US3447922A - Electrically photosensitive particles useful in photoelectrophoretic and xerographic imaging processes - Google Patents

Electrically photosensitive particles useful in photoelectrophoretic and xerographic imaging processes Download PDF

Info

Publication number
US3447922A
US3447922A US421281A US3447922DA US3447922A US 3447922 A US3447922 A US 3447922A US 421281 A US421281 A US 421281A US 3447922D A US3447922D A US 3447922DA US 3447922 A US3447922 A US 3447922A
Authority
US
United States
Prior art keywords
image
pigment
particles
light
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US421281A
Inventor
Lester Weinberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Application granted granted Critical
Publication of US3447922A publication Critical patent/US3447922A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G16/00Electrographic processes using deformation of thermoplastic layers; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G17/00Electrographic processes using patterns other than charge patterns, e.g. an electric conductivity pattern; Processes involving a migration, e.g. photoelectrophoresis, photoelectrosolography; Processes involving a selective transfer, e.g. electrophoto-adhesive processes; Apparatus essentially involving a single such process
    • G03G17/10Electrographic processes using patterns other than charge patterns, e.g. an electric conductivity pattern; Processes involving a migration, e.g. photoelectrophoresis, photoelectrosolography; Processes involving a selective transfer, e.g. electrophoto-adhesive processes; Apparatus essentially involving a single such process using migration imaging, e.g. photoelectrosolography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/022Layers for surface-deformation imaging, e.g. frost imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/024Photoelectret layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0661Heterocyclic compounds containing two or more hetero rings in different ring systems, each system containing at least one hetero ring

