US3455276A - Magnetically responsive powder applicator - Google Patents
Magnetically responsive powder applicator Download PDFInfo
- Publication number
- US3455276A US3455276A US640720A US3455276DA US3455276A US 3455276 A US3455276 A US 3455276A US 640720 A US640720 A US 640720A US 3455276D A US3455276D A US 3455276DA US 3455276 A US3455276 A US 3455276A
- Authority
- US
- United States
- Prior art keywords
- sleeve
- magnetic
- members
- shaft
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 title description 25
- 230000005291 magnetic effect Effects 0.000 description 55
- 239000000463 material Substances 0.000 description 25
- 239000002245 particle Substances 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 8
- 239000011236 particulate material Substances 0.000 description 6
- 230000035699 permeability Effects 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 230000003100 immobilizing effect Effects 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/083—Magnetic toner particles
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/06—Apparatus for electrographic processes using a charge pattern for developing
- G03G15/08—Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
- G03G15/09—Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush
- G03G15/0921—Details concerning the magnetic brush roller structure, e.g. magnet configuration
Definitions
- An applicator for magnetically responsive, finely divided particulate material comprising a magnetizable shaft, a number of elongate magnetic members disposed in an annular array about and extending along said shaft in close fitting relation with the radially inner and outer surfaces of adjacent members having opposite polarity, a non-magnetic sleeve disposed about the periphery of said array, and means affording relative rotation between said sleeve and said members.
- This invention relates to an applicator for use in presenting magnetically responsive, finely divided particles against the surface of an article for application thereto.
- the present invention is particularly useful in applying pigmented particulate material to an article to develop an image thereon.
- One example of such use is in develop ing imagewise a differentially conductive pattern formed by projecting a light image on a photoconductive web.
- the photoconductive web being positioned between an insulative layer, backed by an electrode, and a second electrode contacting the particulate or powder which is in electrically conductive contact between the second electrode and the photoconductive web.
- the device described in the second patent, No. 3,176,- 652, particularly with reference to FIGURE 3 thereof, employs a fixed magnetic member which can be generally cylindrical in shape but which is formed with axially extending alternating flutes and ribs with each rib constituting a magnetic pole of a polarity opposite to that of the next adjacent rib.
- This spacing between poles of op- 3,455,276 Patented July 15, 1969 posite polarity while providing a magnetic field which varies direction around the periphery, produces areas be tween the ribs having a reduced field. Consequently the amount of magnetic material held on the sleeve and the powder movement are decreased because the field varies with weak tangential magnetic field being present opposite the flutes.
- the device of the present invention affords an applicator having a uniform field along its length and strong fields around its circumference.
- the present invention provides an applicator for applying to a wide surface a dimensionally uniform deposition of magnetically responsive particulate material.
- a plurality of magnetic members which are formed preferably of oriented anisotropic permanent magnet material dispersed in a nonmagnetic immobilizing matrix, are disposed in a circular array about a core formed of a high magnetic permeability and low loss such as soft iron and a relatively rotatable non-magnetic sleeve which supports the particulate image-forming material to be moved from a hopper to engaging relation with an image carrying surface.
- FIGURE 1 is a vertical sectional view of an applicating roller formed in accordance with the present invention.
- FIGURE 2 is a diagrammatic view showing the roller of the present invention in cross-section and its relation to other elements in a coating assembly;
- FIGURE 3 is a perspective view illustrating one magnetic member
- FIGURE 4 is a graph showing the magnitude of the radial and tangential components of the circumferential magnetic field.
- FIGURE 5 is a netic field.
- FIG- URES 1 and 2 a developing assembly comprising an applying roll assembly 10 adjustably supported between suitable insulated side frame members 11 and 12.
- the assembly 10 comprises a core or shaft 13 formed of a material having a high magnetic permeability and low loss, e.g. soft iron, supported at opposite ends in the frame members.
- a core or shaft 13 formed of a material having a high magnetic permeability and low loss, e.g. soft iron, supported at opposite ends in the frame members.
