US3477494A - Continuous casting molten metal feed device - Google Patents

Continuous casting molten metal feed device Download PDF

Info

Publication number
US3477494A
US3477494A US576768A US3477494DA US3477494A US 3477494 A US3477494 A US 3477494A US 576768 A US576768 A US 576768A US 3477494D A US3477494D A US 3477494DA US 3477494 A US3477494 A US 3477494A
Authority
US
United States
Prior art keywords
mold
molten metal
continuous casting
displacer
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US576768A
Other languages
English (en)
Inventor
Alan R Burkart
John H Mudge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcoa Corp
Original Assignee
Aluminum Company of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminum Company of America filed Critical Aluminum Company of America
Application granted granted Critical
Publication of US3477494A publication Critical patent/US3477494A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/049Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/112Treating the molten metal by accelerated cooling

Definitions

  • This invention relates in general to new and improved apparatus and practices for the continuous casting of metals and alloys thereof, and is more particularly addressed to the production by continuous casting of mechanically and metallurgically sound aluminum and aluminu m alloy ingots and billets for subsequent working in 3,477,494 Patented Nov. 11, 1969
  • the present invention is basically predicated upon the provision of heat insulating means, such as a core member, preferably axially displaceable, within the molten metal crater of continuously cast products, as well as mechanism and process steps for the manipulation and support thereof, which reacts to displace the molten metal within the crater and thermally controls the freezing rate thereof.
  • continuous casting in accordance with the invention of metallic alloy compositions, and particularly aluminum and similar alloys characterized by a tendency to produce exposed and sub-surface zones of depleted normal constituent or constituents under conventional continuous casting practice has revealed a substantial decrease in the depth of such liquated zones which is directly reflected in the depth of scalping required to provide acceptable continuously cast extrusion ingot and similar cast stock for subsequent working in the production of the production of wrought products therefrom.
  • aluminum and aluminum alloys is intended to include aluminum metal and alloys containing at least 65 percent aluminum.
  • FIG. 1 represents the molten metal charging end plan view of a continuous casting mechanism illustrating one form of mechanical structure capable of permitting practice of the invention
  • FIG. 2 represents a cross-sectional elevation taken on the plane 2-2 of FIG. 1 at the beginning of a casting operation
  • FIG. 3 represents a cross-sectional elevation taken on the plane 3'-3 of FIG. 1 at some subsequent period during the continuous casting operation.
  • a conventional openended axially short chill mold 10 constructed from a relatively highly eflicient heat conducting chilLinducing material, such as graphite or aluminum, is outwardly flanged or otherwise configurated at its entry end at 12 in direct communicating continuation with an open-ended nonchilling high heat resistant and heat insulating laterally enclosing mold section 14.
  • Marinite heat insulating asbestos-silica composition
  • the mold section 14 may be a one-piece structure, but it has been found structurally and economically desirable to construct the samefrom abuttingheat insulating plate members or laminae 16 exteriorly enclosed within a protective steel supporting frame or shell 18 unitarily secured to the entrance end flange 12 of the chill mold
  • the shell 18 surrounding, confining and supporting the nonchilling heat insulating mold section 14, is preferably of generally channel shape in longitudinal cross-section and is provided with an outwardly directed terminal entry flange 20 which serves as a support for connection thereto of a steel or other metallic base plate or ring 22 in unitary securement to the flange 20 as by means of a peripheral line of bolts 26 (FIG. 1).
  • a pressure plate or ring 28 is also preferably provided within the entry end to the exterior shell 18 in bearing contact against the heat insulating plate or laminae 16 therewithin adjacent the flange 20, and manually adjustable pressure screws 30 (FIGS. 1 and 3), threadedly engaged within the stationary base plate or ring 22, bear and exert pressure at their free ends against the ring 28 and insure unitary compact assembly of the plates or laminae 16 within the shell 18 of the nonchilling heat insulating mold section 14.
  • brackets or standards 32 are secured to the outer exposed face of the base plate or ring 22, as by bolts 34 (FIG. 1), and parallel spacer rods 36, preferably at least two, each carrying paired clamping nuts 38 and 40 on the opposite threaded ends thereof, provide a unitary appendage or superstructure incorporating the aforesaid standards 32 in rigid association with the base ring 22.
  • a cross shaft 42 is rotatably supported in aligned bearing openings in the brackets or standards 32 and axially centrally supports a pinion 44 splined thereon and secured by a set screw, or the like, to insure meshing engagement with a rack 46 to be later described.
  • Positive and accurate disposition of the cross shaft 42 between the standards 32 is maintained and insured by the set screw-secured collars 48 mounted on the cross shaft 42 in abutting engagement against the inwardly facing surfaces of the standards 32.
  • a manipulating hand Wheel 50 (FIGS. 1 and 2) is secured to an outboard extension of the cross shaft 42 which incorporates a disc 52 having an aperture 54 (FIG. 2) through the thickness thereof in concentrical alignability with anyone of a series of like apertures 56 (FIGS.