Definitions

  • This invention relates in general to new compositions of matter and methods of using them. More specifically, the invention concerns the use of new electrically photosensitive pigments in electrophotographic imaging systems.
  • An essential component of the system is the suspended particles which must be intensely colored pigments which are photosensitive and which apparently undergo a net change in charge polarity upon exposure to activating radiation, through interatcion with one of the electrodes.
  • the images are produced in color because mixtures of two or more differently colored pigments which are each sensitive only to light of a specific wavelength or narrow range of wavelengths are used. Pigments used in this system must have both intense pure colors and be highly photosensitive.
  • the pigments of the prior art often lack the purity and brilliance of color, the high degree of photosensitvity, and/or the preferred correlation between the peak spectral response and peak photosensitivity, necessary for use in such a system.
  • photosensitive material must be an effective photoconductive insulator, i.e. must be capable of holding an electrostatic charge in the dark and dissipaling the charge to a conductive substrate when exposed to light.
  • a base sheet of relatively low electrical resistance such as metal, paper, etc., having a photoconductive insulating surface coated thereon, is electrostatically charged in the dark. The charged coating is then exposed to a light image.
  • the coating is contacted with electrostatic marking particles in the dark. These particles adhere to the areas where the electrostatic charge remains, forming a powder image corresponding to the electrostatic image.
  • the base sheet is relatively inexpensive, such as paper
  • the image may be fixed directly thereto as by heat or solvent fusing.
  • the powder image may be transferred to a sheet of material, such as paper, and fixed thereon.
  • photosensitive materials useful in the xerographic process are known in the art, e.g., vitreous selenium, sulfur, anthracene, zinc oxide, and polyvinyl carbazole. While several of these different materials are in commercial use today, each has deficiencies in such areas as photographic speed, spectral response, durability, reuseability and cost such that there is a continuing need for improved materials.
  • a third class of electrophotographic imaging which utilizes electrically photosensitive materials has recently been developed.
  • This class consists of two systems of surface deformation imaging which are generally referred to as frost imaging and relief imaging.
  • Frost imaging is described in detail in a publication entitled A Cyclic Xerographic Method Based on Frost Deformation by R. W. Gundlach and C. J. Claus, Journal of Photographic Science and Engineering, January-February edition, 1963.
  • Relief imaging is described in detail in US. Patents 3,055,006; 3,163,872 and 3,113,179.
  • a plate may be made by overcoating a conductive substrate with a layer of a photoconductive insulating material, which is then overcoated with a thermoplastic material.
  • the photoconductive material may be dispersed in particulate form in the thermoplastic material and the mixture coated directly over the conductive substrate.
  • a uniform electrostatic charge is imposed on the plate surface, then the plate is exposed to a light and shadow image to be reproduced. The charge is dissipated in light struck areas but remains in unexposed areas.
  • the plate is heated or treated with a solvent vapor until the electrostatic attraction forces of the charge pattern exceed the surface tension forces of the film.
  • each R is selected from the group consisting of N and C,
  • each X is selected from the group consisting of H, CH C H N 0CH OC H CN, SO NH CO CH co c u SO NHC H Cl, F, Br, I and mixtures thereof; and
  • n is a positive integer from 1-4.
  • compositions of the general formula given above belong to the class of N-substituted 8,13-dioxodinaphtho- (2,1-b; 2,3'-d)-furan-6-carboxamides wherein the substituent comprises amine substituted heterocyclic groups.
  • These compositions may be made by reacting 2,3-dichloro-1,4-naphthoquinone with any suitable N-substitnted amide of 2-hydroxy-3-naphthoic acid.
  • Typical are those having the general formula:
  • compositions produced by the above reaction have common characteristics of a brilliant, intense, yellow color; of insolubility in water and the common organic solvents, e.g., benzene, toluene, acetone, carbon tetrachloride, chloroform, alcohols, and aliphatic hydrocarbons; and of unusually high photosensitive response.
  • N-2 -pyridyl 8,13 dioxodinaphtho-(Ll-b; 3- d)-furan-6-carboxamide, and N-2"-(1",3-diazyl)-8,13- dioxodinaphtho-(2,1-b; 2',3'-d)-furan-6-carboxamide are preferred for use in electrophoretic imaging processes since they are simply and economically synthesized, have especially pure color, and are most highly photosensitive. They have been found to give the most desirable combination of color and photosensitivity.
  • Example I About 11.4 parts of 2,3-dichloro-1,4-naphthoquinone is refluxed for about 3 hours with about 9.6 parts of N-2'- pyridyl-2-hydroxy-3-naphthamide in boiling pyridine. The solution is cooled to room temperature and the product is removed by filtration and recrystallized from a mixture of equal parts by volume of methyl cellulose and alpha methyl formamide, yielding about 3.3 parts of N-2"-(1",- 3-diazyl)-8,l3 dioxodinaphtho-(2,l-b; 2,3'-d)-furan-6- fi-carboxamide having a melting point of about 334 C.
  • Example II About 11.4 parts of 2,3-dichloro-l,4-naphthoquinone is refluxed for about 3 hours with about 15 parts of N-2'- (1',3,5'-triazyl)-2-hydroxy-3-naphthamide in about parts of boiling pyridine. The solution is then cooled to room temperature. Ethyl alcohol is added until precipitation occurs. The precipitant is recrystallized from dimethyl formamine, yielding N-2(1", 3", 5"-triazyl)-8,-
  • the table gives the number of the example in column 1, the parts by weight and name of the second reactant in column 2, and the parts by weight and name of the product in column 3.
  • the processes used in preparing the compounds listed in the table are similar to that described in detail in Examples I and II above. In each example, about 22.5 parts of 2,3-dichloro-l,4- naphthoquinone is used as the first reactant.
  • X in column 2 represents the -2-hydroxy-3-naphthamide portion and Y in column 3 represents the 8,13-dioxodinaphtho-(2,1-b; 2',3'-d)-furan-6-carboxamide portion.
  • N-2'-pyridyl-X represents N-2'- pyridyl-2-hydroxy-3-naphthocarboxamide
  • N-2"-(1",- 4"-diazyl)-Y represents N-2"-(l",4"-diazyl)-8,13-dioxodinaphtho-(2,1-b; 2',3-d)-furan-6-carboxamide; etc.
  • a transparent electrode generally designated -1 which, in this exemplary instance, is made up of a layer of optically transparent glass 2 overcoated with a thin optically transparent layer 3 of tin oxide, commercially available under the name Nesa glass.
  • This electrode shall hereafter be referred to as the injecting electrode.
  • Coated on the surface of injecting electrode 1 is a thin layer 4 of finely divided photosensitive particles dispersed in an insulating liquid carrier.
  • photosensitive for the purposes of this application, refers to the properties of a particle which, once attracted to the injecting electrode, will migrate away from it under the influence of an applied electric field when it is exposed to actinic electromagnetic radiation.
  • Liquid suspension 4 may also contain a sensitizer and/or a binder for the pigment particles which is at least partially soluble in the suspending or carrier liquid as will be explained in greater detail hereinafter.
  • Adjacent to the liquid suspension 4 is a second electrode 5, hereinafter called the blocking electrode, which is connected to one side of the potential source 6 through a switch 7.
  • the opposite side of potential source 6 is connected to the injecting electrode 1 so that when switch 7 is closed, an electric field is applied across the liquid suspension 4 between electrodes 1 and 5.
  • Electrode 5 is made in the form of a roller having a conductive central core 11 connected to the potential source 6.
  • the core is covered with a layer of a blocking electrode material 12, which may be Baryta paper.
  • the pigment suspension is exposed to the image to be reproduced while potential is applied across the blocking and injecting electrodes by closing switch 7.
  • Roller 5 is caused to roll across the top surface of injecting electrode 1 with switch 7 closed during the period of image exposure.
  • This light exposure causes exposed pigment particles originally attracted to electrode 1 to migrate through the liquid and adhere to the surface of the blocking electrode, leaving behind a pigment image on the injecting electrode surface which is a duplicate of the original transparency 9.
  • the relatively volatile carrier liquid evaporates off, leaving behind the pigment image.
  • This pigment image may then be fixed in place as, for example, by placing a lamination over its top surface or by a dissolved binder material in the carrier liquid such as paratfin wax or other suitable binder that comes out of solution as the carrier liquid evaporates. About 3 to 6% by weight of paraffin binder in the carrier has been found to produce good results.
  • the carrier liquid itself may be paraffin wax or other suitable binder.
  • the pigment image remaining on the injecting electrode may be transferred to another surface and fixed thereon.
  • this system can produce either monochromatic or polychromatic images depending upon the type and number of pigments suspended in the carrier liquid and the color of light to which this suspension is exposed in the process.
  • any suitable insulating liquid may be used as the carrier for the pigment particles in the system.
  • Typical carrier materials are decane, dodecane, N-tetradecane, paraffin, beeswax or other thermoplastic material, Sohio Odorless Solvent, (a kerosene fraction available from Standard Oil Company of Ohio), and Isopar-G (a long chain saturated aliphatic hydrocarbon available from Humble Oil Company of New Jersey.) Good quality images have been produced, with voltages ranging from 300 to 5,000 volts, in the apparatus of the figure.
  • particles of a single color are dispersed in the carrier liquid and exposed to a blackand-white image.
  • a single color image results, corresponding to conventional black-and-white photography.
  • the particles are selected so that those of different colors respond to different wavelengths in the visible spectrum corresponding to their principal absorption bands.
  • the pigments should be selected so that their spectral response curves do not have substantial overlap, thus allowing for good color separation and subtractive multicolor image formation.
  • the particle dispersion should include cyan colored particles sensitive mainly to red light, magenta colored particles sensitive mainly to green light, and yellow colored particles sensitive mainly to blue light. When mixed together in a carrier liquid, these particles produce a black appearing liquid.
  • the particles When one or more of the particles are caused to migrate from base electrode 11 toward an upper electrode, they leave behind particles which produce a color equivalent to the color of the impinging light.
  • red light exposure causes the cyan colored pigment to migrate leaving behind the magenta and yellow pigments which combine to produce red in the final image.
  • blue and green colors are reproduced by removal of yellow and magenta respectively.
  • white light impinges upon the mix all pigments migrate leaving behind the color of the white or transparent substrate. No exposure leaves behind all pigments which combine to produce a black image.
  • Any suitable cyan and magenta colored photosensitive pigment particles having the desired spectral responses may be used with the yellow pigments of this invention to form a pigment mix in a carrier liquid for color imaging. From about 2 to about 10 percent pigment by weight have been found to produce good results. The addition of small amounts (generally ranging from 0.5 to mole percent) of electron donors or acceptors to the suspensions may impart significant increases in system photosensitivity.
  • Wratten filters 29, 61, and 47b are individually superimposed over the light source in separate tests to measure the sensitivity of the suspensions to red, green, and blue light, respectively.
  • Example XXXIX About 7 parts of N-2"-pyridyl-8,13-dioxodinaphtho- (2,1-b; 2'3'-d)-furan-6-carboxamide is suspended in about 100 parts of Sohio Odorless Solvent 3400. The suspension is coated on the Nesa glass substrate and a negative potential is imposed on the roller electrode. The plate is exposed through a Wratten 29 filter and the neutral density step wedge filter, thus exposing the plate to red light. The results are tabulated in Table II, below.
  • Example XL A test is run as in Example XXXIX above, except that a Wratten 61 filter is used in place of the Wratten 29 filter, thus exposing the plate to green light. See Table II for results.
  • Example XLI A test is run as in Example XXXIX above, except that a Wratten 47b filter is used in place of the Wratten 29 filter, thus exposing the plate to blue light. See Table II for results.
  • Example XLII A test is run as in Example XXXIX above, except that no color filter is used, thus exposing the plate to white light. See Table II for results.
  • Example XLIII About 7 parts N-2"(l",3"-diazyl)-8,13-dioxodinaphtho-(2,1-b; 2,3-d)-furan-6-carboxamide is suspended in about 100 parts Sohio Odorless Solvent 3440. The suspension is coated on the Nesa glass substrate and a negative potential is imposed on the roller electrode. The plate is exposed through a Wratten 29 filter and the neutral density step wedge filter, thus exposing the plate to red light. See Table H for results.
  • Example X-LIV A test is run as in Example XLIII above, except that a Wratten 6-1 filter is used in place of the Wratten 29 filter, thus exposing the plate to green light. See Table II for results.
  • Example XLV A test is run as in Example XLIII above, except that a Wratten 47b filter is used in place of the Wratten 29 filter, thus exposing the plate to blue light. See Table II for results.
  • Example XLVI A test is run as in Example XLIII above, except that no Wratten filter is used, thus exposing the plate to white light. See Table II for results.
  • pigments in each example are suspended in Sohio Odorless Solvent 3440 and the magnitude of the applied potential is 2500 volts. All pigments which have a relatively large particle size as received commercially or as made are ground in a ball mill for 48 hours to reduce their size to provide a more stable dispersion which improves the
