US3477929A - Method of etching aluminum foil in the manufacturing of aluminum electrolytic condensers - Google Patents
Method of etching aluminum foil in the manufacturing of aluminum electrolytic condensers Download PDFInfo
- Publication number
- US3477929A US3477929A US630972A US3477929DA US3477929A US 3477929 A US3477929 A US 3477929A US 630972 A US630972 A US 630972A US 3477929D A US3477929D A US 3477929DA US 3477929 A US3477929 A US 3477929A
- Authority
- US
- United States
- Prior art keywords
- etching
- aluminum
- mol
- manufacturing
- etched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title description 31
- 229910052782 aluminium Inorganic materials 0.000 title description 31
- 238000005530 etching Methods 0.000 title description 29
- 238000000034 method Methods 0.000 title description 22
- 238000004519 manufacturing process Methods 0.000 title description 8
- 239000011888 foil Substances 0.000 title description 2
- 239000007864 aqueous solution Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000010349 pulsation Effects 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- -1 halogen ion Chemical class 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001026509 Kata Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/055—Etched foil electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/02—Etching
- C25F3/04—Etching of light metals
Definitions
- Our invention relates to a method of manufacturing aluminum electrolytic condensers.
- the aluminum anode element is etched to increase the effective surface area of the aluminum anode element thus increasing the capacity of the condenser.
- the aluminum anode ele ment is etched electrolytically in a liquid including a large amount of halogen ion.
- the aluminum anode element is etched electrolytically in an etchant comprising a 16% aqueous solution of HCl using a steady (nonpulsating) direct current at a temperature of about 70 C. for several minutes.
- an etchant comprising a 16% aqueous solution of HCl using a steady (nonpulsating) direct current at a temperature of about 70 C. for several minutes.
- the etching liquid is a weak acid, the pH gradually increases as the etching proceeds and aluminum hydroxide precipitate (or settlings) is produced. These settlings lower the conductivity of the liquid and raise the bath voltage as they are precipitated on the electrode.
- Our invention has as an object the obviating of the above-mentioned defects and increasing the effective surface area of the aluminum anode element and inhibiting the settlings of aluminum hydroxide.
- Our invention makes the aluminum anode element porous by etching.
- corrosion inhibitors such as chromic acid and chromate, to a solution including halogen ion.
- the chromic acid simultaneously inhibits the settlings of aluminum hydroxide.
- the etching effectivity can be increased by properly selecting the wave form of the current used and the temperature 'of the liquid.
- a pulsating current with a pulsating ratio of voltage [(the maximum value of a voltage-the minimum value of voltage)/the average value of voltage] of 15-3 is well suited as the current wave form and 65-85 C. is the optimum temperature.
- FIGS. 1, 2, 3 and 4 respectively show variations of magnification (increase) of etching on the ordinate versus, respectively, temperature, pulsating ratio, current density and voltage.
- the concentration of the inorganic acid added to prevent the precipitation of aluminum hydroxide during the etching should preferably be higher from the viewpoint of lowering the pH, but it has a certain upper limit since the etching of the anode element to make it porous by the above-mentioned liquid must not be affected.
- the upper limit of the amount of nitric acid and sulfuric acid that can be added to a liquid of which the 01- concentration is 0.2 mol/l. is 0.8 mol/l. and the upper limit of phosphoric acid in this case is 0.8 mol/1.
- this invention exhibits a particularly valuable effect in the etching of a thick aluminum plate.
- FIG. 1 shows the effect on increase of porosity (magnification) in a 50 v. formation when the temperature of the liquid is varied in the examples of this invention.
- Curve 1 corresponds to Example 1 and curve 2 corresponds to Example 3.
- FIG. 2 shows the effect on magnification in a 50 v. formation when the pulsation factor of the etching voltage is varied according to the examples.
- Curve 1 corresponds to Example 1 and curve 2 corresponds to Example 3. It can be seen from this figure that 1.5-3 is the optimum pulsation factor.
- FIG. 3 shows the variation of magnification in a 50 v. formation when the current density is varied according to the examples.
- Curve 1 corresponds to Example 1 and curve 2 corresponds to Example 3. It can be seen from the figure that the influence of current density is not great.
- FIG. 4 shows the relation between the formation voltage and the magnification of etching.
- Curve 1 corresponds to Example 1 and curve 2 corresponds to Example 3 with curve 3 corresponding to the conventional etching method.
