US3476660A - Method of sequentially adjusting the anodes in a mercury-cathode cell - Google Patents

Method of sequentially adjusting the anodes in a mercury-cathode cell Download PDF

Info

Publication number
US3476660A
US3476660A US620889A US3476660DA US3476660A US 3476660 A US3476660 A US 3476660A US 620889 A US620889 A US 620889A US 3476660D A US3476660D A US 3476660DA US 3476660 A US3476660 A US 3476660A
Authority
US
United States
Prior art keywords
anode
cell
anodes
tool
conductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US620889A
Other languages
English (en)
Inventor
Tadeusz Ryszard Selwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB12854/66A external-priority patent/GB1146466A/en
Application filed by Imperial Chemical Industries Ltd filed Critical Imperial Chemical Industries Ltd
Application granted granted Critical
Publication of US3476660A publication Critical patent/US3476660A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/04Regulation of the inter-electrode distance

Definitions

  • the present invention relates to a method of electrolysis. More particularly it relates to a method for the electrolysis of alkali metal chloride solution in cells having flowing mercury cathodes and is a modification of the method described and claimed in co-pending application No. 472,907 filed July 19, 1965, hereinafter referred to as the main application.
  • the present invention we provide a method of setting sequentially the anodes in accurately-spaced relationship to the cathode of a mercury-cathode cell producing chlorine by electrolysis of alkali metal chloride solution wherein the position of each anode relative to the cathode is adjusted in the working cell so that the electrical conductance of the electrolyte gap between each anode and the cathode is brought to a predetermined value, in accordance with the main application, which is characterized by feeding electrical data determining the existing electrolyte gap conductance for each anode and electrical data fixing the area co-ordinates of each anode with respect to the cell cover area into a selector switching arrangement, the selector position of said switching arrangement at any time being determined by a signal from a sequential controller so as to feed out from the switching arrangement the gap-conductance and area-coordinate data corresponding to a selected anode, feeding the area-coordinate data from the selector switching arrangement together with electrical data defining the position of a mechanically-operated anode
  • a sequential controller we mean a combination of logic circuits, interval timing circuits, micro-switches and limit switches programmed to carry out a sequence of switching operations in such a manner that no one operation can begin until the previous operation of the sequence has been completed.
  • a digital computer with associated mechanical switching devices programmed to carry out the sequential switching operations.
  • the electrolysing current can most suitably be deduced by measuring the potential drop caused by this current in a fixed length of bus-bar whose cross-sectional area and resistivity are 'known.
  • the resistive potential drop across the electrolyte gap may be found by measuring the voltage between the cell baseplate and a probe attached to the anode as described in the aforesaid main application, and subtracting from this voltage the sum of the known reversible electrode potentials of the Working cell and the chlorine overvoltage.
  • the electrolyte gap conductance may be determined from these measurements by employing the circuitry of the apparatus described in co-pending application No. 472,908 filed July 19, 1965, now Patent No. 3,372,332, particularly the circuitry of FIG. 2 of the said application. It can then quite simply be arranged for the said apparatus to provide a voltage output signal proportional to the gap conductance value, for instance by tapping off a voltage from a potentiometer carrying a fixed current.
  • the two measurements of potential drop the one between the anode and cell baseplate and the other measured along a length of anode bus-bar to characterise the anode current, will constitute the gap conductance data for each anode which are fed into the conductance measuring circuit by way of the selector switching arrangement.
  • FIG. 1 of the drawings represents schematically a single anode arranged in this way and one embodiment of apparatus for carrying out the step of the invention wherein the anode is adjusted in response to electrolyte gap conductance data
  • 1 indicates the cell baseplate on the upper surface of which flows the mercury cathode film.
  • 2 indicates an anode, which is suspended on current conductor 3 passing through sealing means 4 in the cell cover 5.
  • 6 is the anode-adjusting nut resting on fixed bearing surface 7 and being rotatable on screw thread 8 cut in the upper end of current conductor 3.
  • 9 is an adjusting tool which is shaped to engage adjusting nut 6 and can be rotated by servomotor M, through a flexible drive 10.
  • the anode-cathode voltage is fed to the electrical conductance-measuring apparatus 11 by means of a connection 12 to the cell baseplate and a probe 13 attached to the anode, and a voltage proportional to the electrolysing current is tapped-off from bus-bar 14 which feeds the anode with current by connections 15 and 16 and is also fed into the conductance-measuring apparatus 11, as shown at 17, 18, 19, 20.