  • the electrophoretic sensitivity of the exemplary pigments to red, green, blue and white light is. tested according to conventional photographic methods and the results are recorded in Table II, above. In the table, "the first column lists the number of the test example. The Wratten filter used in each example betweenv the light resolution of the final images. The exposure is made with source and the Nesa plate is listed in column 2.
  • the third column lists the resulting color of the light which is permitted to fall on the Nesa plate.
  • the fourth column gives the photographic speed of the photosensitive mix in foot candles. The photographic speed is the result of a curve of density ploted against the logarithm of exposure in foot candles. Gamma, as listed in column five, is a standard photographic term referring to the slope of the above mentioned curve. The maximum and minimum reflection density produced are listed in columns six and seven, respectively.
  • the tested yellow pigments are sensitive in an electrophoretic sense, to blue light only. As can be seen, the pigments are essentially non-responsive to red and green light. Thus, the response of these pigments to white light is essentially identical to their response to blue light.
  • a suspension including equal amounts of three different colored pigments is made up by dispersing the pigments in finely divided form in Sohio Odorless Solvent 3440 so that the pigments constitute about 8% of the mixture.
  • This mixture may be referred to as a tri-mix.
  • the mixtures are individually tested by coating them on a Nesa glass substrate and exposing them as in Example I above, except that a multicolor Kodachrome transparency is interposed between the light source and the plate instead of the neutral density and Wratten filters. Thus, a multi-colored image is projected on the plate as the roller moves across the surface of the coated Nesa glass substrate.
  • a baryta paper blocking electrode is employed and the roller is held at a negative potential of about 2500 volts with respect to the substrate.
  • the roller is passed over the substrate six times, being cleaned after each pass. Potential application and exposure are both continued during the entire period of the six passes by the roller. After completion, the quality of the image left on the substrate is evaluated as to density and color separation.
  • Example XLVII The pigment mix consists of, as a magenta pigment, Watchung Red B, a barium salt of 1-(4'-methyl-5-chloroazobenzene-2'-sulfonic acid)-2-hydroxy-3naphthoic acid, C.I. number 15865, available from DuPont, as a cyan pigment, Monolite Fast Blue GS, the alpha form of metal free phthalocyanine, C.I. No. 74100, available from the Arnold Hofiman Company, and as a yellow pigment N-2"-pyridyl-8,l3-dioxodinaphtho (2,1-b; 2,2'-d)-furanfi-carboxamide. This tri-mix, when exposed to a multicolored image, produces a full color image with good density and color separation.
  • a magenta pigment Watchung Red B
  • Example XLVIII The pigment mixture consists of, as a magenta pigment, Locarno Red X1686, C.I. No. 15865, 1- (-4'-methyl- 5'-chloroazobenzene-2'-sulfonic acid) 2 hydroxy-3- naphthoic acid, available from American Cyanamid, as a cyan pigment, Cyan Blue GTNF, the beta form of copper phthalocyanine, C.I. No. 74160, available from Collway Colors, and as a yellow pigment, N-2-pyrimidyl- 8,13-dioxodinaphtho-(2,l-b; 2',3'-d)-furan 6 carboxamide. This tri-mix is exposed to a multi-colored image and produces a full color image of excellent density and color separation.
  • Locarno Red X1686, C.I. No. 15865 1- (-4'-methyl- 5'-chloroazobenzene-2'-sulfonic acid) 2 hydroxy
  • Example XLIX The pigment mixture consists of a magenta pigment, Naphtho Red B, 1-(2-methoxy-5'-nitrophenylazo-2- hydroxy-3"-nitro-3-naphthanilide, C.I. No. 12355, available from Collway Colors; a cyan pigment, a polychloro substituted copper phthalocyanine, C.I. No. 74260, available from Imperial Color and Chemical Company, and a yellow pigment N-2"(1",4"-diazyl)-8,13-dioxodinaphtho-(2,l-b; 2,3'-d)-furan-6-carboxamide. This trimix is exposed to a multi-colored image and produces a full color image of good density and color separation.
  • a magenta pigment Naphtho Red B, 1-(2-methoxy-5'-nitrophenylazo-2- hydroxy-3"-nitro-3-naphthanilide, C.I. No. 12355,
  • Example L The pigment mixture consists of a magenta pigment, Vulcan Fast Red BBE Toner 35-2201, 3,3-dimethoxy- 4,4 biphenylbis(1" phenyl 3" methyl 4" azo- 2"-perylene-5"-one), C.I. No. 21200, available from Collway Colors; a cyan pigment, Cyan Blue, 3,3'-methoxy 4,4 diphenyl bis(1 azo 2".- hydroxy 3"- naphthanilide), C.I. No.
  • the pigment suspension consists of a magenta pigment, Indofast Brilliant Scarlet Toner, 3,4,9,10-bis(N,N'-pmethoxyphenyl-imido)-perylene, C.I. No. 71140, available from Harmon Colors; a cyan pigment, Monolite Fast Blue GS, the alpha form of metal free phthalocyanine, C.I. No. 74100, available from the Arnold Hotfman Company, and a yellow pigment, N-2"(3"-methyl)-pyridyl- 8,13 dioxodinaphtho (2,1-b; 2,3'-d) furan 6 carboxamide. This tri-mix is exposed to a multi-colored image and produces a full color image of satisfactory density and good color separation.
  • a magenta pigment Indofast Brilliant Scarlet Toner, 3,4,9,10-bis(N,N'-pmethoxyphenyl-imido)-perylene, C.I. No. 71140, available from Harmon Colors
  • the pigment suspension consists of a magenta pigment, Calcium Litho Red, the calcium lake of an azo dye, 1-(2'- azonaphthalene-1'-sulfonic acid)-2-hydroxy-naphtho, C.I. No. 15630, available from Collway Colors; a cyan pigment, Cyan Blue XR, the alpha form of copper phthalocyanine, available from Collway Colors, and a yellow pigment, N-4"(1",3 diazyl) 8,13 dioxodinaphtho- (2,l-b; 2',3'-d)-furan-6-carboxamide. This tri-mix is exposed to a multi-colored image and produces a full color image of good density and color separation.
  • a magenta pigment Calcium Litho Red
  • an azo dye 1-(2'- azonaphthalene-1'-sulfonic acid)-2-hydroxy-naphtho, C.I. No. 15630, available from Collway Color
  • xerographic plates may be produced by coating a relatively conductive substrate, e.g., aluminum or paper, with a dispersion of particles of the photosensitive pigment of the above general formula in a resin binder.
  • the pigment-resin layer may also be cast as a self-supporting film.
  • the plate formed may be both with or without an overcoating on the photoconductive layer.
  • the photosensitive pigment-resin photoconductive layer may be used in the formation of multilayer sandwich configurations adjacent a dielectric layer, similar to that shown by Golovin et al., in the publication entitled, A New Electrophotographic Process, Etfected by Means at Combined Electret Layers, Doklady Akad. Nauk SSSR, vol. 129, No. 5, pp. 1008-1011, November-December 1961.
  • Suitable materials for this purpose may include aluminum, steel, brass, metalized or tin oxide coated glass, semiconductive plastics and resins, paper and any other convenient material. Any suitable dielectric material may be used to overcoat the photoconductive layer.
  • a typical overcoating is bichromated shellac.
  • any suitable organic binder or resin may be used in combination with the pigment to prepare the photoconductive layer of this invention.
  • the resin used in the present invention must be more resistive than about 10 and preferably more than 10 ohms/cm. under the conditions of Xerographic use.
  • Typical resins include thermoplastics such as polyvinylchloride, polyvinylacetates, polyvinylidenechloride, polystyrene, polybutadiene, polymethacrylates, polyacrylics, polyacrylonitrile, silicone resins, chlorinated rubber, and mixtures and copolymers thereof where applicable; and thermosetting resins such as epoxy resins including halogenated epoxy and phenoxy resins, phenolics, epoxy-phenolic copolymers, epoxy ureaformaldehyde copolymers, epoxy melamine formaldehyde copolymers and mixtures thereof where applicable.
  • Other typical resins are epoxy esters, vinyl epoxy resins, tall-oil modified epoxies, and mixtures thereof where applicable.
  • any other suitable resin may be used if desired.
  • other binders such as paraflin and mineral waxes may be used, if desired.
  • the pigments may be incorporated in the dissolved or melted binder resin by any suitable means such as strong sheet agitation, preferably with simultaneous grinding. These include ball milling, roller milling, sand milling, ultrasonic agitation, high-speed blending and any desirable combination of these methods. Any suitable range of pigment-resin ratios may be used.
  • the pigment-resin-solvent slurry (or the pigment-resin melt) may be applied to the conductive substrate by any of the well known painting or coating methods, including spraying, flow coating, knife coating, electro-coating, Mayer bar drawdown, dip coating, reverse roll coating, etc. Spraying in an electric field may be preferred for the smoothest finish and dip coating for convenience in the laboratory.
  • the setting, drying and/or curing steps for these plates are generally similar to those recommended for films of the particular binder used for other painting applications.
  • pigment-epoxy plates may be cured by adding a cross-linking agent and stoving according to approximately the same schedule as other baking enamels made with the same resins and similar pigments for paint applications.
  • a very desirable aspect of these pigments is that they are stable against chemical decomposition at the temperatures normally used for a wide variety of bake-on enamels, and therefore, may be incorporated in very hard glossy photoconductive coatings, similar to automotive or kitchen appliance resin finishes.
  • the thickness of the photoconductive films may be varied from about 1 to about 100 microns, depending on the required individual purpose.
  • Self-supporting films for example, cannot usually be manufactured in thicknesses thinner than about microns, and they are easiest to handle and use in the to 75 micron range.
  • Coatings on the other hand, are preferably formed in the 5 to micron range. For certain compositions and purposes it is desirable to provide an overcoating; this should usually not exceed the thickness of the photoconductive coating, and preferably not about one-quarter of the latter. Any suitable overcoating material may be used such as bichromated shellac.
  • Xerographic plates for use as in the following examples are prepared as follows.
  • Mixtures using specific pigments and resin binders are prepared by ball milling the pigment in a solution of a resinous binder and one or more solvents until the pigment is well dispersed. This is done by adding the desired parts of the pigment to the desired parts of resin solution in a suitable mixing vessel. A quantity of one-eighth inch steel balls are added and the vessel is rotated for approximately one-half hour in order to obtain a homogeneous dispersion.
  • the cooling slurry is applied onto an aluminum substrate with a wire drawdown rod and force dried in an oven for about 3 minutes at about 100 C. The coated sheets are dark rested for about 1 hour and thentested.
  • the xerographic plate is initially prepared by mixing about 10 parts Lucite 2042, an ethyl methacrylate poly- 12 mer available from Du Pont, about parts benzene and about 2 parts N-2"-pyridyl-8,13-dioxodinaphtho-(2,1-b; 2',3'-d)-furan-6-carboxamide. The mixture is coated onto an aluminum substrate to a thickness of about 8 microns and cured. The plate is charged negative in the dark by means of a corona discharge to a potential of about 400 volts. The charged plate is exposed to a film positive for about 30 seconds by means of a high intensity, long wave, ultraviolet lamp (1680 microwatts/cm.
  • the latent electrostatic image is developed by cascading Xerox 1824 toner over the plate.
  • the powder image on the plate is electrostatically transferred to a receiving sheet and heat fused.
  • the image on the receiving sheet is of excellent quality and corresponds to the original.
  • the plate is wiped clean of any residual toner and reused as in the above manner.
  • Example LV A xerographic plate is prepared by initially mixing about 10 parts Lucite 2042, about 90 parts benzene and about 2 parts N-Z"(1",3",5"-triazyl)18,13-dioxodinaphtho-(2,1-b; 2',3'-d)-furan-6-carboxamide. The mixture is coated onto an aluminum substrate to a thickness of about 8 microns and cured. The plate is charged negative in the dark by means of a corona discharge to a potential of about 400 volts. The charged plate is exposed for about 45 seconds to a light and shadow image using a Simmons Omega D-3 enlarger equipped with a tungsten light source operating at 2950 K. color temperature.
  • Illumination level incident on the plate is 2.8 foot candles as measured with a Weston Illumination Meter Model No. 756.
  • the latent electrostatic image is then developed by cascading Xerox 1824 toner over the plate.
  • the powder image on the plate is electrostatically transferred to a receiving sheet and heat fused.
  • the image on the receiving sheet is of good quality and corresponds to the original.
  • the plate is wiped clean of any residual toner and reused as in the above described manner.
  • the third electrophotographic imaging process in which the above listed novel photosensitive pigments are useful is that referred to as surface deformation imaging. As discussed above, this includes both frost and relief deformation of the surface of a deformable layer in image configuration.
  • Any suitable imaging method may be used in the surface deformation imaging processes of the present invention.
  • the following methods are typical:
  • the photoconductive thermoplastic layer is first substantially uniformly charged and exposed to a light and shadow image to be reproduced.
  • the material is then heated until it deforms to form a frost pattern corresponding to the light and shadow image.
  • the frost image thus formed is subsequently fixed or set by permitting the heat deformable layer to cool below its softening point.
  • the image may be erased by reheating the layer in charge free condition to its softening point.
  • thermoplastic layer is uniformly charged and exposed to a light and shadow image.
  • the material is then exposed to a solvent vapor, which softens the surface so that it deforms to form a frost pattern corresponding to the light and shadow image.
  • solvent is removed by evaporation to fix or set the image. This image may be layer erased by resoftening the layer surface, by heat or additional solvent vapor.
  • a relief image may be formed by scanning the thermoplastic layer with an electron beam, either while the layer is softened, or just prior to heat or solvent softening. This image may be set by returning the layer to its pre-softened condition.
