pass therethrough. These latter plates are of less radial length than the retaining plates and are secured to only one coil of the tube coils passing therethrough.
This invention relates to a tubular heat exchanger. More particularly, this invention relates to a tubular heat exchanger utilizing helically or spirally wound tubes for conveying a working medium.
Heretofore, heat exchangers and other heat transfer systems have been known wherein tube coils have been utilized to convey a working medium through an extended path within a heat exchange area. In some instances, these tube coils have been mounted in various types of radial members for support as well as for the prevention of unequal stresses due to differential thermal expansion. However, the various tube coils of these known heat exchangers have frequently been subjected to adverse bending or localized buckling between the radial support members, especially, under severe service conditions, such as during operation at very high temperatures e.g. above 500 C., or under conditions providing a high heat transfer rate from the medium flowing over the tube coil to the medium flowing through the tube coil.
Accordingly, it is an object of the invention to support the tube coils of a tubular heat exchanger during localized bending or buckling.
It is another object of the invention to accommodate for thermal expansion of the coils of a tube coil of a tubular heat exchanger.
It is another object of the invention to prevent substantial stressing of a tube coil during distortion under large temperature differentials between the mediums flowing over and flowing through the tube coil.
Briefly, the invention provides a tubular heat exchanger having a tube coil system consisting of at least one helically or spirally wound tube and at least three retaining plates disposed radially of the tube coil and secured to each other in supporting relation to the tube coil system, for example, as described in US. patent application, Ser. No. 626,453, filed Mar. 28, 1967, with at least one additional plate. This additional plate is disposed to lie approximately in the plane of the tube coil axis so as to receive and secure at least some of the turns of the tube coil. Additionally, the plate is sized to be of a radial Width which is smaller by at least one radial pipe pitch than the radial width of the tube coil system.
These and other objects and advantages of the invention will become more apparent from the following detailed descritpion and appended claims taken in conjunction with the accompanying drawings in which:
FIG. 1 illustrates an axialsection through a tubular heat exchanger according to the invention; and
See
FIG. 2 illustrates a plan view of the tubular heat exchanger of FIG. 1.
Referring to FIG. 1, the heat exchanger includes a central core 30 within a housing 61 to which three one piece retaining plates 4, 5, 6 are fixed to extend radially outwards in planes containing the axis of the heat exchanger. A plurality, for example, ten, of helical coils 2 of progressively increasing coil diameter are mounted concentrically in the plates 4-6 to form the tubes of the tube coil system of the heat exchanger. In order to mount the coils 2, the retaining plates 4-6 have holes to receive the coils 2 and the tubes are threaded through the holes by rotating the coils 2 about the common axis to produce a screwing action.
The sector-shaped spaces between the retaining plates 4-6 have additional plates 60, for example, a total of fifteen, which are distributed around the circumference of the heat exchanger at diiferent angles with respect to the retaining plates 4-6 to form different sector angles between adjacent plates. Each of these additional plates 60' has holes therein through which the tubes of the coils 2 pass and each is secured to at least one of the coils 2, as by welding. The plates 60 are sized to be of a width smaller than the radial width of the tube coil system by at least one radial pipe pitch and of a length in the axial direction equal to that of the retaining plates 4-6. The plates 60 are located between the core 30 and housing 61 Without being rigidly joined thereto. Since the plates 60 are also not rigidly joined to the retaining plates 4-6, the tube lengths between two retaining plates can become distorted in the event of large temperature differences between the primary and secondary media and in the event of a high heat transfer rate. The resulting deviation of the tube length from the ideal shape of the tube coil; however, occurs without substantial stresses occurring in the tubes.
As the sectors between adjacent retaining plates 4-6 are divided into unequal angles by the plates 60, the lengths of the tubes between the plates are unequal. The spacing of the plates are selected such that the free tube length between two adjacent plates cannot be excited into resonant oscillation.
It is noted that the tube coils 2 of the heat exchanger are constructed in helical form. However, the tube coils can also be formed spirally or disposed on a conical envelope.