  • a voltage signal proportional to the value of the electrical conductance of the electrolyte gap is produced by the measuring apparatus 11 and fed to servo-controller 21 as indicated at 22.
  • Controller 21 is also fed with a voltage signal proportional to the desired value of the electrolyte gap conductance as indicated at 23 so that servomotor M, is driven by any output 24 from the servo-controller which is always proportional to the difference between inputs 22 and 23.
  • FIG. 2 represents in plan view two multi-anode cells 27, the anode-supporting current conductors being indicated as 28.
  • FIG. 3 represents a side elevation of one cell 27. 31 is a crane which can be moved across the cell on the rolling-way 3 2, and 33 is a carriage which can run on the crane along the length of the cell. The anodeadjusting tool is shown centered over one of the anodesupporting current conductors 28 and is mounted on the carriage 33.
  • FIGS. 4 A method of automatically selecting the conductance data corresponding to any one anode in a row of anodes along the cell and positioning the tool carriage over the appropriate anode in the row is illustrated in FIGS. 4
  • FIG. 4 represents a selector switching arrangement in the form of a multi-gang, multi-position switch, operated by motor M
  • the conductance data for each anode is fed into the switch by connecting the four terminals corresponding to 12, 13, 15, 16 of FIG. 1 each to one peripheral contact on a separate gang of the switch as shown.
  • the switch has suflicient peripheral contacts to accommodate the data for each anode on a separate position
  • the extra gang 39 of the switch 38 shown in FIG. 4 is employed for positioning the adjusting tool carriage over the appropriate anode.
  • a chain of resistors 40 is wired across the peripheral contacts of the gang 39 of .the switch as shown in FIG. 5, the switch positions being indicated as I-N to correspond with a number of anodes in a row.
  • An appropriate voltage is placed across the ends of the chain of resistors as shown so that the switch wiper 41 will tap-off different voltages corresponding to the position of rotation of the multi-gang switch.
  • a multiturn feedback potentiometer 42 is electrically-connected i p llelwith the chain of re s ors 40 a d s Wiper 43 is mechanically connected to the tool carriage 33 as indicated by the dashed line so that the mechanical position of the carriage is directly related to the voltage tapped-off by the wiper 43 of the feedback potentiometer.
  • the wipers 41 and 43 are connected to a servo-control amplifier 44 which actuates the motor drive unit 45 and moves the carriage by means of servomotor M when there is a difference between the potentials of the two wipers until there is very little error remaining between these two potentials.
  • the adjusting tool on its carriage is always moved into position above the anode to which the data-gang wipers 17, 18, 19 and 20 of the multi-gang switch are connected at any time.
  • the switch motor M is controlled by a sequential controller shown ms in FIG. 4, which causes the switch 38 to be rotated through all the anode positions I-N in turn and is also programmed to bring into action the rotational anode adjustment mechanism shown in FIG. 1 through operation of the servomotor M turning the adjusting tool 9 at each anode position before rotating the switch 38 of FIGURE 4 to the next anode position.
  • a further servomotor (indicated as M in FIG. 1) is provided by means of which the tool is lowered and raised under control of the sequential controller at each anode position.
  • the tool may be suspended on a self-centering flexible drive 10 and the adjusting tool support may be shaped into a conical, frusto-conical or bell-shaped section 25 so as to guide the tool on to the adjusting nut or collar by contact with a protruding spindle 26 fixed to the upper end of the conductor supporting the anode.
  • FIG. 7 A vertical section through the centre of a preferred form of self-centering anode-adjusting tool is shown in the accompanying drawing, FIG. 7.
  • the tool is suitably of all metal construction, e.g. steel.
  • A- section of truncated conical shape 58 (most suitably of apex angle) terminates at its upper end in a short hollow cylindrical section 59 of suitable internal diameter to accept as a loose fit the upper end of a cylindrical stalk extending upwards from the centre of the upper end of an anode-supporting rod of an electrolytic cell (not shown) when the tool is lowered on to the stalk.
  • the conical section 58 terminates at its lower end in hexagonal skirt 60 forming a keying member adapted to engage with a hexagonal adjusting nut running on an anode-supporting rod (not shown).
  • the upper end of the hollow cylindrical section 59 is locked on to a lower drive spindle 61 of a flexible rotational drive coupling by nut 62.
  • the flexible coupling comprises a circular plate 63 attached at its centre to the upper end of spindle 61, and a hollow cylinder 64.
  • the plate and cylinder are connected by the long bolts 65 and nuts 66 and-are held in contact in flexible manner by the loading springs 67 acting between the bolt heads and cylinder 64.
  • FIG. 6 A method by which the adjusting tool may be moved from one row of anodes to another across the cell is illustrated in FIG. 6.
  • the whole crane body 31 of FIG. 3 is moved by another servo-position-control system which operates on the same principle as that described for moving the tool carriage 33, the only difference being in the number of positions of the rotary switches 48 and 49 shown in FIGS. 4 and 6, which positions need to be only as many as there are rows of anodes in the cell.