- the members 14 graph showing the longitudinal magand 15 are positioned between a fixed washer 16 and a clamping washer 17.
- Rotatably mounted relative to the shaft 13, as by bearing mounted end caps 18 and 19, is a non-magnetic cylindrical sleeve 20 formed of a material which will not shield the magnetic field from members 14 and 15.
- sleeve 20 On each end of sleeve 20 is a drive ring 21 against which and in driving contact therewith are drive discs 22 supported by a driven shaft 23.
- Shaft 23 is journalled and adjustably mounted in the frame members 11 and 12 and has a drive pulley 24 on one extended end thereof which may be suitably driven from a belt 25 from a motor (not shown).
- the applicating roll should serve as an electrode; therefore it is desired to connect the sleeve 20 to a source of electrical potential; and in the illustrated embodiment a connector 26 is attached to the shaft 13, to which a lead from a source of potential may be coupled.
- the sleeve 20 is electrically connected to the shaft 13 by a sliding leaf 27 of U-shaped resilient conductive material.
- the sleeve in this example is preferably formed of aluminum but could be formed of another non-magnetic material such as glass with an electrically conductive, non-magnetic surface coating.
- the roll assembly 10 in operation, is positioned above a tray 30, mounted between the side frame members 11 and 12 and positioned for parallel aligned spaced relation to a rotating drum surface as illustrated at 31 or to a linear or convexly supported moving belt or web.
- a relatively moving surface 31 carries an undeveloped image pattern to which is to be applied an even coating of particulate image-forming magnetically responsive material hereinafter referred to'as powder 33, which may be supplied to the roll assembly from a supply disposed in the hopper-like tray 30.
- the tray 30 has an adjustable doctor blade 34 mounted along a forward upturned lip which permits spatial adjustment relative to the outer surface of sleeve 20.
- the doctor blade 34 may be adjusted between 0.010 inch and 0.05 inch.
- the position of the sleeve 20 is also adjustable toward and away from the surface 31 to afford light contact between the powder 33 and the surface 31 or some compressive pressure on the powder at the interface between the sleeve and the surface.
- the magnetic members 14 and 15 are alternately magnetically polarized elongate members which are generally shaped as sectors of a ring or sectors of a hollow cylinder having radially inner faces 35 concavely curved and convex radially outer surfaces 36 joined by radially extending edge walls 37.
- the shape of the members result in some vagaries in the dimensions and, although the members generally contact each other, a slight gap may exist in the array between one or more members and not disturb the performance.
- the members 15 are polarized to have a different magnetic pole on the outer surface than on the inner face; for example, the north pole indicated at N is on the outer surface 36, and the south pole indicated at S is along the inner face 35, The members 14 would be oppositely polarized with N on the inner face and S along the outer surface.
- the members 14 and 15 are formed by extrusion of a non-magnetic matrix which may be a resinous or plastic composition, an elastomeric semi-solid, or viscous liquid, capable of hardening, setting or being cured to a solid state in which is evenly dispersed anisotropic ferrite domain-sized particles, which particles are capable of achieving physical orientation when acted upon by internal shear stresses.
- a non-magnetic matrix which may be a resinous or plastic composition, an elastomeric semi-solid, or viscous liquid, capable of hardening, setting or being cured to a solid state in which is evenly dispersed anisotropic ferrite domain-sized particles, which particles are capable of achieving physical orientation when acted upon by internal shear stresses.
- the particles are certain fine grain permanent magnet materials particularly the ferrites of barium, lead and strontium which are easily magnetized to saturation.
- the matrix may be natural rubber with compound agents, plasticizers, vulcanizing agents, and the like to provide the hardness
- the members 14 and 15 provide, with a 1 to 1 ratio between the radial dimension and the circumferential dimension, a surprisingly high flux density and, in the preferred annular array, provide a circumferential field with strong radial and tangential components.