Further, it is noted that the plates 60 are secured to the tube coils in a manner so that the plates 60 cannot move relative to the tube coils extending theret-hrough. To this end, instead of welding the plates 60 to the tube coils, resilient rods can be used to join each plate 60 to an adjacent retaining plate 4, 5, 6. Such resilient rods will accommodate the expansion movements of the tube coils due to temperature changes and, therefore, also permit corresponding motion of the plates 60.
What is claimed is:
1. A heat exchanger comprising at least three retaining plates disposed in fixed spaced apart radial disposition to each other;
a tube coil system including at least one wound tube coil having a plurality of coil turns passing through and secured in said retaining plates, said tube coil having an axis disposed in the axial plane of each of said retaining plates; and
at least one additional plate disposed radially of said tube coil axis, said additional plate receiving at least some of said coil turns of said tube coil in fixed relation and being of a radial width less than the radial width of said tube coil system by at least one radial tube coil pitch.
2. A heat exchanger as set forth in claim 1 wherein said tube coil is helically wound.
3. A heat exchanger as set forth in claim 1 wherein said tube coil is spirally wound.
4. A heat exchanger as set forth in claims 1, 2 or 3 which contains a plurality of said additional plates spaced between said retaining plates to form sectors of unequal angles between each pair of adjacent retaining plates.
5. A heat exchanger as set forth in claim 1 wherein said tube coil system includes a plurality of said wound tube coils disposed in concentric relation to each other, and which includes a plurality of said additional plates, each additional plate receiving the tube coils of at least some of said wound tube coils and being of a radial width less than the radial width of said tube coil system by at least one radial tube coil pitch.
6. A heat exchanger as set forth in claim 5 wherein said additional plates are disposed between said retaining plates additional plates are of equal axial length to said retaining plates.
References Cited UNITED STATES PATENTS 733,613 7/1903 Ball 122-250 1,013,449 1/1912 Ruthenburg 165-125 1,488,188 3/1924 Anderberg 122250 X 2,980,404 4/1961 Anderson et al. 165162 X 3,256,932 6/1966 Schlichting 122-249 ROBERT A. OLEARY, Primary Examiner THEOPHIL W. STREULE, Assistant Examiner
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH482966A CH454931A (en) | 1966-04-01 | 1966-04-01 | Heat exchanger |
CH1809666A CH468608A (en) | 1966-04-01 | 1966-12-16 | Heat exchanger |
CH1221567A CH477666A (en) | 1966-04-01 | 1967-08-31 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
US3496997A true US3496997A (en) | 1970-02-24 |
Family
ID=27175004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US754832A Expired - Lifetime US3496997A (en) | 1966-04-01 | 1968-08-23 | Heat exchanger of tubular construction |
Country Status (9)
Country | Link |
---|---|
US (1) | US3496997A (en) |
JP (1) | JPS5335296B1 (en) |
BE (1) | BE719969A (en) |
CH (1) | CH477666A (en) |
DE (1) | DE1551518B2 (en) |
FR (1) | FR95533E (en) |
GB (1) | GB1234279A (en) |
NL (1) | NL6712673A (en) |
SE (1) | SE335868B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4538678A (en) * | 1982-07-29 | 1985-09-03 | Nisshin Chemical Industry Co., Ltd. | Heat exchanging device |
US4588024A (en) * | 1982-03-09 | 1986-05-13 | Phillips Petroleum Company | Indirect heat exchanger with baffles |
US4671343A (en) * | 1982-07-29 | 1987-06-09 | Nisshin Chemical Industry Co., Ltd. | Heat exchanger having spirally wound tubes |