- Example 1 A smooth aluminum plate of a purity of 99.99% and a thickness of 1 mm. was etched electrolytical- 1y for 10 minutes in an aqueous solution of HCl of 0.1 mol/l. and Q0, of 0.05 mol/1., at C., using a pulsating current of single phase full wave (pulsation factor 1.6) with a current density of 0.6 a./cm. This was formed at 50 v. and then the electrostatic capacity on both surfaces of 1 cm. was 19 ,uf. This is 79 times as great as the case of the smooth surface.
- Example 2 An aluminum plate of a thickness of 1 mm. was etched electrolytically for 10 minutes in an aqueous solution containing 0.1 mol/l. of HCl, 0.05 mol/l. of CrO and 0.1 mol/l. of HNO at 80 C., by the use of a pulsating current of single phase full wave of a current density of 0.6 a./cm. The same magnification as in Example 1 was obtained. Furthermore, settlings of aluminum hydroxide were precipitated when a current of 10 a.h.- was flowed per 1 liter of the liquid of Example 1 including no HNO but in the case of the liquid of this example including HNO the settlings of aluminum hydroxide did not precipitate until the current was increased to 35 ab. per liter of the liquid. The increase of the bath voltage was also slight making it possible to continue etching under a stable condition. y
- Example 3 A smooth aluminum plate of a purity of 99.99% and of a thickness of 1 mm. was first etched electrolytically, weakly for 60 seconds in an aqueous 16% solution of HCl at 70 C. by a direct current of a current density of 0.7 a./cm. including no ripple and was then etched deeply by the method of Example 2. This was formed at 50 v.
- the electrostatic capacity on both surfaces of 1 cm. was 21 ,uf. and the magnification of etching (surface increase) as against the smooth surface was 87 times.
- Example 4 An aluminum plate was etched electrolytically in an aqueous solution including 0.2 mol/l. H PO instead of HNO in Example 2 and by the same method as the case of Example 2. The same magnification and stability as in Example 2 were obtained.
- Example 5 An aluminum plate was etched electrolytically in an aqueous solution including 0.1 mol/l. H 80 instead of HNO in Example 2 and by the same method as the case of Example 2. The same magnification and stability as in Example 2 were obtained.
- Example 6 A smooth aluminum plate of a purity of 99.99% and a thickness of 1 mm. was dipped for 90 seconds in an aqueous solution containing 5% H01 and 0.3% CuSO at a bath temperature of 65 C. The copper precipitated on the aluminum plate was resolved (dissolved) and removed by dipping the plate in a cold concentrated nitric acid. The thus etched aluminum plate was then etched deeply by the method of Example 2. The porous aluminum plate thus obtained was formed at 50 v. and then the electrostatic capacity amounted to 90 times that of the smooth surface.
- Example 7 An aluminum wire of a purity of 99.99%
- Example 4 a diameter of 3 mm. was etched electrolytically and was made porous by the same method as Example 4. This was formed at v. and then the electrostatic capacity per 1 cm. of the wire was 8 f. This is times as great as the electrostatic capacity of the wire the surface of which is left smooth.