- FIGURE 4 the fiux density about the array of magnetic members 14 and 15 is plotted in gauss with the radial field component plotted in solid lines and the tangential field component plotted in dotted lines.
- the maximum radial field exists along a radial line bisecting the magnetic members, and the plot illustrates a flux density at the poles of 500 gauss.
- An optimum design is between 500 and 750 gauss at the poles.
- the tangential flux density peaks between the magnetic members and is illustrated on the plot at 300 gauss.
- FIGURE 5 shows a graph along the length of the magnetic members and illustrates the readings above one pole as it is scanned from end to end. This graph'illustrates the uniformity of the magnetic fi'eld along the entire length of the magnetic members and that the field falls only at the ends. This uniformity of field affords a very uniform powder application by a roll assembly constructed in accordance with this invention.
- rotation of the sleeve 20 which sleeve has a smooth outer surface with a diameter of approximately 1.250 inches and inside diameter of 1.180 inches, with a minimum clearance about the surface of the magnetic members of about .005 inch, carries the developing powder 33 from the tray 30 across the doctor blade 34.
- the powder particles appear to tumble under the effects of the changing directions of the magnetic field and move in the direction of rotation of the sleeve 20.
- the powder appears as a dark stripe on the areas of the sleeve above the poles and gray above the joint between the magnetic members.
- the gray stripe is reduced to a line.
- the tumbling powder stands on the sleeve surface as tree rows and, when carried by clockwise rotation of sleeve 20 toward the clockwise rotating or oppositely moving surface 31, they will contact the surface to be deposited in the desired manner.
- the spacing between sleeve 20 and surface 31 relative to the spacing between doctor blade 34 and the sleeve will determine the amount of powder per unit area placed in contact with the surface 31.
- the uniform axial field along the sleeve provides for uniform coverage across the surface 31 to be coated. In most applications the surface to be coated has a width of from 8 /2 to 14 inches, or the width or length of copy sheets.
- An applicating roller for placing a uniform layer of magnetically responsive dry particulate material in contact with a surface moved past the peripheral surface of said roller, said applicating roller comprising a shaft of high magnetic permeability material, a plurality of elongate, generally sector-shaped in cross section magnetic members formed of fine grain permanent magnet material dispersed in a non-magnetic immobilizing matrix, which members are positioned With the edges thereof generally radial and in side-by-side relation to define a circular array around said shaft, and the radially inner and radially outer faces of each member being arcuate with said radially inner and radially outer faces of adjacent members in said array being oppositely polarized, a uniform non-magnetic hollow cylindrical sleeve positioned over said array of magnetic members and extending axially relative .to said shaft, and means for mounting said sleeve and said shaft for relative rotation to carry a quantity of said particulate material on the outer surface of said sleeve;
- each of said magnetic members has an axial length of between 8 and 14".
- a powder applicator comprising in combination:
- an applicating roller for applying magnetically responsive dry pigmented material onto a surface moved past the periphery of said roller, said applicating roller comprising a shaft formed of high magnetic permeability and low loss material; a plurality of elongate generally truncated sector-shaped magnetic members formed of ferrite permanent mag" net substantially domain sized particles oriented in a non-magnetic matrix, which members are arranged in side-by-side contacting relation and form a circular array about said shaft with radially outer surfaces of adjacent magnetic members having opposite polarity; a thin-Walled hollow cylindrical sleeve formed of non-magnetizable material positioned about and approximate to said array of magnetic members; and means for mounting said sleeve and said shaft for relative rotation, each of said magnetic members extending along a substantial portion of said shaft and covered by said cylinder;
- a powder applicator as claimed in claim 7 wherein said shaft and magnet members are fixed and said sleeve is rotated about said shaft.