US4790371A (en) * | 1983-02-24 | 1988-12-13 | Daniel Zundel | Tube-type heat exchanger |
WO2009071037A1 (en) * | 2007-12-03 | 2009-06-11 | Haase Gfk-Technik Gmbh | Spiral heat exchanger with plate-shaped carrier |
US20100096115A1 (en) * | 2008-10-07 | 2010-04-22 | Donald Charles Erickson | Multiple concentric cylindrical co-coiled heat exchanger |
CN101806553A (en) * | 2010-03-31 | 2010-08-18 | 开封空分集团有限公司 | High-voltage spiral tube type heat exchanger distributing device |
US20100319890A1 (en) * | 2007-07-06 | 2010-12-23 | Stss Co., Inc. | Heat Exchange Assembly and Method |
CN104406430A (en) * | 2014-11-26 | 2015-03-11 | 中国海洋石油总公司 | Winding tubular heat exchanger provided with vertical partition plate in cavity |
CN106123639A (en) * | 2016-08-08 | 2016-11-16 | 中国海洋石油总公司 | The wrap-round tubular heat exchanger of cylinder dividing plate and AND DEWATERING FOR ORIFICE STRUCTURE is set in a kind of housing |
US9618229B2 (en) | 2010-04-26 | 2017-04-11 | Sharp Kabushiki Kaisha | Heat exchange device having dual heat exchangers |
US10782071B2 (en) | 2017-03-28 | 2020-09-22 | General Electric Company | Tubular array heat exchanger |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2734060C2 (en) * | 1977-07-28 | 1985-08-22 | Hochtemperatur-Reaktorbau GmbH, 4600 Dortmund | Heat exchanger with a tube bundle made up of a large number of helically coiled tubes |
CH646245A5 (en) * | 1980-09-17 | 1984-11-15 | Sulzer Ag | HEAT EXCHANGER WITH PIPE COILS AND AT LEAST ONE GROUP OF SUPPORT PLATES FOR THE PIPE COILS. |
DE3110719C2 (en) * | 1981-03-19 | 1983-02-17 | Helmut 7293 Pfalzgrafenweiler Genkinger | Heat exchanger with several spiral-shaped distributor pipe sections accommodated in a housing |
DE3632777A1 (en) * | 1985-09-27 | 1987-04-09 | Draack & Meyer Polytetra | HEAT EXCHANGER |
GB2251678A (en) * | 1990-11-28 | 1992-07-15 | Shell Int Research | Heat exchange apparatus |
EP1790932A1 (en) * | 2005-11-24 | 2007-05-30 | Linde Aktiengesellschaft | Coiled heat exchanger |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US733613A (en) * | 1902-04-08 | 1903-07-14 | Elihu Thomson | Flash-boiler. |
US1013449A (en) * | 1911-02-20 | 1912-01-02 | Louis Ruthenburg | Apparatus for cooling fluids. |
US1488188A (en) * | 1921-05-07 | 1924-03-25 | Anderberg Anders | Combined feed-water heater and spark arrester |
US2980404A (en) * | 1957-11-07 | 1961-04-18 | Union Carbide Corp | Heat exchange device |
US3256932A (en) * | 1963-01-03 | 1966-06-21 | Babcock & Wilcox Co | Heat exchanger tube arrangement |
-
1967
- 1967-08-31 CH CH1221567A patent/CH477666A/en not_active IP Right Cessation
- 1967-09-08 DE DE19671551518 patent/DE1551518B2/en not_active Withdrawn
- 1967-09-15 NL NL6712673A patent/NL6712673A/xx unknown
- 1967-10-16 SE SE14140/67A patent/SE335868B/xx unknown
-
1968
- 1968-08-20 FR FR163491A patent/FR95533E/en not_active Expired
- 1968-08-22 GB GB1234279D patent/GB1234279A/en not_active Expired
- 1968-08-22 JP JP5957168A patent/JPS5335296B1/ja active Pending
- 1968-08-23 US US754832A patent/US3496997A/en not_active Expired - Lifetime
- 1968-08-26 BE BE719969D patent/BE719969A/xx unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US733613A (en) * | 1902-04-08 | 1903-07-14 | Elihu Thomson | Flash-boiler. |
US1013449A (en) * | 1911-02-20 | 1912-01-02 | Louis Ruthenburg | Apparatus for cooling fluids. |
US1488188A (en) * | 1921-05-07 | 1924-03-25 | Anderberg Anders | Combined feed-water heater and spark arrester |
US2980404A (en) * | 1957-11-07 | 1961-04-18 | Union Carbide Corp | Heat exchange device |