- a method of manufacturing aluminum electrolytic condensers which comprises electrolytically etching the aluminum as the anode using a pulsating current :with a pulsation factor of 1.5-3 in an aqueous solution consisting essentially of 002-02 mol/l. Cl" and 0.020.1 mol/l. CrO in a pH range at which the precipitation of aluminum hydroxides is minimized.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- ing And Chemical Polishing (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2454266 | 1966-04-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3477929A true US3477929A (en) | 1969-11-11 |
Family
ID=12141022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US630972A Expired - Lifetime US3477929A (en) | 1966-04-18 | 1967-04-14 | Method of etching aluminum foil in the manufacturing of aluminum electrolytic condensers |
Country Status (3)
Country | Link |
---|---|
US (1) | US3477929A (nl) |
DE (1) | DE1589784B2 (nl) |
NL (1) | NL6705053A (nl) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3887447A (en) * | 1971-07-09 | 1975-06-03 | Alcan Res & Dev | Process of electrograining aluminium |
DE2650762A1 (de) * | 1975-11-06 | 1977-05-18 | Nippon Light Metal Res Labor | Verfahren zur elektrolytischen koernung von aluminiumsubstraten fuer die lithographie |
US4052274A (en) * | 1975-04-05 | 1977-10-04 | Agency Of Industrial Science & Technology | Electrochemical wire cutting method |
US4113587A (en) * | 1974-08-05 | 1978-09-12 | Agency Of Industrial Science And Technology | Method for electrochemical machining |
US4140599A (en) * | 1975-06-04 | 1979-02-20 | Fujitsu Limited | Process for producing porous aluminum anode element |
US4247377A (en) * | 1979-02-21 | 1981-01-27 | United Technologies Corporation | Method for electrolytic etching |
US4279715A (en) * | 1980-09-15 | 1981-07-21 | Sprague Electric Company | Etching of aluminum capacitor foil |
US4297184A (en) * | 1980-02-19 | 1981-10-27 | United Chemi-Con, Inc. | Method of etching aluminum |
US4336113A (en) * | 1981-06-26 | 1982-06-22 | American Hoechst Corporation | Electrolytic graining of aluminum with hydrogen peroxide and nitric or hydrochloric acid |
WO1982002620A1 (fr) * | 1981-01-29 | 1982-08-05 | Yoshiyuki Okamoto | Procede de gravure d'une feuille d'aluminium pour un condensateur electrolytique |
US4547275A (en) * | 1984-02-03 | 1985-10-15 | Showa Aluminum Kabushiki Kaisha | Process for treating surface of aluminum foil for use as electrode of electrolytic capacitors |
US4897168A (en) * | 1987-05-12 | 1990-01-30 | Hoechst Aktiengesellschaft | Process and arrangement for production of printing plate support |
WO2007085062A1 (en) * | 2006-01-27 | 2007-08-02 | Zijad Cehic | Production of perforated aluminium (in the form of sheet or foil) hard- or soft-rolled |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2721835A (en) * | 1951-07-07 | 1955-10-25 | Shwayder Bros Inc | Surface treatment of aluminum articles |
US2755238A (en) * | 1955-03-25 | 1956-07-17 | Sprague Electric Co | Electrolytic etching and oxidizing of aluminum |
US2930741A (en) * | 1960-03-29 | Electrolytic capacitors | ||
US3035990A (en) * | 1958-11-05 | 1962-05-22 | Collins Radio Co | Chemical blanking of aluminum sheet metal |
US3085950A (en) * | 1959-02-20 | 1963-04-16 | British Aluminium Co Ltd | Electrolytic etching of aluminum foil |
US3249523A (en) * | 1961-09-15 | 1966-05-03 | Alusuisse | Method of electrolytically etching aluminum |
US3321389A (en) * | 1964-07-20 | 1967-05-23 | Mallory & Co Inc P R | Method of anodically etching aluminum foils at elevated temperatures in an electrolyte including chloride and sulfate ions |
-
1967
- 1967-04-10 NL NL6705053A patent/NL6705053A/xx unknown
- 1967-04-14 US US630972A patent/US3477929A/en not_active Expired - Lifetime
- 1967-04-14 DE DE19671589784 patent/DE1589784B2/de active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2930741A (en) * | 1960-03-29 | Electrolytic capacitors | ||
US2721835A (en) * | 1951-07-07 | 1955-10-25 | Shwayder Bros Inc | Surface treatment of aluminum articles |
US2755238A (en) * | 1955-03-25 | 1956-07-17 | Sprague Electric Co | Electrolytic etching and oxidizing of aluminum |
US3035990A (en) * | 1958-11-05 | 1962-05-22 | Collins Radio Co | Chemical blanking of aluminum sheet metal |
US3085950A (en) * | 1959-02-20 | 1963-04-16 | British Aluminium Co Ltd | Electrolytic etching of aluminum foil |
US3249523A (en) * | 1961-09-15 | 1966-05-03 | Alusuisse | Method of electrolytically etching aluminum |