  • any of the methods described in detail in copending applications 193,277 now US. Pat. 3,196,011, 232,494 now US. Pat. 3,244,083 and 388,322 now abandoned in favor of application Serial No. 670,824 filed May 8, 1962; Oct. 23, 1962 and Aug. 7, 1964, respectively, may be used in the process of this invention.
  • the methods of forming the frost or relief image may vary depending upon the intended use of the resulting product.
  • the heat deformable layer may be pretreated before uniformly charging the surface thereof.
  • various suitable methods may be used to selectively fix and/or erase the material in imagewise configuration.
  • any suitable material may be used as the surface deformable coating over the photoconductive layer or as the binder for the photosensitive pigments in a self-deformable layer.
  • Typical surface deformable thermoplastic polymers are low molecular weight polymers or oligomers. Any suitable polymer may be used in the surface deformation process of this invention; typical polymers are aromatic polymers such as polystyrene, alpha methylstyrene; copolymers made from styrene and other materials such as vinyl toluene, methyl-styrene, polyalphamethyl styrene, chloronated styrene, and polymers and copolymers made from petroleum cuts and indene polymers; phenolics such as phenol aldehyde resin's, phenol formaldehyde resins and mixtures thereof; vinyl polymers such as polyvinylacetate, polyvinylalcohol, poly vinylbutyral, butylmethyl-acrylate-styrene polymers, but
  • the heat deformable image either relief or frost may be formed either (1) by direct deformation of the thermoplastic binder containing the photosensitive pigment or (2) by overcoating the pigment-binder layer with a thermoplastic layer which is itself deformable.
  • Example LVI A plate is prepared by initially mixing about parts Lucite 2042, an ethyl methacrylate polymer available from Du Pont, about 90 parts benzene and about 2 parts N-2-pyridyl- 8,13 dioxodinaphtho-(2,1-;2',3'-d)-furan- 6-carboxamide. This mixture is coated onto an aluminum substrate to a thickness of about 8 microns and cured. The plate is then overcoated with about a 10 micron layer of Piccoflex 100-A (a polyvinylchloride resin obtained from Pennsylvania Industrial Chemicals Company). The composite plate is then charged to a negative potential of about 400 volts in the dark by means of a corona discharge.
  • Piccoflex 100-A a polyvinylchloride resin obtained from Pennsylvania Industrial Chemicals Company
  • the charged plate is exposed through a film positive for about 30 seconds to a high intensity, long wave, ultraviolet lamp (1680 microwatts/cm. if 3660 AU. radiation at a distance of 18 inches).
  • the latent electrostatic image is then developed by placing the plate on a heated platen maintained at about 70 C. As the plate is heated to the softening point of the overcoating, a frost image corresponding to the original appears.
  • Example LVII A plate is prepared by initially mixing about 10 parts Lucite 2042, about parts benzene and about 2 parts N-4"(l",3" diazyl) 8,13 dioxodinaphtho (2.1-b;2', 3'-d)-furan-6-carboxamide. This mixture is coated onto an aluminum substrate to a thickness of about 8 microns and cured. The plate is then overcoated with about a 10 micron layer of Piccoflex -A. The composite plate is charged, exposed, and developed as in Example LVI above. Again, a frost pattern in image configuration is observed.
  • Example LVIII A plate is prepared by initially mixing about 10 parts Lucite 2042, about 90 parts benzene and about 2 parts N-2"(l",3",5 triazyl) 8,13 dioxodinaphtho (2,1-b; 2',3'-d)-furan-6-carboxamide. This mixture is coated onto an aluminum substrate to a thickness of about 10 microns and cured. The plate is then overcoated with about a 10 micron layer of Staybelite Ester No. 10 available from Hercules Powder Company. The composite plate is then charged to a negative potential of about 400 volts in the dark by means of a corona discharge.
  • the charged plate is exposed for about 45 seconds to a light and shadow image using a Simmons Omega D3 enlarger equipped with a tungsten light source operating at 2950 K. color temperature. Illumination level incident on the plate is about 2.8 foot candles as measured with a Weston Illumination Meter Model No. 756.
  • the latent electrostatic image is developed by placing the plate on a platen heated to a temperature of about 70 C. As the softening temperature of the overcoating is reached, a frost pattern in image configuration again appears.
  • pigment compositions and/ or the pigment-resin compositions of this invention may be dye sensitized, if desired, or may be mixed or otherwise combined with other photoconductors, both organic and inorganic.
  • novel compositions of this invention are further useful as pigments for paints, varnishes, etc., and for plastic molding and coating compositions. They are useful as pigments in paper making processes when a yellow colored paper is desired.
  • the pigments may also be dispersed in synthetic filament forming materials useful in the production of synthetic textiles.
  • the compositions have further uses in certain insecticides, herbicides and fungicides.
  • each R is selected from the group consisting of N and C, from l-3 Rs being N; each X is selected from the group consisting of H, CH
  • each R is selected from the group consisting of N and C, from 1-3 Rs being N.
  • a coating composition comprising a hardenable carrier having dispersed therein a pigment having the general formula:
  • each R is selected from the group consisting of N and C,
  • each X is selected from the group consisting of H, CH C H N0 OCH OC H CN, SO NH CO CH CO C H SO NHC H Cl, F, Br, I; and
  • n is a positive integer from 1-4.
  • a coating composition comprising a hardenable carrier having dispersed therein N-2"(1",3"-diazyl)-8,13-dioxodinaphtho-(2,1-b;2',3'-d)-furan-6-carboxamide.
  • the method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between at least two electrodes, at least one of which is at least partially transparent and simultaneously exposing said suspension to an image through said partially transparent electrode with activating electromagnetic radiation whereby an image is formed on at least one of said electrodes; said suspension comprising a plurality of finely divided photosensitive particles of at least one color, at least one of said particles comprising a composition having the general formula:
  • each R is selected from the group consisting of N and C, from 13 Rs being N; each X is selected from the group consisting of H, CH C H N0 OCH CN, SO NH CO CH CO C H OC H SO NHC H Cl, F, Br, I; and n is a positive integer from 1-4. 9.
  • the method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between at least two electrodes, at least one of which is at least partially transparent and simultaneously exposing said suspension to an image through said partially transparent electrode with activating electromagnetic ra diation whereby an image is formed on at least one of said electrodes; said suspension comprising a plurality of finely divided photosensitive particles of at least one color, at least one of said particles comprising N-4"(1", 3" diazyl) 8,13 dioxodinaphtho (2,1 b; 2',3' d)- furan-6-carboxamide.
  • the method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between at least two electrodes, at least one of said electrodes being a barrier electrode, and exposing said suspension to an image with activating electromagnetic radiation whereby an image is formed on at least one of said electrodes; said suspension comprising a plurality of finely divided photosensitive particles of at least one color, at least one of said particles comprising compositions having the general formula:
  • each R is selected from the group consisting of N and C, from 1-3 Rs being N; each X is selected from the group consisting of H, CH C H N0 OCH OC H CN, SO NH CO CH V CO2C2H5, SO2NHC6H5, Cl, F, Br, and
  • n is a positive integer from 1-4.
  • the method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between at least two electrodes, at least one of said electrodes being a barrier electrode, and exposing said suspension to an image with activating electromagnetic radiation whereby an image is formed on at least one of said electrodes; said suspension comprising a plurality of finely divided photosensitive particles of at least one color, at least one of said particles comprising N-2- (1",3",5" triazyl) 8,13 dioxodinaphtho (2,1 b; 2,3-d)-furan-6-carboxamide.
  • the method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between at least two electrodes, at least one of which is at least partially transparent, said suspension comprising a plurality of finely divided particles of at least two different colors in an insulating carrier liquid, the particles of each color comprising a photosensitive pigment whose principal light absorption bands substantially coincides with its principal photosensitive response,
  • each R is selected from the group consisting of N and C, from 1-3 Rs being N; each X is selected from the group consisting of H, CH C H N OCH 0C H CN, SO NH COzCHg, CO2C2H5, SO2NHC6H5, F, BI, and
  • n is a positive integer from L4.
  • the method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between two electrodes, at least one of which is at least partially transparent, said suspension comprising a plurality of finely divided particles of at least two different colors in an insulating carrier liquid, the particles of each color comprising a photosensitive pigment Whose principal light absorption bands substantially coincides with its principal photosensitive response, simultaneously exposing said suspension to a light image through said transparent electrode and then separating said electrodes whereby an image is formed on the surface of at least one of said electrodes; the particles of one color comprising N 2" pyridyl-S,l3-dioxodinaphtho-(2,1-b; 2',3'd)- furan-6-carboxamide.
  • the method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between at least two electrodes, at least one of which is a blocking electrode, said suspension comprising a plurality of finely divided particles of at least two different colors in an insulating carrier liquid, the particles of each color comprising a photosensitive pigment whose principal light absorption bands substantially coincides with its principal photosensitive response, simultaneously exposing said suspension to a light image and then separating said electrodes whereby an image is formed on the surface of at least one of said electrodes; the particles of one color comprising a composition having the general formula:
  • each R is selected from the group consisting of N and C, from l-3 Rs being N; each X is selected from the group consisting of H, CH C H N0 OCH OC H CN, SO NH CO CH CO C H SO NHC H Cl, F, Br, I; and
  • n is a positive integer from 1-4.
  • the method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between at least two electrodes, at least one of which is a blocking electrode, said suspension comprising a plurality of finely divided particles of at least two different colors in an insulating carrier liquid, the particles of each color comprising a photosensitive pigment whose principal light absorption bands substantially coincides with its principal photosensitive response, simultaneously exposing said suspension to a light image and then separating said electrodes whereby an image is formed on the surface of at least one of said electrodes; the particles of one color comprising N 2" pyridyl 8,13 dioxodinaphtho (2,1- b; 2,3-d)-furan-6-carboxamide.
  • a xerographic plate comprising a photoconductive layer comprising a binder material and a composition having the general formula:
  • each R is selected from the group consisting of N and C, from 1-3 Rs being N; each X is selected from the group consisting of H, CH C H N0 OCH OC H CN, SO NH CO CH CO2C2H5, SO2NHC6H5, C1, F, Br, and
  • n is a positive integer from 1-4.
  • a process for forming a latent xerographic image on a photoconductive layer comprising a photoconductive pigment in an organic binder, which comprises electrostatically charging said layer and exposing said layer to a pattern of activating electromagnetic radiation; said photoconductive pigment comprising the composition having the general formula:
  • each R is selected from the group consisting of N and C, from 1-3 Rs being N; each X is selected from the group consisting of H, CH C H N0 OCH OC H CN, SO NH CO CH CO C H SO NHC H Cl, F, Br, I; and
  • n is a positive integer from 1-4.
  • a method of forming a latent electrostatic charge pattern on a deformable layer which comprises charging said layer, exposing said layer to a pattern of activating electromagnetic radiation, dissipating at least a portion of the charge on said layer to thereby form a latent electrostatic charge pattern corresponding to said pattern of activating electromagnetic radiation; said layer comprising an organic binder and a photoconductive pigment composition having the general formula:
  • n is a positive integer from 1-4.
  • a method for forming an image on a surface deformable recording medium which comprises electrostatically charging a recording medium, said recording medium comprising photoconductive pigment particles in an organic binder coated on a supporting substrate and overcoated with a thermoplastic material, exposing said medium to a pattern of light and shadow and maintaining said surface in a sufliciently viscous condition to thereby deform at least a portion of said surface in a configuration corresponding to said pattern of light and shadow, said photoconductive pigment comprising the composition having the general formula:
  • each R is selected from the group consisting of N and C, from 1-3 Rs being N; each X is selected from the group consisting of H, CH C l-I N0 OCH OC H CN, SO NH CO CH CO C H SO NHC H Cl, F, Br, I; and
  • n is a positive integer from 1-4.
  • a method for forming an image on a surface deformable recording medium which comprises electrostatically charging the recording medium, said recording medium comprising photoconductive pigment particles in a thermoplastic binder coated on a supporting substrate, exposing said medium to a pattern of light and shadow and maintaining said surface in a sufliciently viscous con- 20 dition to thereby deform at least a portion of said surface in a configuration corresponding to said pattern of light and shadow, said photoconductive pigment comprising the composition having the general formula:
  • each R is selected from the group consisting of N and C, from 1-3 Rs being N; each X is selected from the group consisting of H, CH 2O C 11 N0 OCH OC H CN, SO NH CO CH CO C H SO NHC H Cl, F, Br, I; and n is a positive integer from 1-4.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Optical Filters (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Paints Or Removers (AREA)