US3256932A (en) * | 1963-01-03 | 1966-06-21 | Babcock & Wilcox Co | Heat exchanger tube arrangement |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4588024A (en) * | 1982-03-09 | 1986-05-13 | Phillips Petroleum Company | Indirect heat exchanger with baffles |
US4671343A (en) * | 1982-07-29 | 1987-06-09 | Nisshin Chemical Industry Co., Ltd. | Heat exchanger having spirally wound tubes |
US4538678A (en) * | 1982-07-29 | 1985-09-03 | Nisshin Chemical Industry Co., Ltd. | Heat exchanging device |
US4790371A (en) * | 1983-02-24 | 1988-12-13 | Daniel Zundel | Tube-type heat exchanger |
US20100319890A1 (en) * | 2007-07-06 | 2010-12-23 | Stss Co., Inc. | Heat Exchange Assembly and Method |
WO2009071037A1 (en) * | 2007-12-03 | 2009-06-11 | Haase Gfk-Technik Gmbh | Spiral heat exchanger with plate-shaped carrier |
US20100096115A1 (en) * | 2008-10-07 | 2010-04-22 | Donald Charles Erickson | Multiple concentric cylindrical co-coiled heat exchanger |
CN101806553A (en) * | 2010-03-31 | 2010-08-18 | 开封空分集团有限公司 | High-voltage spiral tube type heat exchanger distributing device |
US9618229B2 (en) | 2010-04-26 | 2017-04-11 | Sharp Kabushiki Kaisha | Heat exchange device having dual heat exchangers |
CN104406430A (en) * | 2014-11-26 | 2015-03-11 | 中国海洋石油总公司 | Winding tubular heat exchanger provided with vertical partition plate in cavity |
CN106123639A (en) * | 2016-08-08 | 2016-11-16 | 中国海洋石油总公司 | The wrap-round tubular heat exchanger of cylinder dividing plate and AND DEWATERING FOR ORIFICE STRUCTURE is set in a kind of housing |
CN106123639B (en) * | 2016-08-08 | 2018-04-06 | 中国海洋石油总公司 | Cylinder dividing plate and the wrap-round tubular heat exchanger of AND DEWATERING FOR ORIFICE STRUCTURE are set in a kind of housing |
US10782071B2 (en) | 2017-03-28 | 2020-09-22 | General Electric Company | Tubular array heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JPS5335296B1 (en) | 1978-09-26 |
SE335868B (en) | 1971-06-14 |
DE1551518A1 (en) | 1970-09-10 |
DE1551518B2 (en) | 1971-09-16 |
CH477666A (en) | 1969-08-31 |
FR95533E (en) | 1971-01-22 |
GB1234279A (en) | 1971-06-03 |
BE719969A (en) | 1969-02-26 |
NL6712673A (en) | 1969-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3496997A (en) | Heat exchanger of tubular construction | |
US3720259A (en) | Tubular heat exchanger supporting and spacer structure | |
US3822741A (en) | Tubular heat exchanger with stress-relieving structure | |
US4450904A (en) | Heat exchanger having means for supporting the tubes in spaced mutually parallel relation and suppressing vibration | |
US2341319A (en) | Heat exchanger | |
US3292691A (en) | Tube spacing means | |
US1655086A (en) | Heat exchanger | |
US3253326A (en) | Method of bending concentrically arranged tubes simultaneously | |
US3854529A (en) | Tube support system for a heat exchanger | |
US3323585A (en) | Header structure for heat transfer apparatus | |
GB1140533A (en) | Liquid-metal cooled nuclear reactors | |
GB1136292A (en) | Improvements in or relating to cross-counterflow heat exchangers | |
US3134432A (en) | Heat exchanger | |
US2853278A (en) | Anti-vibration crate for heat exchange tubes | |
US3629066A (en) | Fuel assembly for nuclear reactors and helical spacers have bundles of fuel pins | |
US3595309A (en) | Heat exchanger with helically coiled tubes | |
US3712370A (en) | Radial-flow heat exchanger | |
US3212571A (en) | Tube bundle for shell and tube type heat exchanger formed of spirally wound coil segments | |
US3742567A (en) | Method of making a heat transfer device | |
US3118497A (en) | Heat exchanger | |
US2655350A (en) | Tube arrangement for heat exchangers | |
US1894692A (en) | Tube support | |
US3482626A (en) | Heat exchanger | |
US2340138A (en) | Heat exchanger | |
US4538676A (en) | Gas liquid parallel flow direct current heat exchanger |