  • motor-operated switch 48 with its chain of resistors across its peripheral contacts and the parallel-connected feedback potentiometer 50 with its wiper 51 mechanically linked to one end of the crane 31 control the positioning of that end of the crane by feeding difference signals into the servo-system 52, 53 so as to operate servomotor M and thus adjust the crane position when switch 48 is rotated to a new position.
  • the corresponding parts 49, 54, 55, 56, 57 and servo-motor M move the opposite end of the crane in response to rotation of switch 49.
  • the switches 48 and 49 are ganged together and are rotated by motor M under control of sequential controller S.
  • this sequential controller will be programmed to operate motor M and thus move the crane so as to position the adjusting tool over the next row of anodes when all the anodes in one row have been adjusted.
  • the sequential controller will disconnect from the conductance measuring apparatus 11 of FIG. 1 the conductance data wipers 17, 18, 19, 20 shown in FIG. 4 which relate to the completed row of anodes and will switch in the similar wipers of a further four gangs (not shown) on the data switch 38 to which the conductance data from the next row of anodes are fed.
  • This switching can conveniently be arranged in the form of further gangs (not shown) added to the anode row selector switches 48-49.
  • the foregoing description has covered the automatic adjustment of the anodes of a single cell with a single adjusting tool.
  • the method described may, however, be extended to a number of cells by providing for the crane carrying the tool to be moved over each cell in turn, and transfer of the crane from cell to cell may be controlled automatically in the same way as transfer from one row of anodes to another of the same cell.
  • the inter-electrode gap conductance data for all the cells can, if desired, be permanently wired into selector switches mounted centrally in the cell room and the sequential controller can be made to select the switch corresponding to the cell and the particular row of anodes under adjustment.
  • This arrangement does, however, require a large number of wires passing from the'cells to the switching centre as well as a large amount of additional equipment amplifying low-level signals and it is preferred to tolerate some measure of manual control whereby only one cell at a time is automatically adjusted so that the conductance data and crane and tool carriage position data selector switches, which my then be most suitably mounted on the crane along with the sequential controller and the servosystems, require only the number of contacts applicable to a single cell.
  • the four wires defining the conductance data for each anode of one cell may be taken to multipoint sockets fixed on the cell structure as shown at 29 in FIG. 2.
  • the number of wires taken to each socket and hence the most suitable number of sockets will depend on the layout of the cell.
  • the conductance data can then be picked-up from each of these sockets by a matching plug 34 (see FIG. 3) connected to one end of a multicore cable 35, the other end of the cable being connected into the multi-gang, multi-position data switches mounted on the crane.
  • the electrolysing current and interelectrode potential information from each anode may be fed to a logic circuit, most suitably mounted on the crane with the other control equipment, which is programmed to recognise fault conditions and then to transmit overriding control signals to the sequential controller and other parts of the control system so as to prevent adjustment of the anode concerned. It is desirable then to known which anodes have not been adjusted. This information can be obtained from the tool position data and be passed to a printer for permanent recording. The most suitable position for the printer will usually be in the cell control room so that easy access can be had to its records. To operate this arrangement the printer may be connected to a number of sockets strategically positioned within the cell room, for instance on the walls of the room as indicated at 30 in FIG. 3, and the information on anodes which have not been adjusted may be transmitted to the printer by a multi-core cable, suspended from the crane, and plugged into one of the sockets as shown at 37.
  • the logic circuit will recognise it and initiate the following action.
  • the printer will print out the faulty anode identification co-ordinates together with its gap-conductance data.
  • the faulty anode will not be adjusted and the sequential controller will move the adjusting tool to the next anode.
  • this system it can be arranged for an alarm to be sounded and for all the control systems to be rendered inactive if one or more of the servo-systems develop a fault and the sequence of operations on any anode does not take place within a prescribed time, so that the operator can switch the apparatus to manual control and remedy the fault. It can also be arranged for an alarm to be sounded when all the anodes of a cell have been automatically adjusted so that the operator will know that the apparatus may be transferred to another cell.
  • all the anodes of a cell may be adjusted to the same value of inter-electrode gap conductance in order to obtain a very uniform current distribution between the anodes as taught in the main application; and this can be arranged by feeding a constant value control signal into the conductance controller at 23 in FIG. 1 of the drawings.