- An applicator for developing an image on a surface with a pigmented finely divided dry magnetically responsive developer material comprising in combination,
- a tray adapted to receive sai-d developer material
- an applicating roller positioned relative to said tray for moving said developer material out of said tray, said applicating roller comprising a shaft of high magnetic permeability material,
- a plurality of elongate, generally sector-shaped in cross section, magnetic members which are formed of oriented fine grain permanent magnet material dispersed in a non-magnetic immobilizing matrix and which have longitudinal edges which are generally radial and positioned with said edges in side-by-side contacting relation to form an arcuate array on the outer circular periphery of said shaft, said members also having arcuate radially inner and radially outer faces with said radially inner and radially outer faces of adjacent members in said array being oppositely polarized, and
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Magnetic Brush Developing In Electrophotography (AREA)
- Rolls And Other Rotary Bodies (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US64072067A | 1967-05-23 | 1967-05-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3455276A true US3455276A (en) | 1969-07-15 |
Family
ID=24569441
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US640720A Expired - Lifetime US3455276A (en) | 1967-05-23 | 1967-05-23 | Magnetically responsive powder applicator |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US3455276A (enrdf_load_html_response) |
| DE (1) | DE1752408A1 (enrdf_load_html_response) |
| FR (1) | FR1566007A (enrdf_load_html_response) |
| GB (1) | GB1216915A (enrdf_load_html_response) |
| SE (1) | SE335476B (enrdf_load_html_response) |
Cited By (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3584601A (en) * | 1968-10-28 | 1971-06-15 | Xerox Corp | Magnetic brush belt development |
| US3641980A (en) * | 1969-10-20 | 1972-02-15 | Xerox Corp | Development apparatus |
| US3643629A (en) * | 1969-10-20 | 1972-02-22 | Minnesota Mining & Mfg | Magnetic powder applicator |
| DE2224624A1 (de) * | 1971-05-21 | 1972-11-30 | Hitachi Metals Ltd | Entwicklungsvorrichtung für eine elektrostatische Aufzeichnung |
| JPS496932A (enrdf_load_html_response) * | 1972-01-26 | 1974-01-22 | ||
| US3823688A (en) * | 1972-01-26 | 1974-07-16 | Xerox Corp | Magnetic brush assembly |
| US3828730A (en) * | 1971-05-21 | 1974-08-13 | Hitachi Metals Ltd | Electrostatic record developing apparatus |
| US3863603A (en) * | 1974-01-07 | 1975-02-04 | Ibm | Magnetic brush roll having resilient polymeric surface |
| US3882821A (en) * | 1969-03-08 | 1975-05-13 | Canon Kk | Developing device for electrophotography |
| US3892908A (en) * | 1973-06-25 | 1975-07-01 | Minnesota Mining & Mfg | Coating of solid substrates with magnetically propelled particles |
| US3911865A (en) * | 1973-03-30 | 1975-10-14 | Xerox Corp | Toner pickoff apparatus |
| DE2523811A1 (de) * | 1974-05-28 | 1975-12-18 | Minnesota Mining & Mfg | Verfahren und einrichtung zum auftragen eines farbpulvers auf ein elektrographisches aufzeichungsmittel |
| JPS518745U (enrdf_load_html_response) * | 1974-07-05 | 1976-01-22 | ||
| US3937181A (en) * | 1973-05-23 | 1976-02-10 | Fuji Xerox Co., Ltd. | Magnetic brush type developing mechanism in electrophotographic copying machine |
| JPS5143147A (enrdf_load_html_response) * | 1974-10-11 | 1976-04-13 | Hitachi Metals Ltd | |