Description

June a, 1969 L. WEINBERGER 3,447,922 ELECTRICALLY PHOTOSENSITIVE PARTICLES USEFUL IN PHQTQELECTROPHORETIC AND XEROGRAPHIC IMAGING PROCESSES Filed Dec. 28, 1964 J ll 4, 2 l
\ l I, l
. INVENTOR LESTER WEINBERGER TTORNEYS United States Patent York Filed Dec. 28, 1964, Ser. No. 421,281 Int. Cl. C231) 13/00; G03g 13/00 US. 'Cl. 204181 20 Claims ABSTRACT OF THE DISCLOSURE N substituted 8,13 dioxodinaphtho (2,1-b; 2',3'-d)- furan-G-carboxamides are described as new compositions of matter along with their use as electrically photosensitive particles in photoelectrophoretic and xerographic imagry process.
This invention relates in general to new compositions of matter and methods of using them. More specifically, the invention concerns the use of new electrically photosensitive pigments in electrophotographic imaging systems.
There has been recently developed an electrophoretic imaging system capable of producing color images which utilizes photoconductive pigment particles. This process is described in detail and claimed in copending applications Ser. Nos. 384,737 now US. Patent 3,384,565; 384,681 abandoned in favor of application Ser. No. 655,023 now US. Patent 3,384,566 and 384,680 abandoned in favor of application Ser. No. 518,041 now US Patent 3,383,993, all filed July 23, 1964. In such an imaging system, variously colored light absorbing particles are suspended in a non-conductive liquid carrier. The suspension is placed 'btween electrodes subjected to a poential difference and exposed to an image. As these steps are completed, selective particle migration takes place in image configuration, providing a visible image at one or both of the electrodes. An essential component of the system is the suspended particles which must be intensely colored pigments which are photosensitive and which apparently undergo a net change in charge polarity upon exposure to activating radiation, through interatcion with one of the electrodes. The images are produced in color because mixtures of two or more differently colored pigments which are each sensitive only to light of a specific wavelength or narrow range of wavelengths are used. Pigments used in this system must have both intense pure colors and be highly photosensitive. The pigments of the prior art often lack the purity and brilliance of color, the high degree of photosensitvity, and/or the preferred correlation between the peak spectral response and peak photosensitivity, necessary for use in such a system.
Another imaging system which utilizes electrically photosensitive material is the xerographic process as originally described in US. Patent 2,297,691 to C. F. Carlson. Here, the photosensitive material must be an effective photoconductive insulator, i.e. must be capable of holding an electrostatic charge in the dark and dissipaling the charge to a conductive substrate when exposed to light. In the fundamental process, a base sheet of relatively low electrical resistance such as metal, paper, etc., having a photoconductive insulating surface coated thereon, is electrostatically charged in the dark. The charged coating is then exposed to a light image. The charges leak off rapidly to the base sheet in prooprtion to the intensity of light to which any given area is exposed, the charge being substantially retained in non-exposed areas, forming a latent electrostatic image. After exposure, the coating is contacted with electrostatic marking particles in the dark. These particles adhere to the areas where the electrostatic charge remains, forming a powder image corresponding to the electrostatic image. Where the base sheet is relatively inexpensive, such as paper, the image may be fixed directly thereto as by heat or solvent fusing. Alternatively, the powder image may be transferred to a sheet of material, such as paper, and fixed thereon.
Many photosensitive materials useful in the xerographic process are known in the art, e.g., vitreous selenium, sulfur, anthracene, zinc oxide, and polyvinyl carbazole. While several of these different materials are in commercial use today, each has deficiencies in such areas as photographic speed, spectral response, durability, reuseability and cost such that there is a continuing need for improved materials.
A third class of electrophotographic imaging which utilizes electrically photosensitive materials has recently been developed. This class consists of two systems of surface deformation imaging which are generally referred to as frost imaging and relief imaging. Frost imaging is described in detail in a publication entitled A Cyclic Xerographic Method Based on Frost Deformation by R. W. Gundlach and C. J. Claus, Journal of Photographic Science and Engineering, January-February edition, 1963. Relief imaging is described in detail in US. Patents 3,055,006; 3,163,872 and 3,113,179.
For use in frost imaging, for example, a plate may be made by overcoating a conductive substrate with a layer of a photoconductive insulating material, which is then overcoated with a thermoplastic material. Alternatively, the photoconductive material may be dispersed in particulate form in the thermoplastic material and the mixture coated directly over the conductive substrate. Typically, a uniform electrostatic charge is imposed on the plate surface, then the plate is exposed to a light and shadow image to be reproduced. The charge is dissipated in light struck areas but remains in unexposed areas. The plate is heated or treated with a solvent vapor until the electrostatic attraction forces of the charge pattern exceed the surface tension forces of the film. When this threshold condition is reached, a series of very small surface folds or wrinkles are spontaneously formed on the film surface, the depth of the wrinkles in any particular area of the film being dependent upon the intensity of charge in that area. This gives the image a frosted appearance. Other methods of frost and relief charging, exposing, and developing are described in the above mentioned publication and patents. Many of the presently known photoconductive materials have an excessively limited spectral response and low photographic speed and, thus, are incapable of producing optimum frost or relief images.
It is, therefore, an object of this invention to provide novel compositions for electrophotographic imaging processes which overcome the above noted deficiencies.
It is another object of this invention to provide novel photosensitive materials suitable for use in electrophotographic imaging processes.
It is another object of this invention to provide novel photosensitive compositions useful in electrophoretic imaging processes.
It is another object of this invention to provide novel compositions having an intense yellow color.
It is yet another object of this invention to provide a novel method of making a new yellow pigment.
It is another object of this invention to provide novel electrophoretic imaging processes.
It is another object of this invention to provide novel xerographic imaging processes.
It is still another object of this invention to provide novel surface deformation imaging processes.
It is still another object of this invention to provide novel electrophoretic imaging systems capable of reproducing color images.
It is still another object of this invention to provide novel frost imaging processes.
It is still another object of this invention to provide novel relief imaging processes.
It is still another object of this invention to provide xerographic plates having maximum spectral and photosensitive responses in ranges other than those of prior plates.
The foregoing objects and others are accomplished in accordance with this invention, fundamentally, by providing novel compositions having the general formula:
wherein:
each R is selected from the group consisting of N and C,
from 1-3 Rs being N;
each X is selected from the group consisting of H, CH C H N 0CH OC H CN, SO NH CO CH co c u SO NHC H Cl, F, Br, I and mixtures thereof; and
n is a positive integer from 1-4.
The compositions of the general formula given above belong to the class of N-substituted 8,13-dioxodinaphtho- (2,1-b; 2,3'-d)-furan-6-carboxamides wherein the substituent comprises amine substituted heterocyclic groups. These compositions may be made by reacting 2,3-dichloro-1,4-naphthoquinone with any suitable N-substitnted amide of 2-hydroxy-3-naphthoic acid. Typical are those having the general formula:
lil R=R X i K o RR wherein:
4 The compositions produced by the above reaction have common characteristics of a brilliant, intense, yellow color; of insolubility in water and the common organic solvents, e.g., benzene, toluene, acetone, carbon tetrachloride, chloroform, alcohols, and aliphatic hydrocarbons; and of unusually high photosensitive response.
Of the compositions within the general formula listed above, N-2 -pyridyl 8,13 dioxodinaphtho-(Ll-b; 3- d)-furan-6-carboxamide, and N-2"-(1",3-diazyl)-8,13- dioxodinaphtho-(2,1-b; 2',3'-d)-furan-6-carboxamide are preferred for use in electrophoretic imaging processes since they are simply and economically synthesized, have especially pure color, and are most highly photosensitive. They have been found to give the most desirable combination of color and photosensitivity.
However, since the shade or the tone of the composition and the spectral and photosensitive responses vary slightly depending upon the substituent used, intermediate values of these variables may be obtained by mixing several of the compositions of this invention.
The following examples further define and describe methods of making the compositions of the present invention. Parts and percentages are by weight unless otherwise indicated. The examples below should be considered to illustrate various preferred embodiments of the invention.
Example I About 11.4 parts of 2,3-dichloro-1,4-naphthoquinone is refluxed for about 3 hours with about 9.6 parts of N-2'- pyridyl-2-hydroxy-3-naphthamide in boiling pyridine. The solution is cooled to room temperature and the product is removed by filtration and recrystallized from a mixture of equal parts by volume of methyl cellulose and alpha methyl formamide, yielding about 3.3 parts of N-2"-(1",- 3-diazyl)-8,l3 dioxodinaphtho-(2,l-b; 2,3'-d)-furan-6- fi-carboxamide having a melting point of about 334 C.
Example II About 11.4 parts of 2,3-dichloro-l,4-naphthoquinone is refluxed for about 3 hours with about 15 parts of N-2'- (1',3,5'-triazyl)-2-hydroxy-3-naphthamide in about parts of boiling pyridine. The solution is then cooled to room temperature. Ethyl alcohol is added until precipitation occurs. The precipitant is recrystallized from dimethyl formamine, yielding N-2(1", 3", 5"-triazyl)-8,-
13-dioxodinaphtho-(2,l-b; 2',3'-d)-furan-6-carboxamide.
In the table below, further examples are given for producing additional embodiments of the compositions of.
this invention. The table gives the number of the example in column 1, the parts by weight and name of the second reactant in column 2, and the parts by weight and name of the product in column 3. The processes used in preparing the compounds listed in the table are similar to that described in detail in Examples I and II above. In each example, about 22.5 parts of 2,3-dichloro-l,4- naphthoquinone is used as the first reactant.
In the chemical formulas as listed in the table below X in column 2 represents the -2-hydroxy-3-naphthamide portion and Y in column 3 represents the 8,13-dioxodinaphtho-(2,1-b; 2',3'-d)-furan-6-carboxamide portion. Thus, for example, N-2'-pyridyl-X represents N-2'- pyridyl-2-hydroxy-3-naphthocarboxamide; N-2"-(1",- 4"-diazyl)-Y represents N-2"-(l",4"-diazyl)-8,13-dioxodinaphtho-(2,1-b; 2',3-d)-furan-6-carboxamide; etc.
TABLE I Example Parts Second reactant Parts Product 26.5 N-2-pyridyl-X 42.5 N-2'-pyridy1-Y 26. N-2'-pyrimidyl-X 42.5 N-2'-pyrirnidyl-Y 26 N-2'(1,4-diazyl)-X 42.5 N-2'(l',4'-diazyl)-Y -3-pyridlaz -X 42 N-3'-pyridiazyl-Y XXXVIII The compositions within the general formula listed above, and mixtures thereof, are especially useful as photosensitive pigment particles in electrophoretic imaging processes. An exemplary electrophoretic imaging system is shown in the figure.
Referring now to the figure, there is seen a transparent electrode generally designated -1 which, in this exemplary instance, is made up of a layer of optically transparent glass 2 overcoated with a thin optically transparent layer 3 of tin oxide, commercially available under the name Nesa glass. This electrode shall hereafter be referred to as the injecting electrode. Coated on the surface of injecting electrode 1 is a thin layer 4 of finely divided photosensitive particles dispersed in an insulating liquid carrier. The term photosensitive, for the purposes of this application, refers to the properties of a particle which, once attracted to the injecting electrode, will migrate away from it under the influence of an applied electric field when it is exposed to actinic electromagnetic radiation. For a detailed theoretical explanation of the apparent mechanism of operation of the invention, see the above mentioned copending applications, Ser. Nos. 384,737, 384,361, and 384,680, the disclosures of which are incorporated herein by reference. Liquid suspension 4 may also contain a sensitizer and/or a binder for the pigment particles which is at least partially soluble in the suspending or carrier liquid as will be explained in greater detail hereinafter. Adjacent to the liquid suspension 4 is a second electrode 5, hereinafter called the blocking electrode, which is connected to one side of the potential source 6 through a switch 7. The opposite side of potential source 6 is connected to the injecting electrode 1 so that when switch 7 is closed, an electric field is applied across the liquid suspension 4 between electrodes 1 and 5. An image projector made up of a light source 8, a transparency 9, and a lens 10 is provided to expose the dispersion 4 to a light image of the original transparency 9 to be reproduced. Electrode 5 is made in the form of a roller having a conductive central core 11 connected to the potential source 6. The core is covered with a layer of a blocking electrode material 12, which may be Baryta paper. The pigment suspension is exposed to the image to be reproduced while potential is applied across the blocking and injecting electrodes by closing switch 7. Roller 5 is caused to roll across the top surface of injecting electrode 1 with switch 7 closed during the period of image exposure. This light exposure causes exposed pigment particles originally attracted to electrode 1 to migrate through the liquid and adhere to the surface of the blocking electrode, leaving behind a pigment image on the injecting electrode surface which is a duplicate of the original transparency 9. After exposure, the relatively volatile carrier liquid evaporates off, leaving behind the pigment image. This pigment image may then be fixed in place as, for example, by placing a lamination over its top surface or by a dissolved binder material in the carrier liquid such as paratfin wax or other suitable binder that comes out of solution as the carrier liquid evaporates. About 3 to 6% by weight of paraffin binder in the carrier has been found to produce good results. The carrier liquid itself may be paraffin wax or other suitable binder. In the alterative, the pigment image remaining on the injecting electrode may be transferred to another surface and fixed thereon. As explained in greater detail below, this system can produce either monochromatic or polychromatic images depending upon the type and number of pigments suspended in the carrier liquid and the color of light to which this suspension is exposed in the process.
Any suitable insulating liquid may be used as the carrier for the pigment particles in the system. Typical carrier materials are decane, dodecane, N-tetradecane, paraffin, beeswax or other thermoplastic material, Sohio Odorless Solvent, (a kerosene fraction available from Standard Oil Company of Ohio), and Isopar-G (a long chain saturated aliphatic hydrocarbon available from Humble Oil Company of New Jersey.) Good quality images have been produced, with voltages ranging from 300 to 5,000 volts, in the apparatus of the figure.
In a monochromatic system, particles of a single color are dispersed in the carrier liquid and exposed to a blackand-white image. A single color image results, corresponding to conventional black-and-white photography. In a polychromatic system, the particles are selected so that those of different colors respond to different wavelengths in the visible spectrum corresponding to their principal absorption bands. Also, the pigments should be selected so that their spectral response curves do not have substantial overlap, thus allowing for good color separation and subtractive multicolor image formation. In a typical multicolor system, the particle dispersion should include cyan colored particles sensitive mainly to red light, magenta colored particles sensitive mainly to green light, and yellow colored particles sensitive mainly to blue light. When mixed together in a carrier liquid, these particles produce a black appearing liquid. When one or more of the particles are caused to migrate from base electrode 11 toward an upper electrode, they leave behind particles which produce a color equivalent to the color of the impinging light. Thus, for example, red light exposure causes the cyan colored pigment to migrate leaving behind the magenta and yellow pigments which combine to produce red in the final image. In the same manner, blue and green colors are reproduced by removal of yellow and magenta respectively. When white light impinges upon the mix, all pigments migrate leaving behind the color of the white or transparent substrate. No exposure leaves behind all pigments which combine to produce a black image. This is an ideal technique of subtractive color imaging in that the particles are not only each composed of a single component but, in addition, they perform the dual functions of final image colorant and photosensitive medium.
It has been found that the compounds of the general formula given above are surprisingly effective when used in either a single or multicolor electrophoretic imaging system. Their good spectral response and high photosensitivity result in dense, brilliant images. It is known that in general, cyan and magenta pigment particles separate from the tri-mix more easily and form more dense images than do the usual yellow pigments. The yellow pigments herein disclosed, however, have surprisingly good color separation and image density characteristics.
Any suitable cyan and magenta colored photosensitive pigment particles having the desired spectral responses may be used with the yellow pigments of this invention to form a pigment mix in a carrier liquid for color imaging. From about 2 to about 10 percent pigment by weight have been found to produce good results. The addition of small amounts (generally ranging from 0.5 to mole percent) of electron donors or acceptors to the suspensions may impart significant increases in system photosensitivity.