  • a constant value control signal into the conductance controller at 23 in FIG. 1 of the drawings.
  • this may be arranged by programming the sequential controller to send an appropriate desired value signal into the conductance controller for each anode.
  • a practical realisation of this may for example be achieved by wiring a chain of resistors across the peripheral contacts of an additional gang of the multi-gang, multi-position, motor-operated switch 38 of FIG. 4 and placing an appropriate voltage across the ends of the chain.
  • the switch wiper will then tap off dilferent voltages depending on the resistor values and the rotational position of the switch, and these voltages will be related to specific anodes of a row through operation of the tool-positioning servo-mechanism.
  • all that is necessary to form a defined pattern of desired value is to make the correct choice of resistors and to connect the wiper of the switch to the desired value input of the conductance controller.
  • the invention has been described with reference to the use of a single mechanically-operated tool to adjust all the anodes of one or more multi-anode cells. If, however, it is desired to reduce the time taken to deal with each cell, several tools may be mounted on the same carriage to work concurrently so that several anodes are adjusted at the same time under the control of a sequential controller while the carriage is at any one location.
  • a suitable arrangement is for instance to provide the same number of tools as there are rows of anodes in the cell, and this slightly simplifies the crane-positioning control system since it is no longer necessary to transfer a tool automatically from row to row and to switch over to the corresponding anode data.
  • a method of setting sequentially the anodes in accurately-spaced relationship to the cathode of a mercury-cathode cell producing chlorine by electrolysis of alkali metal chloride solution wherein the position of each anode relative to the cathode is adjusted in the working cell so that the electrical conductance of the electrolyte gap between each anode and the cathode is brought to a predetermined value which is characterised by feeding electrical data determining the existing electrolyte'gap conductance for each anode and electrical data fixing the area co-ordinates of each anode with respect to the cell cover area into a selector switching arrangement, the selector position of said switching arrangement at any time being determined by a signal from a sequential controller so as to feed out from the switching arrangement sponding to a selected anode, feeding the area-coordinate data from the selector switching arrangement together with electrical data defining the position of a mechanically-operated anode-adjusting tool to a first servo-controller connected to the said tool so that in response to
  • a method according to claim 1 wherein the output of the second servo-controlled is employed to rotate the tool about a vertical axis when the tool is in engagement with a rotatable adjusting means running on a threaded stem supporting the anode.
  • a method according to claim 5 wherein the carriage is moved across the cell on another rolling way to carry the tool from one row of anodes to another by means of a fourth servo-controller or by means of a combination of a fourth and a fifth servo-controller each operating to adjust the position of opposite ends of the carriage respectively, activation of these servo-controllers being under control of the sequential controller.
  • each tool is carried horizontally above a corresponding row of anodes on1 a single carriage travelling from end to end of the ce 1.
  • a method wherein as data determining the existing electrolyte gap conductance for each anode in a row of anodes there are fed into a multiposition multi-gang switch the voltage existing between the anode and the cathode of the cell across corresponding fixed contacts on two gangs of the switch and a voltage proportional to the electrolysing current flowing'in the anode across two corresponding fixed contacts on two other gangs of the switch and the data for any one anode are selected from the switch by moving the movable contacts of the switch to the appropriate position.
  • each anode in the said row of anodes is defined by placing a resistor across each neighbouring pair of fixed contacts on a separate gang of the said multigang switch and applying a fired voltage across the ends of the chain of resistors whereby a defining voltage is tapped off by the movable contacts at each position of the switch.
  • a method wherein the data determining the existing electrolyte gap conductance for FOREIGN PATENTS each anode are fed to a logic circuit which is adapted to 5 3 23 309 19 1 Japan exercise overriding control over the sequential controller to prevent adjustment of an anode when the data re- JOHN H, MACK, Primary Examiner ceived therefrom 1s outslde prescribed llmlts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Control Of Position Or Direction (AREA)
US620889A 1966-03-23 1967-03-06 Method of sequentially adjusting the anodes in a mercury-cathode cell Expired - Lifetime US3476660A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB12854/66A GB1146466A (en) 1964-08-12 1966-03-23 Anode adjustment of mercury-cathode electrolytic cells