  • a cradle type housing is supported by the transverse spacer rods 36 and is constructed in the form of spaced side rails or frame members 60 provided with extending locating pins 62 projecting into registering apertures in the rods 36 (FIG. 2).
  • the projecting ends of the pins 62 may be threaded for receiviing nuts (not shown or essential in the vertical arrangement of the casting equipment illustrated in the appended drawings) which would permit rigid unitary assembly of the cradle on the spacer rods 36.
  • the side members 60 of the cradle type housing are rigidly tied together in the plane of their outermost surfaces remote to their supporting spacer rods 36 by means of a cross bar or plate 64, which supports or carries a bronze anti-friction edge bearing plate 66 in rubbing contact against a surface of the aforementioned rack 46 opposite or remote to the pinion 44 (FIG. 3). It will be manifest from the mechanism thus far described that rotation of the cross shaft 42, by manipulating the hand wheel 50, will impart reciprocal motion or translation of the rack bar 46.
  • FIGS. 2 and 3 best illustrate essential structure in regard to the practice and advantages attributable to the present invention.
  • a generally cylindrical or box-shaped vessel herein called a core member or displacer and identified in its entirety by reference numeral 68, has. been unitarily and rigidly secured to the end of a unitary extension of the rack bar 46 remote to the pinion 44 engaging therewith.
  • the heat insulating core or displacer 68 is concentrically or centrally disposed in respect to the common longitudinal axis of the' chill mold 10 and attached heat insulating mold section 14 by proper adjustment and secured location of the cross shaft 42 and pinion 44 carried thereby in their relation to the plane and axisof rectilinear movement of the rack bar 46 in mesh with the pinion 44.
  • the heat insulating core or displacer preferably and generally comprises a hollow steel or other structural metal member provided with opposite end and intermediate transverse plate or reinforcing baflle members 70, 72 and 74, respectively, secured as by welding, or the like, to interior surface areas forming an uninterrupted side wall, or side walls, of the drum or box-shaped shell of the displacer 68.
  • the rack bar 46 is rigidly secured to the displacer 68 and is preferably cross-sectionally reduced in its unitary extension beyond the rack teeth thereof, extended through registering complementary apertures in one opposte end and intermediate plate members 72 and 74 (FIGS. 2 and 3), Where welded or other mechanical attachment is made therewith.
  • guide and snubbing rods 76 secured to the end plate member 72 and projecting outwardly therefrom, are provided for guiding extension through aligned apertures in the spacer rods or bars 36 and carry adjustable nuts 78 (FIG. 2) at their outer threaded end extremities to limit the extent of axial translation of the displacer 68 within the integrated mold sections 10 and 14.
  • the cardinal structural feature and touchstone of success of the invention turns on the provision of a nonchilling heat resistant and substantially high heat insulating exposed surface liner or exterior wall for the core member or displacer 68.
  • This requirement has been satisfactorily met by providing an end plate or disc 80 of Marinite, or similar non-chilling heat insulating material, secured to the adjacent end plate 70 of the displacer 68 in any suitable manner, such as by the central exteriorly manipulated tap bolt 82.
  • a washer 84 is recommended under the head of the tap bolt 82 to distribute the clamping pressure exerted thereby between the central raised hearing or stepped area of the plate 80 and outwardly directed surface of end plate 70 of theinterior shell of the displacer 68 in abutting contact therewith.
  • the end plate 80 is preferably selected to project laterally or overhang beyond the interior uninterruptedside wall or walls of the core member or displacer 68 to-provide abutting contact against an exposed or outer nonchilling heat insulating side wall 86 surrounding the interior wall or walls thereof which supports a pressure-applying and assembly ring or plate 88 of steel, or the, like, remote to the end plate 80.
  • the plate 88 is preferably engaged by the free ends of vbolts 90 in adjustable pressure-exerting threaded engagement in an outwardly' extending flange 92 in unitary attachment to the side wall of the displacer shell 68 to thus provide unitary assembly of the heat insulative exterior side and end surfaces of the centrally disposed displacer 68 of the invention.
  • Thermocouples 94 (FIG. L 2), or similar temperature sensing and/or measuring devices, have been provided in at least three axially separated planes parallel to the transverse plane of the end plate 80 of the displacer 68, whereby thermal conditions within the mold have been determined.
  • a conventional translatory end closingchill block or plate 102 is disposed Within the otherwise open discharge end of the chill mold 10 in sealing relationship thereto, as indicated in broken line construction in FIG. 2, and with the displacer 68 either completely oppositely axially withdrawn from the insulated mold section 14, or
  • molten metal to be cast is delivered through the open end of mold section 14 remote to the chill mold from a suitable source of reservoir, as by means of one or more delivery troughs 9 6, to filljthe chill mold 10 above the broken line position of the end closing palte 102 (FIG'. 2) to a level within the insulated mold section 14 controlled by the delivery trough or troughs 9 6.