| US3950089A (en) * | 1975-02-24 | 1976-04-13 | Xerox Corporation | Coated roll for magnetic brush development and cleaning systems |
| US3952701A (en) * | 1974-11-05 | 1976-04-27 | Hitachi Metals, Ltd. | Electrostatic developing apparatus |
| US3968773A (en) * | 1972-05-22 | 1976-07-13 | Xerox Corporation | Magnetic brush developing apparatus |
| US3981271A (en) * | 1974-02-20 | 1976-09-21 | Fuji Xerox Co., Ltd. | Magnetic brush type developer for use in an electrophotographic machine |
| US4040387A (en) * | 1972-09-24 | 1977-08-09 | Mita Industrial Co. Ltd. | Electrostatic photographic copying apparatus |
| US4068622A (en) * | 1975-10-22 | 1978-01-17 | Oce-Van Der Grinten N.V. | Magnetic roller |
| US4089297A (en) * | 1975-10-07 | 1978-05-16 | Konishiroku Photo Industry Co., Ltd. | Developing apparatus of magnetic brush type for electrophotographic reproduction |
| US4102305A (en) * | 1977-07-01 | 1978-07-25 | Xerox Corporation | Development system with electrical field generating means |
| DE2832695A1 (de) * | 1977-08-03 | 1979-02-08 | Hitachi Metals Ltd | Maschine zur bildentwicklung |
| US4149488A (en) * | 1977-02-17 | 1979-04-17 | Siemens Aktiengesellschaft | Deflecting guide for developer mixture |
| US4166263A (en) * | 1977-10-03 | 1979-08-28 | Hitachi Metals, Ltd. | Magnetic core assembly for magnetizing columnar permanent magnet for use in electrostatic developing apparatus |
| US4167718A (en) * | 1977-10-03 | 1979-09-11 | Hitachi Metals, Ltd. | Dies set for magnetizing outer surface of magnetic column |
| US4168481A (en) * | 1977-10-05 | 1979-09-18 | Hitachi Metals, Ltd. | Core assembly for magnetizing columnar permanent magnet for use in an electrostatic developing apparatus |
| US4169998A (en) * | 1977-10-03 | 1979-10-02 | Hitachi Metals, Ltd. | Iron core assembly for magnetizing columnar permanent magnets for use in electrostatic developing apparatus |
| EP0024110A1 (en) * | 1979-07-16 | 1981-02-25 | Minnesota Mining And Manufacturing Company | Multiple roll developing apparatus |
| US4266328A (en) * | 1977-10-05 | 1981-05-12 | Hitachi Metals, Ltd. | Developing roll for use in electrostatic developing apparatus employing magnetic particles |
| US4267245A (en) * | 1979-07-25 | 1981-05-12 | Minolta Camera Kabushiki Kaisha | Method of removing foreign materials from magnetic developers |
| US4267248A (en) * | 1978-02-24 | 1981-05-12 | Hitachi Metals, Ltd. | Magnet-brush development process of electric pattern images |
| EP0027729A3 (en) * | 1979-10-19 | 1981-05-20 | Xerox Corporation | Apparatus for developing an electrostatic latent image |
| US4277552A (en) * | 1978-03-23 | 1981-07-07 | Hitachi Metals, Ltd. | Magnetic developing process and toner containing high coercive force magnetic powder |
| US4389478A (en) * | 1980-01-07 | 1983-06-21 | Bell & Howell Company | Apparatus for and methods of making bimodal electrophotographic copies |
| US4454520A (en) * | 1982-06-24 | 1984-06-12 | Honeywell Inc. | Electrographic recorder with enhanced writing speed |
| US4453492A (en) * | 1982-08-12 | 1984-06-12 | E. I. Du Pont De Nemours And Company | Magnetic developing unit with improved toner decorator for magnetic printing |
| US4496232A (en) * | 1980-01-07 | 1985-01-29 | Bell & Howell | Apparatus for and methods of making bimodal electrophotographic copies |
| US4834871A (en) * | 1986-10-31 | 1989-05-30 | Khd Humboldt Wedag Ag | Magnet block arrangement having an outwardly-directed field |