The following examples further specifically define the present invention with respect to the use of the compositions of the general formula given above in electrophoretic imaging processes. Parts and percentages are by weight unless otherwise indicated. The examples below are intended to illustrate various preferred embodiments of the electrophoretic imaging process of the present invention.
All of the following Examples XXXIX-XLVI are carried out in an apparatus of the general type illustrated in the figure with the imaging mix 4 coated on a Nesa glass substrate through which exposure is made. The Nesa glass surface is connected in series with a switch, a potential source, and the conductive center of a roller having a coating of Baryta paper on its surface. The roller is approximately 2 /2 inches in diameter and is moved across the plate surface at about 1.45 centimeters per second. The plate employed is roughly 3 inches square and is exposed with a light intensity of 8,000 foot candles as measured on the uncoated Nesa glass surface. Unless otherwise indicated, 7 percent by weight of the indicated 8 a 3200 K. lamp through a 0.30 neutral density step wedge filter to measure the sensitivity of the suspensions to white light and then Wratten filters 29, 61, and 47b are individually superimposed over the light source in separate tests to measure the sensitivity of the suspensions to red, green, and blue light, respectively.
Example XXXIX About 7 parts of N-2"-pyridyl-8,13-dioxodinaphtho- (2,1-b; 2'3'-d)-furan-6-carboxamide is suspended in about 100 parts of Sohio Odorless Solvent 3400. The suspension is coated on the Nesa glass substrate and a negative potential is imposed on the roller electrode. The plate is exposed through a Wratten 29 filter and the neutral density step wedge filter, thus exposing the plate to red light. The results are tabulated in Table II, below.
Example XL A test is run as in Example XXXIX above, except that a Wratten 61 filter is used in place of the Wratten 29 filter, thus exposing the plate to green light. See Table II for results.
Example XLI A test is run as in Example XXXIX above, except that a Wratten 47b filter is used in place of the Wratten 29 filter, thus exposing the plate to blue light. See Table II for results.
Example XLII A test is run as in Example XXXIX above, except that no color filter is used, thus exposing the plate to white light. See Table II for results.
Example XLIII About 7 parts N-2"(l",3"-diazyl)-8,13-dioxodinaphtho-(2,1-b; 2,3-d)-furan-6-carboxamide is suspended in about 100 parts Sohio Odorless Solvent 3440. The suspension is coated on the Nesa glass substrate and a negative potential is imposed on the roller electrode. The plate is exposed through a Wratten 29 filter and the neutral density step wedge filter, thus exposing the plate to red light. See Table H for results.
Example X-LIV A test is run as in Example XLIII above, except that a Wratten 6-1 filter is used in place of the Wratten 29 filter, thus exposing the plate to green light. See Table II for results.
Example XLV A test is run as in Example XLIII above, except that a Wratten 47b filter is used in place of the Wratten 29 filter, thus exposing the plate to blue light. See Table II for results.
Example XLVI A test is run as in Example XLIII above, except that no Wratten filter is used, thus exposing the plate to white light. See Table II for results.
pigments in each example are suspended in Sohio Odorless Solvent 3440 and the magnitude of the applied potential is 2500 volts. All pigments which have a relatively large particle size as received commercially or as made are ground in a ball mill for 48 hours to reduce their size to provide a more stable dispersion which improves the The electrophoretic sensitivity of the exemplary pigments to red, green, blue and white light is. tested according to conventional photographic methods and the results are recorded in Table II, above. In the table, "the first column lists the number of the test example. The Wratten filter used in each example betweenv the light resolution of the final images. The exposure is made with source and the Nesa plate is listed in column 2. The third column lists the resulting color of the light which is permitted to fall on the Nesa plate. The fourth column gives the photographic speed of the photosensitive mix in foot candles. The photographic speed is the result of a curve of density ploted against the logarithm of exposure in foot candles. Gamma, as listed in column five, is a standard photographic term referring to the slope of the above mentioned curve. The maximum and minimum reflection density produced are listed in columns six and seven, respectively. As shown by the above table, the tested yellow pigments are sensitive in an electrophoretic sense, to blue light only. As can be seen, the pigments are essentially non-responsive to red and green light. Thus, the response of these pigments to white light is essentially identical to their response to blue light.
In each of the following examples, a suspension including equal amounts of three different colored pigments is made up by dispersing the pigments in finely divided form in Sohio Odorless Solvent 3440 so that the pigments constitute about 8% of the mixture. This mixture may be referred to as a tri-mix. The mixtures are individually tested by coating them on a Nesa glass substrate and exposing them as in Example I above, except that a multicolor Kodachrome transparency is interposed between the light source and the plate instead of the neutral density and Wratten filters. Thus, a multi-colored image is projected on the plate as the roller moves across the surface of the coated Nesa glass substrate. A baryta paper blocking electrode is employed and the roller is held at a negative potential of about 2500 volts with respect to the substrate. The roller is passed over the substrate six times, being cleaned after each pass. Potential application and exposure are both continued during the entire period of the six passes by the roller. After completion, the quality of the image left on the substrate is evaluated as to density and color separation.
Example XLVII The pigment mix consists of, as a magenta pigment, Watchung Red B, a barium salt of 1-(4'-methyl-5-chloroazobenzene-2'-sulfonic acid)-2-hydroxy-3naphthoic acid, C.I. number 15865, available from DuPont, as a cyan pigment, Monolite Fast Blue GS, the alpha form of metal free phthalocyanine, C.I. No. 74100, available from the Arnold Hofiman Company, and as a yellow pigment N-2"-pyridyl-8,l3-dioxodinaphtho (2,1-b; 2,2'-d)-furanfi-carboxamide. This tri-mix, when exposed to a multicolored image, produces a full color image with good density and color separation.
Example XLVIII The pigment mixture consists of, as a magenta pigment, Locarno Red X1686, C.I. No. 15865, 1- (-4'-methyl- 5'-chloroazobenzene-2'-sulfonic acid) 2 hydroxy-3- naphthoic acid, available from American Cyanamid, as a cyan pigment, Cyan Blue GTNF, the beta form of copper phthalocyanine, C.I. No. 74160, available from Collway Colors, and as a yellow pigment, N-2-pyrimidyl- 8,13-dioxodinaphtho-(2,l-b; 2',3'-d)-furan 6 carboxamide. This tri-mix is exposed to a multi-colored image and produces a full color image of excellent density and color separation.
Example XLIX The pigment mixture consists of a magenta pigment, Naphtho Red B, 1-(2-methoxy-5'-nitrophenylazo-2- hydroxy-3"-nitro-3-naphthanilide, C.I. No. 12355, available from Collway Colors; a cyan pigment, a polychloro substituted copper phthalocyanine, C.I. No. 74260, available from Imperial Color and Chemical Company, and a yellow pigment N-2"(1",4"-diazyl)-8,13-dioxodinaphtho-(2,l-b; 2,3'-d)-furan-6-carboxamide. This trimix is exposed to a multi-colored image and produces a full color image of good density and color separation.
10 Example L The pigment mixture consists of a magenta pigment, Vulcan Fast Red BBE Toner 35-2201, 3,3-dimethoxy- 4,4 biphenylbis(1" phenyl 3" methyl 4" azo- 2"-perylene-5"-one), C.I. No. 21200, available from Collway Colors; a cyan pigment, Cyan Blue, 3,3'-methoxy 4,4 diphenyl bis(1 azo 2".- hydroxy 3"- naphthanilide), C.I. No. 21180, available from Harmon Colors, and as a yellowo pigment N-4(1",3"-diazyl)- 8,13 dioxodinaphtho (2,l-b; 2',3'-d) -furan-6-carboxamide. The tri-mix is exposed to a multi-colored image and produces a full color image of good density and color separation.
Example LI The pigment suspension consists of a magenta pigment, Indofast Brilliant Scarlet Toner, 3,4,9,10-bis(N,N'-pmethoxyphenyl-imido)-perylene, C.I. No. 71140, available from Harmon Colors; a cyan pigment, Monolite Fast Blue GS, the alpha form of metal free phthalocyanine, C.I. No. 74100, available from the Arnold Hotfman Company, and a yellow pigment, N-2"(3"-methyl)-pyridyl- 8,13 dioxodinaphtho (2,1-b; 2,3'-d) furan 6 carboxamide. This tri-mix is exposed to a multi-colored image and produces a full color image of satisfactory density and good color separation.
Example LII The pigment suspension consists of a magenta pigment, Calcium Litho Red, the calcium lake of an azo dye, 1-(2'- azonaphthalene-1'-sulfonic acid)-2-hydroxy-naphtho, C.I. No. 15630, available from Collway Colors; a cyan pigment, Cyan Blue XR, the alpha form of copper phthalocyanine, available from Collway Colors, and a yellow pigment, N-4"(1",3 diazyl) 8,13 dioxodinaphtho- (2,l-b; 2',3'-d)-furan-6-carboxamide. This tri-mix is exposed to a multi-colored image and produces a full color image of good density and color separation.
The novel compositions of the general formula given above are also useful in xerographic imaging systems. For use in such processes, xerographic plates may be produced by coating a relatively conductive substrate, e.g., aluminum or paper, with a dispersion of particles of the photosensitive pigment of the above general formula in a resin binder. The pigment-resin layer may also be cast as a self-supporting film. The plate formed may be both with or without an overcoating on the photoconductive layer. As a third alternative to the above noted selfsupporting layer and substrate supported layer, the photosensitive pigment-resin photoconductive layer may be used in the formation of multilayer sandwich configurations adjacent a dielectric layer, similar to that shown by Golovin et al., in the publication entitled, A New Electrophotographic Process, Etfected by Means at Combined Electret Layers, Doklady Akad. Nauk SSSR, vol. 129, No. 5, pp. 1008-1011, November-December 1959.
When it is desired to coat the pigmented resin film on a substrate various supporting materials may be used. Suitable materials for this purpose may include aluminum, steel, brass, metalized or tin oxide coated glass, semiconductive plastics and resins, paper and any other convenient material. Any suitable dielectric material may be used to overcoat the photoconductive layer. A typical overcoating is bichromated shellac.
Any suitable organic binder or resin may be used in combination with the pigment to prepare the photoconductive layer of this invention. In order to be useful the resin used in the present invention must be more resistive than about 10 and preferably more than 10 ohms/cm. under the conditions of Xerographic use. Typical resins include thermoplastics such as polyvinylchloride, polyvinylacetates, polyvinylidenechloride, polystyrene, polybutadiene, polymethacrylates, polyacrylics, polyacrylonitrile, silicone resins, chlorinated rubber, and mixtures and copolymers thereof where applicable; and thermosetting resins such as epoxy resins including halogenated epoxy and phenoxy resins, phenolics, epoxy-phenolic copolymers, epoxy ureaformaldehyde copolymers, epoxy melamine formaldehyde copolymers and mixtures thereof where applicable. Other typical resins are epoxy esters, vinyl epoxy resins, tall-oil modified epoxies, and mixtures thereof where applicable. In addition to the above noted binder materials, any other suitable resin may be used if desired. Also, other binders such as paraflin and mineral waxes may be used, if desired.
The pigments may be incorporated in the dissolved or melted binder resin by any suitable means such as strong sheet agitation, preferably with simultaneous grinding. These include ball milling, roller milling, sand milling, ultrasonic agitation, high-speed blending and any desirable combination of these methods. Any suitable range of pigment-resin ratios may be used.
The pigment-resin-solvent slurry (or the pigment-resin melt) may be applied to the conductive substrate by any of the well known painting or coating methods, including spraying, flow coating, knife coating, electro-coating, Mayer bar drawdown, dip coating, reverse roll coating, etc. Spraying in an electric field may be preferred for the smoothest finish and dip coating for convenience in the laboratory. The setting, drying and/or curing steps for these plates are generally similar to those recommended for films of the particular binder used for other painting applications. For example, pigment-epoxy plates may be cured by adding a cross-linking agent and stoving according to approximately the same schedule as other baking enamels made with the same resins and similar pigments for paint applications. A very desirable aspect of these pigments is that they are stable against chemical decomposition at the temperatures normally used for a wide variety of bake-on enamels, and therefore, may be incorporated in very hard glossy photoconductive coatings, similar to automotive or kitchen appliance resin finishes.
The thickness of the photoconductive films may be varied from about 1 to about 100 microns, depending on the required individual purpose. Self-supporting films, for example, cannot usually be manufactured in thicknesses thinner than about microns, and they are easiest to handle and use in the to 75 micron range. Coatings, on the other hand, are preferably formed in the 5 to micron range. For certain compositions and purposes it is desirable to provide an overcoating; this should usually not exceed the thickness of the photoconductive coating, and preferably not about one-quarter of the latter. Any suitable overcoating material may be used such as bichromated shellac.
The invention as it pertains to xerographic imaging processes, will be further described with reference to the following examples, which describe in detail various preferred embodiments of the present invention. Parts, ratios and percentages are by weight unless otherwise indicated. All the materials tested below were charged, exposed and developed according to the conventional xerographic processes.
Xerographic plates for use as in the following examples are prepared as follows. Mixtures using specific pigments and resin binders are prepared by ball milling the pigment in a solution of a resinous binder and one or more solvents until the pigment is well dispersed. This is done by adding the desired parts of the pigment to the desired parts of resin solution in a suitable mixing vessel. A quantity of one-eighth inch steel balls are added and the vessel is rotated for approximately one-half hour in order to obtain a homogeneous dispersion. The cooling slurry is applied onto an aluminum substrate with a wire drawdown rod and force dried in an oven for about 3 minutes at about 100 C. The coated sheets are dark rested for about 1 hour and thentested.
Example LHI The xerographic plate is initially prepared by mixing about 10 parts Lucite 2042, an ethyl methacrylate poly- 12 mer available from Du Pont, about parts benzene and about 2 parts N-2"-pyridyl-8,13-dioxodinaphtho-(2,1-b; 2',3'-d)-furan-6-carboxamide. The mixture is coated onto an aluminum substrate to a thickness of about 8 microns and cured. The plate is charged negative in the dark by means of a corona discharge to a potential of about 400 volts. The charged plate is exposed to a film positive for about 30 seconds by means of a high intensity, long wave, ultraviolet lamp (1680 microwatts/cm. of 3660 AU. radiation at a distance of 18 inches). The latent electrostatic image is developed by cascading Xerox 1824 toner over the plate. The powder image on the plate is electrostatically transferred to a receiving sheet and heat fused. The image on the receiving sheet is of excellent quality and corresponds to the original. The plate is wiped clean of any residual toner and reused as in the above manner.
Example LIV A xerographic plate is prepared by initially mixing about 10 parts Lucite 2042, about 90 parts benzene and about 2 parts N-4"(1",3"-diazyl)-8,l3-dioxodinaphtho- (2,1-b; 2',3"d)-furan- 6 carboxamide. The mixture is coated onto an aluminum substrate to a thickness of about 8 microns and cured. The plate is charged, exposed and developed as in Example LI=II above. The image produced is observed to be of good quality.
Example LV A xerographic plate is prepared by initially mixing about 10 parts Lucite 2042, about 90 parts benzene and about 2 parts N-Z"(1",3",5"-triazyl)18,13-dioxodinaphtho-(2,1-b; 2',3'-d)-furan-6-carboxamide. The mixture is coated onto an aluminum substrate to a thickness of about 8 microns and cured. The plate is charged negative in the dark by means of a corona discharge to a potential of about 400 volts. The charged plate is exposed for about 45 seconds to a light and shadow image using a Simmons Omega D-3 enlarger equipped with a tungsten light source operating at 2950 K. color temperature. Illumination level incident on the plate is 2.8 foot candles as measured with a Weston Illumination Meter Model No. 756. The latent electrostatic image is then developed by cascading Xerox 1824 toner over the plate. The powder image on the plate is electrostatically transferred to a receiving sheet and heat fused. The image on the receiving sheet is of good quality and corresponds to the original. The plate is wiped clean of any residual toner and reused as in the above described manner.
The third electrophotographic imaging process in which the above listed novel photosensitive pigments are useful is that referred to as surface deformation imaging. As discussed above, this includes both frost and relief deformation of the surface of a deformable layer in image configuration.
Any suitable imaging method may be used in the surface deformation imaging processes of the present invention. The following methods are typical:
(1) The photoconductive thermoplastic layer is first substantially uniformly charged and exposed to a light and shadow image to be reproduced. The material is then heated until it deforms to form a frost pattern corresponding to the light and shadow image. The frost image thus formed is subsequently fixed or set by permitting the heat deformable layer to cool below its softening point. The image may be erased by reheating the layer in charge free condition to its softening point.
