US3457068A - Titanium-base alloys - Google Patents
Titanium-base alloys Download PDFInfo
- Publication number
- US3457068A US3457068A US525825A US3457068DA US3457068A US 3457068 A US3457068 A US 3457068A US 525825 A US525825 A US 525825A US 3457068D A US3457068D A US 3457068DA US 3457068 A US3457068 A US 3457068A
- Authority
- US
- United States
- Prior art keywords
- alloys
- titanium
- stress
- alloy
- cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title description 41
- 239000000956 alloy Substances 0.000 title description 41
- 238000005336 cracking Methods 0.000 description 18
- 238000005260 corrosion Methods 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 229910052718 tin Inorganic materials 0.000 description 11
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000010936 titanium Substances 0.000 description 10
- 229910052719 titanium Inorganic materials 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 229910052790 beryllium Inorganic materials 0.000 description 8
- 230000036039 immunity Effects 0.000 description 8
- 229910052726 zirconium Inorganic materials 0.000 description 8
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 7
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 238000007792 addition Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- -1 Titanium Metals Chemical class 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- PMTRSEDNJGMXLN-UHFFFAOYSA-N titanium zirconium Chemical compound [Ti].[Zr] PMTRSEDNJGMXLN-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
Definitions
- a titanium base alloy consisting essentially of about 1.5 to 3% Al, 1 to 4% Sn, the percent of Al plus Sn present not to exceed 3.5%, 2 to 4% Mo, up to 5% Zr, up to 0.5% Be, up to 0.4% in total amount of C, 0 and N balance titanium.
- the titanium alloy exhibits good weldability and immunity from stress corrosion in the presence of a halide or halogen environment.
- This invention pertains to titanium-base alloys and provides alloys of this type involving novel and critical proportions for imparting immunity to stress-corrosion cracking together with excellent strength and adequate ductility at room and elevated temperatures.
- the alloys of this invention constitute a valuable improvement over titanium-base alloys heretofore in extensive, commercial use, all of which are subject to stresscorrosion cracking when exposed to elevated temperatures under stress in the presence of a halide or halogen environment, such as an atmosphere containing chlorine gas, hydrochloric acid or a chloride or other halogen salt, for example, sodium chloride.
- a halide or halogen environment such as an atmosphere containing chlorine gas, hydrochloric acid or a chloride or other halogen salt, for example, sodium chloride.
- the attack manifests itself by surface-cracking of such alloys, resulting in fissures which increase in depth with time of exposure at temperatures usually above 500 F.
- Commercial alloys subject to this attack include such widely-used types as Ti-6Al-4V, Ti-8Al-1V-1Mo, T i-5Al-2.5Sn, Ti-4Al-3Mo-1V, etc.
- alloys which are wholly immune to stress-corrosion cracking and which constitute the present'invention.
- These alloys consist es- 3,457,068 Patented July 22, 1969 sentially of about 1.5 to 11% of metal of the group aluminum and tin, the percentage of aluminum present plus the percentage of tin present not to exceed 3.5%, the alloys also containing about 2 to 4% molybdenum and may also contain up to 5% zirconium and up to 0.5% beryllium, these alloys being characterized as forged and annealed by an ultimate strength of at least 110,000 p.s.i., a tensile elongation of at least 3%, by good weldability and by immunity to stress-corrosion cracking.
- the preferred alloys of the invention will contain about 1 to 4% zirconium or about 0.1 to 0.25% beryllium, or both.
- these alloys may contain only aluminum within limits of about 1.5 to 3.5% and preferably under 2.5%; or only tin within limits of about 4.5 to 11%; or may contain both of these elements within the broad limits abovestated, but preferably within limits of about 0.5 to under 2.5% aluminum plus about 1 to 4% tin.
- about 3% by weight of tin is equivalent to about 1% of aluminum, but in order to maintain the alloy immune to stress-corrosion cracking the equivalent aluminum content, i.e. the percentage by weight of aluminum present plus /3 the percentage by weight of tin present should not, as abovestated, exceed about 3.5%.
- Additions of zirconium to the alloys of the invention provides a means of enhancing alpha-strengthening without impairing immunity to stress-corrosion cracking, since as above pointed out large additions of this element may be made to an otherwise immune alloy without affecting this property.
- Beryllium additions strengthen the alloy by compound formation thereby to enhance elevated temperature creep resistance.
- Molybdenum, a beta promoter isomorphous with titanium, is included in these alloys as an essential constituent for enhancing the strength thereof without materially affecting ductility. At least 2% of this element is required for imparting the requisite strengthening while more than about 4% impairs weldability.