| US4839690A (en) * | 1985-09-17 | 1989-06-13 | Canon Kabushiki Kaisha | Image bearing member usable with image forming apparatus |
| DE4012698A1 (de) * | 1989-04-20 | 1990-10-25 | Minolta Camera Kk | Magnetische rolle zur verwendung in einem entwicklungsgehaeuse |
| US5494172A (en) * | 1994-05-12 | 1996-02-27 | Miller Compressing Company | Magnetic pulley assembly |
| US20160310962A1 (en) * | 2016-07-07 | 2016-10-27 | Bunting Magnetics Co. | Magnetic Roll |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1152071B (de) * | 1959-01-02 | 1963-08-01 | Rheinische Daunendecken Fabrik | Schlafsack |
| DE2620660A1 (de) * | 1975-05-15 | 1976-12-02 | Kip Kk | Trockenentwicklerteilchen zur verwendung in der elektrofotografie und verfahren zum entwickeln von elektrostatischen bildern mit solchen teilchen |
| NL7509870A (nl) * | 1975-08-20 | 1977-02-22 | Oce Van Der Grinten Nv | Magneetrol. |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3040704A (en) * | 1957-04-16 | 1962-06-26 | Rca Corp | Apparatus for developing electrostatic printing |
| US3191106A (en) * | 1959-12-24 | 1965-06-22 | Baermann Max | Rubber-like permanent magnet article and manufacture of same |
| FR1417724A (fr) * | 1963-12-18 | 1965-11-12 | Kalle Ag | Rouleau magnétique pour l'électrophotographie |
| US3219014A (en) * | 1962-12-04 | 1965-11-23 | Xerox Corp | Mechanical shield to protect magnetic core in xerographic developing apparatus |
| GB1071697A (en) * | 1963-12-18 | 1967-06-14 | Kalle Ag | Magnetic roller for use in the development of latent electrostatic images |
-
1967
- 1967-05-23 US US640720A patent/US3455276A/en not_active Expired - Lifetime
-
1968
- 1968-05-13 SE SE06458/68A patent/SE335476B/xx unknown
- 1968-05-22 FR FR1566007D patent/FR1566007A/fr not_active Expired
- 1968-05-22 DE DE19681752408 patent/DE1752408A1/de active Pending
- 1968-05-22 GB GB24531/68A patent/GB1216915A/en not_active Expired
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3040704A (en) * | 1957-04-16 | 1962-06-26 | Rca Corp | Apparatus for developing electrostatic printing |
| US3191106A (en) * | 1959-12-24 | 1965-06-22 | Baermann Max | Rubber-like permanent magnet article and manufacture of same |
| US3219014A (en) * | 1962-12-04 | 1965-11-23 | Xerox Corp | Mechanical shield to protect magnetic core in xerographic developing apparatus |
| FR1417724A (fr) * | 1963-12-18 | 1965-11-12 | Kalle Ag | Rouleau magnétique pour l'électrophotographie |
| GB1071697A (en) * | 1963-12-18 | 1967-06-14 | Kalle Ag | Magnetic roller for use in the development of latent electrostatic images |
Cited By (46)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3584601A (en) * | 1968-10-28 | 1971-06-15 | Xerox Corp | Magnetic brush belt development |
| US3882821A (en) * | 1969-03-08 | 1975-05-13 | Canon Kk | Developing device for electrophotography |
| US3641980A (en) * | 1969-10-20 | 1972-02-15 | Xerox Corp | Development apparatus |
| US3643629A (en) * | 1969-10-20 | 1972-02-22 | Minnesota Mining & Mfg | Magnetic powder applicator |
| DE2224624A1 (de) * | 1971-05-21 | 1972-11-30 | Hitachi Metals Ltd | Entwicklungsvorrichtung für eine elektrostatische Aufzeichnung |
| US3828730A (en) * | 1971-05-21 | 1974-08-13 | Hitachi Metals Ltd | Electrostatic record developing apparatus |
| JPS496932A (enrdf_load_html_response) * | 1972-01-26 | 1974-01-22 | ||
| US3823688A (en) * | 1972-01-26 | 1974-07-16 | Xerox Corp | Magnetic brush assembly |
| US3968773A (en) * | 1972-05-22 | 1976-07-13 | Xerox Corporation | Magnetic brush developing apparatus |