Publications (1)

Publication Number Publication Date
US3476660A true US3476660A (en) 1969-11-04

Family

ID=10012366

Family Applications (2)

Application Number Title Priority Date Filing Date
US620889A Expired - Lifetime US3476660A (en) 1966-03-23 1967-03-06 Method of sequentially adjusting the anodes in a mercury-cathode cell
US840576*A Expired - Lifetime US3654118A (en) 1966-03-23 1969-05-06 Electrolysis

Family Applications After (1)

Application Number Title Priority Date Filing Date
US840576*A Expired - Lifetime US3654118A (en) 1966-03-23 1969-05-06 Electrolysis

Country Status (4)

Country Link
US (2) US3476660A (fi)
JP (1) JPS4944876B1 (fi)
BE (1) BE695771A (fi)
FI (1) FI54746C (fi)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723285A (en) * 1969-10-16 1973-03-27 Montedison Spa System for protecting electrolytic cells against short circuits
US3775274A (en) * 1970-06-30 1973-11-27 Hughes Aircraft Co Electrolytic anticompromise process
US3902983A (en) * 1974-01-07 1975-09-02 Olin Corp Method and apparatus for preventing voltage extremes in an electrolytic cell having automatic adjusting of the anode-cathode spacing
US4004989A (en) * 1974-04-18 1977-01-25 Olin Corporation Method for automatic adjustment of anodes based upon current density and current
FR2491958A1 (fr) * 1980-10-13 1982-04-16 Costes Jean Procede de reglage de la distance entre les deux electrodes des cellules d'electrolyse a cathode de mercure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873430A (en) * 1972-07-17 1975-03-25 Olin Corp Method for automatic adjustment of anodes
US4080277A (en) * 1976-05-21 1978-03-21 Olin Corporation Short circuit protection for horizontal mercury electrolytic cells
DE3124108C2 (de) * 1981-06-19 1986-01-09 Heraeus Elektroden GmbH, 6450 Hanau Überwachungs- und Steuerungseinrichtung für Elektrolysezellen mit Quecksilberkathoden
ITMI20111668A1 (it) * 2011-09-16 2013-03-17 Industrie De Nora Spa Sistema permanente per la valutazione in continuo della distribuzione di corrente in celle elettrolitiche interconnesse.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2508523A (en) * 1946-09-11 1950-05-23 Krebs & Co Device for the protection of the cathodes of electrolytic cells
US3361654A (en) * 1957-02-09 1968-01-02 Deprez Charles Method for automatic regulation of the distance between electrodes in electrolytic cells for a mobile cathode
US3396095A (en) * 1964-01-24 1968-08-06 Solvay Method and apparatus for the continuous regulation of the distance between the electrodes of electrolytic cells with liquid mecury cathodes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2508523A (en) * 1946-09-11 1950-05-23 Krebs & Co Device for the protection of the cathodes of electrolytic cells
US3361654A (en) * 1957-02-09 1968-01-02 Deprez Charles Method for automatic regulation of the distance between electrodes in electrolytic cells for a mobile cathode