- the interstitial content of the alloys of the invention is not a controlling factor within relatively wide limits, i.e. up to about 3% carbon, 0.8% oxygen and 0.4% nitrogen as regards immunity to stresscorrosion cracking.
- the alloys should not contain more than about 0.05% of carbon and nitrogen and about 0.3% oxygen, the total interstitial content not to exceed about 0.40%.
- Total incidental impurities in these alloys including the interstitials and extraneous metallic and other elements should not exceed about 0.70%.
- the alloys of this invention may be produced by conventional methods in which titanium metal is rendered molten in admixture with the desired proportions of recited alloying metals. Titanium metal in the form of sponge of commercial purity may be thoroughly mixed with the alloying elements as subdivided metal particles, and the admixture compressed into compacts which are then welded into a consumable electrode. This electrode may be melted in a suitable type of cold mold arc furnace and the resulting ingot may be remelted to provide improved uniformity and homogeneity.
- the so-produced alloy ingot may be processed by conventional techniques such as forging, extruding, rolling and other working finished articles, such as bar, sheet, strip, wire or tubing methods to produce intermediate mill products and semiand other shapes which may later be converted by additional working or forming procedures into final products or articles.
- the alloy After forging, rolling or working in the mill product stage, the alloy may be annealed to place it in best condition for further forming and fabrication and also for stress relief. Annealing at about 1300 F. for 1 hour followed by air cooling will be found to be effec tive for this purpose. The precise temperature and time may be dependent on the specific proportions of alloying elements.
- Table 1 shows typical annealed tensile properties and stress-corrosion resistance of typical alloys according to this invention, together with, for comparison, a commercial titanium-base alloy of 4%Al-3%Mo- 1%V:
- Stress-corrosion cracking determined by clamping a strip specimen into a U shape so that the outside fibers of the restrained bend are highly stressed. The stressed specimen is then exposed to a chlorine atmosphere for 2 hours at a temperature of 800 F. Such treatment will result in readily apparent stress-corrosion cracking in susceptible alloys, such as presently known commercial titanium-base alloys. The alloys of Table 1 that show no stress-corrosion cracking under test conditions would be immune in service.
- alloys of this invention and articles produced therefrom are useful in the production of parts and components for structures requiring light-weight and high strength, such as airframes and jet engines, missiles and space vehicles.
- these alloys because of their immunity to stress-corrosion cracking in a chloride atmosphere, are particularly valuable when the end uses thereof involve exposure under stress to elevated temperature in a chloride or other halide environment. This may occur when aircraft or missiles are operated under conditions that their parts or surfaces reach relatively high temperatures while exposed, for example, to salt spray or ocean atmospheres.
- An alloy consisting essentially of about: 1.5 to 3.0% aluminum, 1 to 4% tin, the percent of aluminum plus /3 the percent of tin present not to exceed 3.5%, 2 to 4% molybdenum, up to 5% zirconium, up to 0.3% beryllium, up to 0.4% in total amount of carbon, oxygen and nitrogen, balance substantially titanium, characterized by room temperature properties as forged and annealed, of at least 110,000 p.s.i. in ultimate strength and at least 3% in tensile elongation, and characterized further by good Weldability and high resistance from stress-corrosion cracking in the presence of a halide or halogen environment.
- An alloy according to claim 1 containing about 0.1 to 0.25% beryllium.