| US4040387A (en) * | 1972-09-24 | 1977-08-09 | Mita Industrial Co. Ltd. | Electrostatic photographic copying apparatus |
| US3911865A (en) * | 1973-03-30 | 1975-10-14 | Xerox Corp | Toner pickoff apparatus |
| US3937181A (en) * | 1973-05-23 | 1976-02-10 | Fuji Xerox Co., Ltd. | Magnetic brush type developing mechanism in electrophotographic copying machine |
| US3892908A (en) * | 1973-06-25 | 1975-07-01 | Minnesota Mining & Mfg | Coating of solid substrates with magnetically propelled particles |
| US3863603A (en) * | 1974-01-07 | 1975-02-04 | Ibm | Magnetic brush roll having resilient polymeric surface |
| US3981271A (en) * | 1974-02-20 | 1976-09-21 | Fuji Xerox Co., Ltd. | Magnetic brush type developer for use in an electrophotographic machine |
| DE2523811A1 (de) * | 1974-05-28 | 1975-12-18 | Minnesota Mining & Mfg | Verfahren und einrichtung zum auftragen eines farbpulvers auf ein elektrographisches aufzeichungsmittel |
| JPS518745U (enrdf_load_html_response) * | 1974-07-05 | 1976-01-22 | ||
| JPS5143147A (enrdf_load_html_response) * | 1974-10-11 | 1976-04-13 | Hitachi Metals Ltd | |
| US3952701A (en) * | 1974-11-05 | 1976-04-27 | Hitachi Metals, Ltd. | Electrostatic developing apparatus |
| US3950089A (en) * | 1975-02-24 | 1976-04-13 | Xerox Corporation | Coated roll for magnetic brush development and cleaning systems |
| US4089297A (en) * | 1975-10-07 | 1978-05-16 | Konishiroku Photo Industry Co., Ltd. | Developing apparatus of magnetic brush type for electrophotographic reproduction |
| US4068622A (en) * | 1975-10-22 | 1978-01-17 | Oce-Van Der Grinten N.V. | Magnetic roller |
| US4149488A (en) * | 1977-02-17 | 1979-04-17 | Siemens Aktiengesellschaft | Deflecting guide for developer mixture |
| US4102305A (en) * | 1977-07-01 | 1978-07-25 | Xerox Corporation | Development system with electrical field generating means |
| DE2832695A1 (de) * | 1977-08-03 | 1979-02-08 | Hitachi Metals Ltd | Maschine zur bildentwicklung |
| US4166263A (en) * | 1977-10-03 | 1979-08-28 | Hitachi Metals, Ltd. | Magnetic core assembly for magnetizing columnar permanent magnet for use in electrostatic developing apparatus |
| US4167718A (en) * | 1977-10-03 | 1979-09-11 | Hitachi Metals, Ltd. | Dies set for magnetizing outer surface of magnetic column |
| US4169998A (en) * | 1977-10-03 | 1979-10-02 | Hitachi Metals, Ltd. | Iron core assembly for magnetizing columnar permanent magnets for use in electrostatic developing apparatus |
| US4168481A (en) * | 1977-10-05 | 1979-09-18 | Hitachi Metals, Ltd. | Core assembly for magnetizing columnar permanent magnet for use in an electrostatic developing apparatus |
| US4266328A (en) * | 1977-10-05 | 1981-05-12 | Hitachi Metals, Ltd. | Developing roll for use in electrostatic developing apparatus employing magnetic particles |
| US4267248A (en) * | 1978-02-24 | 1981-05-12 | Hitachi Metals, Ltd. | Magnet-brush development process of electric pattern images |
| US4277552A (en) * | 1978-03-23 | 1981-07-07 | Hitachi Metals, Ltd. | Magnetic developing process and toner containing high coercive force magnetic powder |
| EP0024110A1 (en) * | 1979-07-16 | 1981-02-25 | Minnesota Mining And Manufacturing Company | Multiple roll developing apparatus |
| US4266868A (en) * | 1979-07-16 | 1981-05-12 | Minnesota Mining And Manufacturing Company | Multiple roll developing apparatus |
| US4267245A (en) * | 1979-07-25 | 1981-05-12 | Minolta Camera Kabushiki Kaisha | Method of removing foreign materials from magnetic developers |