(2) In an alternative imaging process, the thermoplastic layer is uniformly charged and exposed to a light and shadow image. The material is then exposed to a solvent vapor, which softens the surface so that it deforms to form a frost pattern corresponding to the light and shadow image. Next, the solvent is removed by evaporation to fix or set the image. This image may be layer erased by resoftening the layer surface, by heat or additional solvent vapor.
(3) In still another alternative, a relief image may be formed by scanning the thermoplastic layer with an electron beam, either while the layer is softened, or just prior to heat or solvent softening. This image may be set by returning the layer to its pre-softened condition.
(4) Any of the methods described in detail in copending applications 193,277 now US. Pat. 3,196,011, 232,494 now US. Pat. 3,244,083 and 388,322 now abandoned in favor of application Serial No. 670,824 filed May 8, 1962; Oct. 23, 1962 and Aug. 7, 1964, respectively, may be used in the process of this invention. For example, the methods of forming the frost or relief image may vary depending upon the intended use of the resulting product. In certain situations, the heat deformable layer may be pretreated before uniformly charging the surface thereof. In addition, various suitable methods may be used to selectively fix and/or erase the material in imagewise configuration.
Any suitable material may be used as the surface deformable coating over the photoconductive layer or as the binder for the photosensitive pigments in a self-deformable layer. Typical surface deformable thermoplastic polymers are low molecular weight polymers or oligomers. Any suitable polymer may be used in the surface deformation process of this invention; typical polymers are aromatic polymers such as polystyrene, alpha methylstyrene; copolymers made from styrene and other materials such as vinyl toluene, methyl-styrene, polyalphamethyl styrene, chloronated styrene, and polymers and copolymers made from petroleum cuts and indene polymers; phenolics such as phenol aldehyde resin's, phenol formaldehyde resins and mixtures thereof; vinyl polymers such as polyvinylacetate, polyvinylalcohol, poly vinylbutyral, butylmethyl-acrylate-styrene polymers, butylmethacrylatealcoholated styrene copolymers, styrene-methacrylatebutadiene terpolymers; organo-polysiloxanes such as polydiphenylsiloxane; polyesters such as acrylic esters, bisphenol-A type polyesters; bisphenol-A copolymers; complex hydrocarbon polymers such as hydrogenated polyethylene and other mixtures and copolymers thereof. If desired, deformation characteristics of the films may be improved by incorporating on the surface thereof of thin surface skins as disclosed in copending application 388,323 filed Aug. 7, 1964.
The following examples will further specifically define the heat deformable imaging process of the present invention. Parts and percentages are by weight unless otherwise indicated. The examples below are intended to illustrate various preferred embodiments of heat deformable imaging according to the present invention.
Broadly, the heat deformable image, either relief or frost may be formed either (1) by direct deformation of the thermoplastic binder containing the photosensitive pigment or (2) by overcoating the pigment-binder layer with a thermoplastic layer which is itself deformable.
Example LVI A plate is prepared by initially mixing about parts Lucite 2042, an ethyl methacrylate polymer available from Du Pont, about 90 parts benzene and about 2 parts N-2-pyridyl- 8,13 dioxodinaphtho-(2,1-;2',3'-d)-furan- 6-carboxamide. This mixture is coated onto an aluminum substrate to a thickness of about 8 microns and cured. The plate is then overcoated with about a 10 micron layer of Piccoflex 100-A (a polyvinylchloride resin obtained from Pennsylvania Industrial Chemicals Company). The composite plate is then charged to a negative potential of about 400 volts in the dark by means of a corona discharge. The charged plate is exposed through a film positive for about 30 seconds to a high intensity, long wave, ultraviolet lamp (1680 microwatts/cm. if 3660 AU. radiation at a distance of 18 inches). The latent electrostatic image is then developed by placing the plate on a heated platen maintained at about 70 C. As the plate is heated to the softening point of the overcoating, a frost image corresponding to the original appears.
Example LVII A plate is prepared by initially mixing about 10 parts Lucite 2042, about parts benzene and about 2 parts N-4"(l",3" diazyl) 8,13 dioxodinaphtho (2.1-b;2', 3'-d)-furan-6-carboxamide. This mixture is coated onto an aluminum substrate to a thickness of about 8 microns and cured. The plate is then overcoated with about a 10 micron layer of Piccoflex -A. The composite plate is charged, exposed, and developed as in Example LVI above. Again, a frost pattern in image configuration is observed.
Example LVIII A plate is prepared by initially mixing about 10 parts Lucite 2042, about 90 parts benzene and about 2 parts N-2"(l",3",5 triazyl) 8,13 dioxodinaphtho (2,1-b; 2',3'-d)-furan-6-carboxamide. This mixture is coated onto an aluminum substrate to a thickness of about 10 microns and cured. The plate is then overcoated with about a 10 micron layer of Staybelite Ester No. 10 available from Hercules Powder Company. The composite plate is then charged to a negative potential of about 400 volts in the dark by means of a corona discharge. The charged plate is exposed for about 45 seconds to a light and shadow image using a Simmons Omega D3 enlarger equipped with a tungsten light source operating at 2950 K. color temperature. Illumination level incident on the plate is about 2.8 foot candles as measured with a Weston Illumination Meter Model No. 756. The latent electrostatic image is developed by placing the plate on a platen heated to a temperature of about 70 C. As the softening temperature of the overcoating is reached, a frost pattern in image configuration again appears.
Although specific components and proportions have been described in the above examples relating to electrophoretic, xerographic, and heat deformable imaging systems, other suitable materials, as listed above, may be used with similar results. In addition, other materials may be added to the pigment compositions or to the pigmentresin compositions to synergize, enhance, or otherwise modify their properties. The pigment compositions and/ or the pigment-resin compositions of this invention may be dye sensitized, if desired, or may be mixed or otherwise combined with other photoconductors, both organic and inorganic.
The novel compositions of this invention are further useful as pigments for paints, varnishes, etc., and for plastic molding and coating compositions. They are useful as pigments in paper making processes when a yellow colored paper is desired. The pigments may also be dispersed in synthetic filament forming materials useful in the production of synthetic textiles. The compositions have further uses in certain insecticides, herbicides and fungicides.
Other modifications and ramifications of the present invention will occur to those skilled in the art upon a reading of the present disclosure. These are intended to be included Within the scope of this invention.
What is claimed is:
1. A composition having the general formula:
wherein:
each R is selected from the group consisting of N and C, from l-3 Rs being N; each X is selected from the group consisting of H, CH
15 C H N OCH OC H CN, SO NH CO CH CO C H SO NHC H Cl, F, Br, I; and n is a positive integer from 1-4. 2. A composition having the general formula:
wherein:
each R is selected from the group consisting of N and C, from 1-3 Rs being N.
3. N-2"-pyridyl 8,13 dioXodinaphtho-(2,1-b;2',3-d)- furan-6-carboxamide.
4. N-2"(1",3"-diazyl) 8,13 dioxodinaphtho-(2,1-b; 2',3-d)-furan-6-carboxamide.
S. N-2"(l",3",5"-triazyl) 8,13-dioXodinaphtho-2,1-b; 2',3'-d)furan-6-carboxamide.
6. A coating composition comprising a hardenable carrier having dispersed therein a pigment having the general formula:
wherein:
each R is selected from the group consisting of N and C,
from 1-3 Rs being N; each X is selected from the group consisting of H, CH C H N0 OCH OC H CN, SO NH CO CH CO C H SO NHC H Cl, F, Br, I; and
n is a positive integer from 1-4.
7. A coating composition comprising a hardenable carrier having dispersed therein N-2"(1",3"-diazyl)-8,13-dioxodinaphtho-(2,1-b;2',3'-d)-furan-6-carboxamide.
8. The method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between at least two electrodes, at least one of which is at least partially transparent and simultaneously exposing said suspension to an image through said partially transparent electrode with activating electromagnetic radiation whereby an image is formed on at least one of said electrodes; said suspension comprising a plurality of finely divided photosensitive particles of at least one color, at least one of said particles comprising a composition having the general formula:
16 wherein:
each R is selected from the group consisting of N and C, from 13 Rs being N; each X is selected from the group consisting of H, CH C H N0 OCH CN, SO NH CO CH CO C H OC H SO NHC H Cl, F, Br, I; and n is a positive integer from 1-4. 9. The method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between at least two electrodes, at least one of which is at least partially transparent and simultaneously exposing said suspension to an image through said partially transparent electrode with activating electromagnetic ra diation whereby an image is formed on at least one of said electrodes; said suspension comprising a plurality of finely divided photosensitive particles of at least one color, at least one of said particles comprising N-4"(1", 3" diazyl) 8,13 dioxodinaphtho (2,1 b; 2',3' d)- furan-6-carboxamide.
10. The method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between at least two electrodes, at least one of said electrodes being a barrier electrode, and exposing said suspension to an image with activating electromagnetic radiation whereby an image is formed on at least one of said electrodes; said suspension comprising a plurality of finely divided photosensitive particles of at least one color, at least one of said particles comprising compositions having the general formula:
wherein:
each R is selected from the group consisting of N and C, from 1-3 Rs being N; each X is selected from the group consisting of H, CH C H N0 OCH OC H CN, SO NH CO CH V CO2C2H5, SO2NHC6H5, Cl, F, Br, and
n is a positive integer from 1-4.
11. The method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between at least two electrodes, at least one of said electrodes being a barrier electrode, and exposing said suspension to an image with activating electromagnetic radiation whereby an image is formed on at least one of said electrodes; said suspension comprising a plurality of finely divided photosensitive particles of at least one color, at least one of said particles comprising N-2- (1",3",5" triazyl) 8,13 dioxodinaphtho (2,1 b; 2,3-d)-furan-6-carboxamide.
12. The method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between at least two electrodes, at least one of which is at least partially transparent, said suspension comprising a plurality of finely divided particles of at least two different colors in an insulating carrier liquid, the particles of each color comprising a photosensitive pigment whose principal light absorption bands substantially coincides with its principal photosensitive response,
simultaneously exposing said suspension to a light image through said transparent electrode and then separating said electrodes whereby an image is formed on the surface of at least one of said electrodes; the particles of wherein:
each R is selected from the group consisting of N and C, from 1-3 Rs being N; each X is selected from the group consisting of H, CH C H N OCH 0C H CN, SO NH COzCHg, CO2C2H5, SO2NHC6H5, F, BI, and
n is a positive integer from L4.
13. The method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between two electrodes, at least one of which is at least partially transparent, said suspension comprising a plurality of finely divided particles of at least two different colors in an insulating carrier liquid, the particles of each color comprising a photosensitive pigment Whose principal light absorption bands substantially coincides with its principal photosensitive response, simultaneously exposing said suspension to a light image through said transparent electrode and then separating said electrodes whereby an image is formed on the surface of at least one of said electrodes; the particles of one color comprising N 2" pyridyl-S,l3-dioxodinaphtho-(2,1-b; 2',3'd)- furan-6-carboxamide.
14. The method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between at least two electrodes, at least one of which is a blocking electrode, said suspension comprising a plurality of finely divided particles of at least two different colors in an insulating carrier liquid, the particles of each color comprising a photosensitive pigment whose principal light absorption bands substantially coincides with its principal photosensitive response, simultaneously exposing said suspension to a light image and then separating said electrodes whereby an image is formed on the surface of at least one of said electrodes; the particles of one color comprising a composition having the general formula:
wherein:
each R is selected from the group consisting of N and C, from l-3 Rs being N; each X is selected from the group consisting of H, CH C H N0 OCH OC H CN, SO NH CO CH CO C H SO NHC H Cl, F, Br, I; and
n is a positive integer from 1-4.
15. The method of electrophoretic imaging comprising subjecting a layer of a suspension to an applied electric field between at least two electrodes, at least one of which is a blocking electrode, said suspension comprising a plurality of finely divided particles of at least two different colors in an insulating carrier liquid, the particles of each color comprising a photosensitive pigment whose principal light absorption bands substantially coincides with its principal photosensitive response, simultaneously exposing said suspension to a light image and then separating said electrodes whereby an image is formed on the surface of at least one of said electrodes; the particles of one color comprising N 2" pyridyl 8,13 dioxodinaphtho (2,1- b; 2,3-d)-furan-6-carboxamide.
16. A xerographic plate comprising a photoconductive layer comprising a binder material and a composition having the general formula:
R=R Xu X /R R-R/ wherein:
each R is selected from the group consisting of N and C, from 1-3 Rs being N; each X is selected from the group consisting of H, CH C H N0 OCH OC H CN, SO NH CO CH CO2C2H5, SO2NHC6H5, C1, F, Br, and
n is a positive integer from 1-4.
17. A process for forming a latent xerographic image on a photoconductive layer comprising a photoconductive pigment in an organic binder, which comprises electrostatically charging said layer and exposing said layer to a pattern of activating electromagnetic radiation; said photoconductive pigment comprising the composition having the general formula:
wherein:
each R is selected from the group consisting of N and C, from 1-3 Rs being N; each X is selected from the group consisting of H, CH C H N0 OCH OC H CN, SO NH CO CH CO C H SO NHC H Cl, F, Br, I; and
n is a positive integer from 1-4.
18. A method of forming a latent electrostatic charge pattern on a deformable layer which comprises charging said layer, exposing said layer to a pattern of activating electromagnetic radiation, dissipating at least a portion of the charge on said layer to thereby form a latent electrostatic charge pattern corresponding to said pattern of activating electromagnetic radiation; said layer comprising an organic binder and a photoconductive pigment composition having the general formula:
0 H Q: :\o H
g H I R wherein:
each R is selected from the group consisting of N and C, from 1-3 Rs being N; each X is selected from the group consisting of H, CH
19 C H N OCH 0C H CN, SO NH CO CH CO C H SO2NHC6H5, Cl, F, BI, I; and
n is a positive integer from 1-4.
19. A method for forming an image on a surface deformable recording medium which comprises electrostatically charging a recording medium, said recording medium comprising photoconductive pigment particles in an organic binder coated on a supporting substrate and overcoated with a thermoplastic material, exposing said medium to a pattern of light and shadow and maintaining said surface in a sufliciently viscous condition to thereby deform at least a portion of said surface in a configuration corresponding to said pattern of light and shadow, said photoconductive pigment comprising the composition having the general formula:
wherein:
each R is selected from the group consisting of N and C, from 1-3 Rs being N; each X is selected from the group consisting of H, CH C l-I N0 OCH OC H CN, SO NH CO CH CO C H SO NHC H Cl, F, Br, I; and
n is a positive integer from 1-4.
20. A method for forming an image on a surface deformable recording medium which comprises electrostatically charging the recording medium, said recording medium comprising photoconductive pigment particles in a thermoplastic binder coated on a supporting substrate, exposing said medium to a pattern of light and shadow and maintaining said surface in a sufliciently viscous con- 20 dition to thereby deform at least a portion of said surface in a configuration corresponding to said pattern of light and shadow, said photoconductive pigment comprising the composition having the general formula:
II I
H 0 r r /R=R X, 0 (f NO R wherein:
each R is selected from the group consisting of N and C, from 1-3 Rs being N; each X is selected from the group consisting of H, CH 2O C 11 N0 OCH OC H CN, SO NH CO CH CO C H SO NHC H Cl, F, Br, I; and n is a positive integer from 1-4.
References Cited UNITED STATES PATENTS 2,893,998 7/1959 Sartori 260346.2 2,976,287 3/ 1961 Randall 260249.6 3,147,283 9/1964 Frey 260346.2
OTHER REFERENCES NORMAN G. TORCHIN, Primary Examiner.
JOHN C. COOPER III, Assistant Examiner.
US. Cl. X.R.
2 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent NQ. 3,447,922 Da d June 3,
Inventor(s) Lester Weinberger It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 4, delete lines 35 and 36 and insert methylna phthalene. The product comprises about 4.5 parts N-2" pyridyl- 8, l3 dioxodinaphtho (2,1 -b; 2,- 3' d furan Column 13, line 60 (2,1-2 :3 -d)" should read (2.1-1); 2',3'd)
SN'INED MED SEALED Attest:
I Fl t h Q I M WILLIAM E. sum, .13. Anesting Officer Commissioner of Patents
US421281A 1964-12-28 1964-12-28 Electrically photosensitive particles useful in photoelectrophoretic and xerographic imaging processes Expired - Lifetime US3447922A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US42128064A 1964-12-28 1964-12-28
US42158964A 1964-12-28 1964-12-28
US42128164A 1964-12-28 1964-12-28
US42137764A 1964-12-28 1964-12-28