- An alloy according to claim 1 containing about 1 to 4% zirconium and 0.1 to 0.25% beryllium.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Forging (AREA)
- Conductive Materials (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44931365A | 1965-04-19 | 1965-04-19 | |
US52582566A | 1966-02-08 | 1966-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3457068A true US3457068A (en) | 1969-07-22 |
Family
ID=27035665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US525825A Expired - Lifetime US3457068A (en) | 1965-04-19 | 1966-02-08 | Titanium-base alloys |
Country Status (5)
Country | Link |
---|---|
US (1) | US3457068A (en)) |
BE (1) | BE677616A (en)) |
DE (1) | DE1533204B2 (en)) |
GB (1) | GB1068270A (en)) |
SE (1) | SE322917B (en)) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107598411A (zh) * | 2017-09-08 | 2018-01-19 | 西安西工大超晶科技发展有限责任公司 | 一种tc11钛合金用焊丝及其制备方法 |
CN114150180A (zh) * | 2021-11-01 | 2022-03-08 | 新乡学院 | 一种电子束熔丝3d打印用海洋工程钛合金材料及其制备方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4900510A (en) * | 1987-04-22 | 1990-02-13 | Nippon Kokan Kabushiki Kaisha | High strength and corrosion resistant titanium alloy having excellent corrosion-wear properties |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2779677A (en) * | 1953-12-28 | 1957-01-29 | Rem Cru Titanium Inc | Ti-sn-al alloys with alpha, beta and compound formers |
US2892704A (en) * | 1956-07-09 | 1959-06-30 | Crucible Steel Co America | Titanium base alloys |
US2893864A (en) * | 1958-02-04 | 1959-07-07 | Harris Geoffrey Thomas | Titanium base alloys |
US3113227A (en) * | 1960-03-21 | 1963-12-03 | Crucible Steel Co America | Titanium alloy articles resistant to hydrogen absorption for dynamoelectric machines |
GB944954A (en) * | 1959-10-31 | 1963-12-18 | Jessop William & Sons Ltd | Improvements in or relating to titanium alloys |
-
1966
- 1966-02-08 US US525825A patent/US3457068A/en not_active Expired - Lifetime
- 1966-03-10 BE BE677616D patent/BE677616A/xx unknown
- 1966-04-07 DE DE19661533204 patent/DE1533204B2/de active Pending
- 1966-04-15 SE SE5160/66A patent/SE322917B/xx unknown
- 1966-04-18 GB GB16953/66A patent/GB1068270A/en not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2779677A (en) * | 1953-12-28 | 1957-01-29 | Rem Cru Titanium Inc | Ti-sn-al alloys with alpha, beta and compound formers |
US2892704A (en) * | 1956-07-09 | 1959-06-30 | Crucible Steel Co America | Titanium base alloys |
US2893864A (en) * | 1958-02-04 | 1959-07-07 | Harris Geoffrey Thomas | Titanium base alloys |
GB944954A (en) * | 1959-10-31 | 1963-12-18 | Jessop William & Sons Ltd | Improvements in or relating to titanium alloys |
US3113227A (en) * | 1960-03-21 | 1963-12-03 | Crucible Steel Co America | Titanium alloy articles resistant to hydrogen absorption for dynamoelectric machines |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107598411A (zh) * | 2017-09-08 | 2018-01-19 | 西安西工大超晶科技发展有限责任公司 | 一种tc11钛合金用焊丝及其制备方法 |
CN107598411B (zh) * | 2017-09-08 | 2019-11-22 | 西安西工大超晶科技发展有限责任公司 | 一种tc11钛合金用焊丝及其制备方法 |
CN114150180A (zh) * | 2021-11-01 | 2022-03-08 | 新乡学院 | 一种电子束熔丝3d打印用海洋工程钛合金材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
BE677616A (en)) | 1966-08-01 |
DE1533204A1 (en)) | 1970-07-09 |
DE1533204B2 (en)) | 1970-07-09 |
SE322917B (en)) | 1970-04-20 |
GB1068270A (en) | 1967-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2754204A (en) | Titanium base alloys | |
TWI572721B (zh) | 高強度α/β鈦合金 | |
EP3791003B1 (en) | High strength titanium alloys | |
US3160500A (en) | Matrix-stiffened alloy | |
US3576681A (en) | Wrought nickel base alloy article | |
CN104862529B (zh) | 一种超高强高塑性钛合金 | |
CN106103757A (zh) | 高强度α/β 钛合金 | |
RU2721977C1 (ru) | Проволока сварочная из титановых сплавов | |
US2892706A (en) | Titanium base alloys | |
US2797996A (en) | Titanium base alloys | |
JPH01168837A (ja) | 高モリブデンニッケル基合金 | |
US4113472A (en) | High strength aluminum extrusion alloy | |
US2985530A (en) | Metallurgy | |
US3457068A (en) | Titanium-base alloys | |
US3595645A (en) | Heat treatable beta titanium base alloy and processing thereof | |
JP4581425B2 (ja) | β型チタン合金およびβ型チタン合金製の部品 | |
JPH05255780A (ja) | 均一微細組織をなす高強度チタン合金 | |
US3379520A (en) | Tantalum-base alloys | |
US3293031A (en) | Ductile iridium alloy | |
US3980468A (en) | Method of producing a ductile rare-earth containing superalloy | |
EP0260600B1 (en) | High temperature nickel base alloy with improved stability | |
US2784125A (en) | Wrought stainless steel | |
US3441407A (en) | Titanium-base alloys | |
US2779677A (en) | Ti-sn-al alloys with alpha, beta and compound formers | |
US3249429A (en) | Tantalum brazing alloy |