| EP0027729A3 (en) * | 1979-10-19 | 1981-05-20 | Xerox Corporation | Apparatus for developing an electrostatic latent image |
| US4389478A (en) * | 1980-01-07 | 1983-06-21 | Bell & Howell Company | Apparatus for and methods of making bimodal electrophotographic copies |
| US4496232A (en) * | 1980-01-07 | 1985-01-29 | Bell & Howell | Apparatus for and methods of making bimodal electrophotographic copies |
| US4454520A (en) * | 1982-06-24 | 1984-06-12 | Honeywell Inc. | Electrographic recorder with enhanced writing speed |
| US4453492A (en) * | 1982-08-12 | 1984-06-12 | E. I. Du Pont De Nemours And Company | Magnetic developing unit with improved toner decorator for magnetic printing |
| US4839690A (en) * | 1985-09-17 | 1989-06-13 | Canon Kabushiki Kaisha | Image bearing member usable with image forming apparatus |
| US4834871A (en) * | 1986-10-31 | 1989-05-30 | Khd Humboldt Wedag Ag | Magnet block arrangement having an outwardly-directed field |
| DE4012698A1 (de) * | 1989-04-20 | 1990-10-25 | Minolta Camera Kk | Magnetische rolle zur verwendung in einem entwicklungsgehaeuse |
| US5494172A (en) * | 1994-05-12 | 1996-02-27 | Miller Compressing Company | Magnetic pulley assembly |
| US20160310962A1 (en) * | 2016-07-07 | 2016-10-27 | Bunting Magnetics Co. | Magnetic Roll |
| US9962710B2 (en) * | 2016-07-07 | 2018-05-08 | Bunting Magnetics Co. | Magnetic roll |
Also Published As
| Publication number | Publication date |
|---|---|
| FR1566007A (enrdf_load_html_response) | 1969-05-02 |
| GB1216915A (en) | 1970-12-23 |
| SE335476B (enrdf_load_html_response) | 1971-05-24 |
| DE1752408A1 (de) | 1971-11-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3455276A (en) | Magnetically responsive powder applicator | |
| US3739749A (en) | Magnetic powder applicator | |
| US3900001A (en) | Developing apparatus | |
| US3914771A (en) | Electrographic recording process and apparatus employing synchronized recording pulses | |
| US3402698A (en) | Magnet assembly for magnetic developing brush and developing apparatus for electrostatic process | |
| US3643311A (en) | Rotatable powder dispensing cylinder for an electrostatic powder image fixing apparatus | |
| US3939801A (en) | Magnetic brush developing apparatus | |
| US3098765A (en) | Xerographic brush | |
| US3828730A (en) | Electrostatic record developing apparatus | |
| US4656964A (en) | Developing device | |
| US4067296A (en) | Magnetic roller | |
| US3318284A (en) | Apparatus for developing electrostatic images of records | |
| US3952701A (en) | Electrostatic developing apparatus | |
| US4068622A (en) | Magnetic roller | |
| US4267248A (en) | Magnet-brush development process of electric pattern images | |
| US4048957A (en) | Magnetic brush developing apparatus for electrophotography | |
| CA1103014A (en) | Magnetic auger | |
| US5325161A (en) | Device for developing an electrostatic image on an image member | |
| US4187330A (en) | Electrostatic developing method and apparatus using conductive magnetic toner | |
| EP0686893B1 (en) | Development apparatus having a developer feeder roll | |
| US4357103A (en) | Electrographic apparatus and method featuring compressed-field, magnetic brush development | |
| CA1168695A (en) | Electrographic recording | |
| CA1147946A (en) | Magnet for use in a magnetic brush development system | |
| US4021587A (en) | Magnetic and electrostatic transfer of particulate developer | |
| US4279942A (en) | Magnetic field adjustment for magnetic brushes |