Publications (1)

Publication Number Publication Date
US3447922A true US3447922A (en) 1969-06-03

Family

ID=27503691

Family Applications (3)

Application Number Title Priority Date Filing Date
US421281A Expired - Lifetime US3447922A (en) 1964-12-28 1964-12-28 Electrically photosensitive particles useful in photoelectrophoretic and xerographic imaging processes
US421280A Expired - Lifetime US3448028A (en) 1964-12-28 1964-12-28 N-substituted - 8,13-dioxodinaphtho (2,1-b; 2',3'-d)-furan - 6 - carboxamides as electrically photosensitive materials in electrophotographic processes
US421377A Expired - Lifetime US3448029A (en) 1964-12-28 1964-12-28 Electrophoretic imaging process using 8,13-dioxodinaphtho - (2,1 - b; 2',3'-d) - furan-6-carboxamide pigments

Family Applications After (2)

Application Number Title Priority Date Filing Date
US421280A Expired - Lifetime US3448028A (en) 1964-12-28 1964-12-28 N-substituted - 8,13-dioxodinaphtho (2,1-b; 2',3'-d)-furan - 6 - carboxamides as electrically photosensitive materials in electrophotographic processes
US421377A Expired - Lifetime US3448029A (en) 1964-12-28 1964-12-28 Electrophoretic imaging process using 8,13-dioxodinaphtho - (2,1 - b; 2',3'-d) - furan-6-carboxamide pigments

Country Status (5)

Country Link
US (3) US3447922A (en)
BE (1) BE742671A (en)
DE (1) DE1793539C3 (en)
FR (1) FR1467288A (en)
GB (2) GB1137886A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582205A (en) * 1966-01-06 1971-06-01 Xerox Corp Imaging apparatus
DE2162296A1 (en) * 1970-12-16 1972-06-22 Ciba Geigy Ag Use of organic pigments in photoelectrophoretic imaging
US3953462A (en) * 1973-10-29 1976-04-27 Xeerox Corporation Imaging process
US4012252A (en) * 1973-10-29 1977-03-15 Xerox Corporation Imaging process utilizing 3-bromo-N-2"-pyridyl-8,13-dioxodinaphtho-(2,1-b;2',3'-d)-furan-6-carboxamide
US4062854A (en) * 1973-07-09 1977-12-13 Xerox Corporation Process for preparing N-substituted-8,13-dioxodinaphtho-(2,1-b; 2',3'-di-fluran-6-carboxamides
US4427752A (en) 1981-05-08 1984-01-24 Ciba-Geigy Corporation Use of isoindoline pigments for photoelectrophoretic imaging
US5376784A (en) * 1993-06-17 1994-12-27 Weinberger; Lester Hybrid organic-inorganic bistable nonlinear optical device
US5543631A (en) * 1993-06-17 1996-08-06 Weinberger; Lester Hybrid organic-inorganic bistable nonlinear optical gate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW252136B (en) * 1992-10-08 1995-07-21 Ciba Geigy
JP4361800B2 (en) * 2001-12-21 2009-11-11 サイトキネティックス, インコーポレイテッド Compositions and methods for treating heart failure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2893998A (en) * 1958-05-20 1959-07-07 Du Pont Anthraquinone vat dyes
US2976287A (en) * 1958-12-03 1961-03-21 Gen Aniline & Film Corp Naphthofuranedione vat dyestuffs
US3147283A (en) * 1961-08-10 1964-09-01 Ciba Ltd New dyestuffs of the naphthofurandione series

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL250331A (en) * 1959-04-09
US3238041A (en) * 1962-05-08 1966-03-01 Rank Xerox Ltd Relief imaging of photoresponsive member and product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2893998A (en) * 1958-05-20 1959-07-07 Du Pont Anthraquinone vat dyes
US2976287A (en) * 1958-12-03 1961-03-21 Gen Aniline & Film Corp Naphthofuranedione vat dyestuffs
US3147283A (en) * 1961-08-10 1964-09-01 Ciba Ltd New dyestuffs of the naphthofurandione series

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582205A (en) * 1966-01-06 1971-06-01 Xerox Corp Imaging apparatus
DE2162296A1 (en) * 1970-12-16 1972-06-22 Ciba Geigy Ag Use of organic pigments in photoelectrophoretic imaging
US4062854A (en) * 1973-07-09 1977-12-13 Xerox Corporation Process for preparing N-substituted-8,13-dioxodinaphtho-(2,1-b; 2',3'-di-fluran-6-carboxamides
US3953462A (en) * 1973-10-29 1976-04-27 Xeerox Corporation Imaging process
US4012252A (en) * 1973-10-29 1977-03-15 Xerox Corporation Imaging process utilizing 3-bromo-N-2"-pyridyl-8,13-dioxodinaphtho-(2,1-b;2',3'-d)-furan-6-carboxamide
US4427752A (en) 1981-05-08 1984-01-24 Ciba-Geigy Corporation Use of isoindoline pigments for photoelectrophoretic imaging
US5376784A (en) * 1993-06-17 1994-12-27 Weinberger; Lester Hybrid organic-inorganic bistable nonlinear optical device
US5543631A (en) * 1993-06-17 1996-08-06 Weinberger; Lester Hybrid organic-inorganic bistable nonlinear optical gate

Also Published As

Publication number Publication date
DE1793539B2 (en) 1978-07-20
DE1518130A1 (en) 1969-10-02
DE1518130B2 (en) 1975-07-03
US3448029A (en) 1969-06-03
DE1793539A1 (en) 1972-03-30
FR1467288A (en) 1967-01-27
BE742671A (en) 1970-06-04
GB1137885A (en) 1968-12-27
DE1793539C3 (en) 1979-03-08
GB1137886A (en) 1968-12-27
US3448028A (en) 1969-06-03

Similar Documents

Publication Publication Date Title
US3442781A (en) Photoelectrophoretic and xerographic imaging processes employing triphenodioxazines as the electrically photosensitive component
US4012376A (en) Photosensitive colorant materials
US4146707A (en) Heterocyclic ethenyl or vinyl heterocyclic or aromatic compounds for migration imaging processes
US3560360A (en) Photoelectrophoretic imaging process using anthraquinones as the electrically photosensitive particles
US3384566A (en) Method of photoelectrophoretic imaging
US4175956A (en) Electrophotosensitive materials for migration imaging processes
GB2084605A (en) Phthalocyanine pigments
US3447922A (en) Electrically photosensitive particles useful in photoelectrophoretic and xerographic imaging processes
US4197120A (en) Electrophoretic migration imaging process
US3445227A (en) Electrophotographic imaging processes employing 2,4-diamino-triazines as the electrically photosensitive particles
US4191566A (en) Electrophotographic imaging process using anthraquinoid black pigments or metal complexes
US3448030A (en) Electrically photosensitive particles useful in photoelectrophoretic and xerographic imaging processes
US3737311A (en) Electrostatic particle transfer imaging process
US3595771A (en) Method of removing accumulated charges in photoelectrophoretic imaging
US3723110A (en) Electrophotographic process
US3615418A (en) Heterogeneous dye-binder photoconductive compositions
US4282354A (en) Electrophoretic migration imaging process
US3658675A (en) Photoelectrophoretic imaging processes using bisazo pigments
US3867141A (en) Photoelectric and electrophotographic pigments comprising derivatives of condensed polycyclic aromatic hydrocarbon aldehydes
US3922169A (en) Photoelectric and electrophotographic pigments comprising derivatives of condensed polycyclic aromatic hydrocarbon aldehydes
US3915702A (en) Photoelectric and electrophotographic pigments comprising derivatives of condensed polycyclic aromatic hydrocarbon aldehydes
US3923506A (en) Photoelectric and electrophotographic pigments comprising derivatives of condensed polycyclic aromatic hydrocarbon aldehydes
US4331751A (en) Electrically photosensitive materials and elements for photoelectrophoretic imaging processes
US3667944A (en) Quinacridone pigments in electrophotographic recording
US4007042A (en) Migration imaging method