  • Coolant such as water or the like, is supplied against the exterior of the chill mold 10 from a perforated manifold 98- in amount suflicient to extract heat from the molten metal so charged within the mold sections 10 and 14 to freeze an embryo ingot 100 defined by a laterally enclosing and supporting shellwithin the axial length of the chill mold 10 and an enclosing end wall contiguous therewith in contact with the end plate 102, and characterized by having a substantially central liquid crater phase of non-solidified metal extending axially into the mold section 14, where the metal charge remains liquid.
  • Preferred practice of the instant invention is initiated in the otherwise conventional continuous casting practice above described by translating the displacer 68 axially through the molten phase creater of the embryo ingot 100 to a position illustrated in FIG. 3, which is representative of its location during continuous casting in accordance with the preferred practice of the invention. It will be understood and observed in this respect, and particularly on comparison of the curvilinear solidus contour lines 104 and 106 of FIGS. 2 and 3, respectively, that the molten metal craters and solidus contour lines defining the same are radically changed in response to translatory movement of the displacer 68 to the position occupied thereby in FIG. 3, wherein it now extends axially through the insulated mold section 14 into the chill mold 10 a distance substantially equal to half the axial length of the chill mold 10.
  • Presence and use of the core member or displacer 68', as hereinabove described, has provided a substantially reduced or narrow feed channel 108 defined in transverse cross-sectional area between the interior wall of heat insulating mold 14 and outwardly directed heat insulating wall of the displacer 68 both in advance of and within the chill mold 10 (FIG. 3), as compared to the respective enclosing transverse cross-sectional areas of the mold sections 10 and 14 in the absence of the displacer 68, and it is this reduced transverse cross-sectional area of feed channel 108, coupled with the thermally insulated walls of the insulating mold 14 and core member or displacer 68 forming the feed channel, that has resulted in the increase in casting rate heretofore referred to.
  • the solidus contour line 106 (FIG. 3) substantially approaches or follows the general configuration of the exposed end of the displacer heat insulating immersed end block 80, as compared to that of the deeper crater defined in FIG. 2 by the solidus contour 6 line 104. It will also be observed that the feed channel 108 may be slightly enlarged in transverse cross-section as it enters the embryo ingot, at 110 (FIG. 3), in substantially the transverse plane of the contacting interface formed between the chill mold 10 and heat insulating mold 14.
  • a twenty-five inch diameter 2214 aluminum alloy ingot so continuously cast was found to be mechanically and structurally sound; exhibited a fine grain structure and a decreased depth of surface and sub-surface liquated zones; and was substantially free from cold shuts, all of which characteristics can be attributed to a more uniform and directional heat extraction transversely across the width, or normal to the common longitudinal axis of the molds 10 and 14, of the continuously cast products, produced in accordance with the invention, substantially within the axial length of the chill mold 10 thereof.
  • Operation of the continuous casting method and mechanism hereinabove described can be terminated by interrupting molten metal delivery to the insulating mold section 14, withdrawing the displacer 68 out of physical contact with remaining molten metal in the crater of the product being cast, and continuing axial extraction of the cast product 100, while preferably maintaining continuous coolant flow against the chill mold 10 and product until the molten metal crater is completely solidified, at which time the coolant flow can be interrupted and the product 100 removed from the casting apparatus of the mventlon.
  • a continuous casting mechanism having an openended chill mold, a heat insulating mold adjacent the entrance of the chill mold and having an opening having a transverse cross section of similar size and shape therewith, a core member having heat insulating molten metal contacting surfaces extending within said heat insulating mold and said chill mold for maintaining a body of molten metal within said chill mold, and means for positioning the said core member to provide a space :between said core and said heat insulating and chill molds, the space extending around substantially the entire inside periphery of said heat insulating and chill molds.
  • a continuous casting mechanism having an openended chill mold, a heat insulating mold adjacent the en trance of the chill mold and having an opening having a transverse cross-section of similar size and shape therewith, a displacer member extendable into said heat insulating mold and said chill mold for maintaining a body of molten metal within said chill mold, said displacer having heat insulating molten metal contacting surfaces, means for positioning said displacer to provide a space between said displacer and said heat insulating and chill 7 8 molds, the space extending around substantially the en- FOREIGN PATENTS tire inside periphery of said heat insulating and chill 1,385,585 12/1964 France molds, and means for relatively axially reciprocating said 898,668 12/1953 Germany displacer in respect to said heat insulating and chill molds 374 200 3/1961 Great in to provide extension of said displacer axially into the 5 7,607 5/ 1963 Ja an h'll mold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
US576768A 1966-09-01 1966-09-01 Continuous casting molten metal feed device Expired - Lifetime US3477494A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US57676866A 1966-09-01 1966-09-01