US3396095A (en) * 1964-01-24 1968-08-06 Solvay Method and apparatus for the continuous regulation of the distance between the electrodes of electrolytic cells with liquid mecury cathodes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723285A (en) * 1969-10-16 1973-03-27 Montedison Spa System for protecting electrolytic cells against short circuits
US3775274A (en) * 1970-06-30 1973-11-27 Hughes Aircraft Co Electrolytic anticompromise process
US3902983A (en) * 1974-01-07 1975-09-02 Olin Corp Method and apparatus for preventing voltage extremes in an electrolytic cell having automatic adjusting of the anode-cathode spacing
US4004989A (en) * 1974-04-18 1977-01-25 Olin Corporation Method for automatic adjustment of anodes based upon current density and current
FR2491958A1 (fr) * 1980-10-13 1982-04-16 Costes Jean Procede de reglage de la distance entre les deux electrodes des cellules d'electrolyse a cathode de mercure

Also Published As

Publication number Publication date
FI54746B (fi) 1978-10-31
US3654118A (en) 1972-04-04
FI54746C (fi) 1979-02-12
BE695771A (fi) 1967-09-20
JPS4944876B1 (fi) 1974-11-30

Similar Documents

Publication Publication Date Title
US3476660A (en) Method of sequentially adjusting the anodes in a mercury-cathode cell
DE69931444T2 (de) Ionisierungssystem
JPH05132799A (ja) 電気メツキ方法及びその装置
EP3124652B1 (en) Arrangement for measuring electric current flowing in an individual electrode in an electrolysis system
US2371658A (en) Method and apparatus for determining current flow in borehole casing or the like
US9677184B2 (en) Measurement of electric current in an individual electrode in an electrolysis system
US4390770A (en) Automatic welding apparatus for solar cells
US3761379A (en) Aluminum production apparatus
US2969490A (en) Automation with digital positioncommand comparison
US4210513A (en) Pneumatic anode positioning system
US3071758A (en) Potentiometers
US3853723A (en) Mercury cell anode short detection and current balancing
KR102432626B1 (ko) 전기도금 셀 컴포넌트들의 상태를 측정하기 위한 장치 및 연관된 방법들
US4159392A (en) Apparatus for mounting a primary electrode
US2633485A (en) Electrical dip meter for logging boreholes
EP0157132A1 (en) Reactor monitoring assembly
US4098666A (en) Apparatus for regulating anode-cathode spacing in an electrolytic cell
US4155829A (en) Apparatus for regulating anode-cathode spacing in an electrolytic cell
CA1189825A (en) Monitoring and control device for electrolytic cells
US4271471A (en) Method of operating a remotely controlled tool positioning table
US3796648A (en) Electrolytic cell having self-aligning anodes
JPH07280656A (ja) 異常温度発生位置の検出装置及び検出方法
US3417008A (en) Switch for electrochemical processes
SE410242B (sv) Anleggning for overforing och utverdering av vid flera metpunkter upptredande metverden
US3288698A (en) Electrode for electrolytic cavity sinking