US3321389A (en) * | 1964-07-20 | 1967-05-23 | Mallory & Co Inc P R | Method of anodically etching aluminum foils at elevated temperatures in an electrolyte including chloride and sulfate ions |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3887447A (en) * | 1971-07-09 | 1975-06-03 | Alcan Res & Dev | Process of electrograining aluminium |
US4113587A (en) * | 1974-08-05 | 1978-09-12 | Agency Of Industrial Science And Technology | Method for electrochemical machining |
US4052274A (en) * | 1975-04-05 | 1977-10-04 | Agency Of Industrial Science & Technology | Electrochemical wire cutting method |
US4140599A (en) * | 1975-06-04 | 1979-02-20 | Fujitsu Limited | Process for producing porous aluminum anode element |
DE2650762A1 (de) * | 1975-11-06 | 1977-05-18 | Nippon Light Metal Res Labor | Verfahren zur elektrolytischen koernung von aluminiumsubstraten fuer die lithographie |
US4247377A (en) * | 1979-02-21 | 1981-01-27 | United Technologies Corporation | Method for electrolytic etching |
US4297184A (en) * | 1980-02-19 | 1981-10-27 | United Chemi-Con, Inc. | Method of etching aluminum |
US4279715A (en) * | 1980-09-15 | 1981-07-21 | Sprague Electric Company | Etching of aluminum capacitor foil |
WO1982002620A1 (fr) * | 1981-01-29 | 1982-08-05 | Yoshiyuki Okamoto | Procede de gravure d'une feuille d'aluminium pour un condensateur electrolytique |
US4455200A (en) * | 1981-01-29 | 1984-06-19 | Yoshiyuki Okamoto | Method for etching aluminum foil for electrolytic capacitors |
DE3231662C2 (de) * | 1981-01-29 | 1984-09-13 | Suzuoka Electric Appliances Industrial Co. Ltd., Tenryu | Verfahren zum elektrochemischen Ätzen von Aluminiumfolien |
US4336113A (en) * | 1981-06-26 | 1982-06-22 | American Hoechst Corporation | Electrolytic graining of aluminum with hydrogen peroxide and nitric or hydrochloric acid |
US4547275A (en) * | 1984-02-03 | 1985-10-15 | Showa Aluminum Kabushiki Kaisha | Process for treating surface of aluminum foil for use as electrode of electrolytic capacitors |
US4897168A (en) * | 1987-05-12 | 1990-01-30 | Hoechst Aktiengesellschaft | Process and arrangement for production of printing plate support |
WO2007085062A1 (en) * | 2006-01-27 | 2007-08-02 | Zijad Cehic | Production of perforated aluminium (in the form of sheet or foil) hard- or soft-rolled |
Also Published As
Publication number | Publication date |
---|---|
DE1589784B2 (de) | 1970-09-24 |
NL6705053A (nl) | 1967-10-19 |
DE1589784A1 (nl) | 1970-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3477929A (en) | Method of etching aluminum foil in the manufacturing of aluminum electrolytic condensers | |
US4525249A (en) | Two step electro chemical and chemical etch process for high volt aluminum anode foil | |
US4518471A (en) | Two step electrochemical etch process for high volt aluminum anode foil | |
US4420367A (en) | Method for etching a recrystallized aluminum foil for electrolytic capacitors | |
US3779877A (en) | Electrolytic etching of aluminum foil | |
CA1072735A (en) | Process for producing an aluminum electrolytic capacitor having a stable oxide film | |
US3085950A (en) | Electrolytic etching of aluminum foil | |
US2859148A (en) | Method of producing a bohmite layer on etched aluminum foils | |
JPS6074505A (ja) | 電解コンデンサ−用のアルミニウムフオイルの陽極処理法 | |
US4203810A (en) | Electrolytic process employing electrodes having coatings which comprise platinum | |
US2755238A (en) | Electrolytic etching and oxidizing of aluminum | |
US3905883A (en) | Electrolytic etching method | |
US2755237A (en) | Electrolytically etched condenser electrode | |
US2174841A (en) | Electrolytic device | |
US3728237A (en) | Method of manufacturing aluminum electrode foil for electrolytic capacitors | |
Heusler et al. | Film Growth and Dissolution of Iron Ions at passive iron in neutral solutions containing chloride | |
US3190822A (en) | Process for electrolytically etching valve metal surfaces | |
US3563863A (en) | Method of anodizing sintered tantalum powder anodes | |
EP0194317B1 (en) | Method of producing electrolytic capacitors. | |
JP3729013B2 (ja) | アルミ電解コンデンサ用電極箔の製造方法 | |
US5439565A (en) | Method of manufacturing electrode foil for aluminium electrolytic capacitors | |
CA1169021A (en) | Ac etching of aluminum capacitor foil | |
US3332859A (en) | Process for producing tantalum foil for capacitors | |
JP3582451B2 (ja) | アルミ電解コンデンサ用陽極箔の製造方法 | |
SE448101B (sv) | Sett att framstella en morkfergad vaglengdselektiv oxidfilm pa aluminium |