Publications (1)

Publication Number Publication Date
US3477494A true US3477494A (en) 1969-11-11

Family

ID=24305918

Family Applications (1)

Application Number Title Priority Date Filing Date
US576768A Expired - Lifetime US3477494A (en) 1966-09-01 1966-09-01 Continuous casting molten metal feed device

Country Status (5)

Country Link
US (1) US3477494A (enExample)
DE (1) DE1583565A1 (enExample)
GB (1) GB1190059A (enExample)
NL (1) NL6712076A (enExample)
NO (1) NO120204B (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612151A (en) * 1969-02-14 1971-10-12 Kaiser Aluminium Chem Corp Control of continuous casting
US4244420A (en) * 1978-05-17 1981-01-13 Davy-Loewy Limited Apparatus for feeding a horizontal continuous casting mold
US4709747A (en) * 1985-09-11 1987-12-01 Aluminum Company Of America Process and apparatus for reducing macrosegregation adjacent to a longitudinal centerline of a solidified body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2277375A (en) * 1936-08-19 1942-03-24 Ajax Metal Company Continuous casting of metal tubes
DE898668C (de) * 1942-06-09 1953-12-03 Wieland Werke Ag Rohrzufuehrung fuer das schmelzfluessige Giessgut, insbesondere beim stetigen Giessen von Metallen
GB874200A (en) * 1958-11-27 1961-08-02 Electro Chimie Metal Metal casting
FR1385585A (fr) * 1963-12-04 1965-01-15 Pechiney Prod Chimiques Sa Nouvel appareillage pour la coulée continue verticale
US3381741A (en) * 1963-06-07 1968-05-07 Aluminum Co Of America Method and apparatus for continuous casting of ingots

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2277375A (en) * 1936-08-19 1942-03-24 Ajax Metal Company Continuous casting of metal tubes
DE898668C (de) * 1942-06-09 1953-12-03 Wieland Werke Ag Rohrzufuehrung fuer das schmelzfluessige Giessgut, insbesondere beim stetigen Giessen von Metallen
GB874200A (en) * 1958-11-27 1961-08-02 Electro Chimie Metal Metal casting
US3381741A (en) * 1963-06-07 1968-05-07 Aluminum Co Of America Method and apparatus for continuous casting of ingots
FR1385585A (fr) * 1963-12-04 1965-01-15 Pechiney Prod Chimiques Sa Nouvel appareillage pour la coulée continue verticale

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612151A (en) * 1969-02-14 1971-10-12 Kaiser Aluminium Chem Corp Control of continuous casting
US4244420A (en) * 1978-05-17 1981-01-13 Davy-Loewy Limited Apparatus for feeding a horizontal continuous casting mold
US4709747A (en) * 1985-09-11 1987-12-01 Aluminum Company Of America Process and apparatus for reducing macrosegregation adjacent to a longitudinal centerline of a solidified body

Also Published As

Publication number Publication date
NL6712076A (enExample) 1968-03-04
NO120204B (enExample) 1970-09-14
DE1583565A1 (de) 1970-09-17
GB1190059A (en) 1970-04-29

Similar Documents

Publication Publication Date Title
US2284503A (en) Apparatus for continuous casting
US3381741A (en) Method and apparatus for continuous casting of ingots
US2301027A (en) Method of casting
US3746077A (en) Apparatus for upward casting
US3286309A (en) Method and apparatus for horizontal casting of ingots
US2565959A (en) Method of casting metal continuously
US2672665A (en) Casting metal
US2770022A (en) Method of continuously casting molten metal
US20050098298A1 (en) Treating molten metals by moving electric arc
GB1444002A (en) Casting method and apparatus
US3771584A (en) Method for continuously casting steel billet strands to minimize the porosity and chemical segregation along the center line of the strand
US3477494A (en) Continuous casting molten metal feed device
US3210812A (en) Continuous casting mold
US3593778A (en) Continuous casting apparatus
US2338781A (en) Method and apparatus for continuously casting metal
US3354936A (en) Continuous casting process
US1892044A (en) Method of casting ingots
US3506059A (en) Method of continuous casting
US3153822A (en) Method and apparatus for casting molten metal
US2426814A (en) Method for treating metals with noble gases
US3123877A (en) Apparatus for and method of casting metal members
US3658117A (en) Continuous metal casting method and apparatus
JPS62130755A (ja) 電子ビ−ム溶解法による連続鋳造法
US2148391A (en) Apparatus for treating metals
US2747245A (en) Process for continuous casting of metal billets